
Two Player Games
A4B33ZUI, LS 2017

Branislav Bošanský, Karel Horák, Ondřej Vaněk
{name.surname}@agents.fel.cvut.cz

Artificial Intelligence Center, Czech Technical University

 function minimax(node, depth, Player)
 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 v := max(v, minimax(child, depth-1, switch(Player)))

 return v

 else

 for each child of node

 v := min(v, minimax(child, depth-1, switch(Player)))

 return v

Minimax

 function alphabeta(node, depth, α, β, Player)
 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 v := max(v, alphabeta(child, depth-1, α, β, switch(Player)))

 α := max(α,v); if (β≤α) break

 return v

 else

 for each child of node

 v := min(v, alphabeta(child, depth-1, α, β, switch(Player)))

 β := min(β,v); if (β≤α) break

 return v

Alpha-Beta Pruning

Game

 function negamax(node, depth, α, β, Player)
 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 v := max(v, -negamax(child, depth-1, -β, -α, switch(Player)))

 α := max(α,v); if (β≤α) break

 return v

 else

 for each child of node

 v := min(v, alphabeta(child, depth-1, α, β, switch(Player)))

 β := min(β,v); if (β≤α) break

 return v

Negamax

 enhancement of the alpha-beta algorithm

 assumes some heuristic that determines move ordering

 the algorithm assumes that the first action is the best one

 after evaluating the first action, the algorithm checks whether the
remaining actions are worse

 the “test” is performed via null-window search

 [α, α+1]

 the algorithm needs to re-search, if the test fails (i.e.,
there might be a better outcome for the player when
following the tested action)

•

NegaScout – Main Idea

function negascout(node, depth, α, β, Player)

 if ((depth = 0) or (node is a terminal node)) return eval(node)

 b := β

 for each child of node

 v := max(v,-negascout(child, depth-1, -b, -α, switch(Player))))

 if ((α < v) and (child is not the first child))

 v := max(v,-negascout(child, depth-1, -β, -α, switch(Player))))

 α := max(α, v)

 if (β≤α) break

 b := α + 1

 return v

NegaScout

function negascout(node, depth, α, β, Player)

 if ((depth = 0) or (node is a terminal node)) return eval(node)

 b := β

 for each child of node

 v := max(v,-negascout(child, depth-1, -b, -α, switch(Player))))

 if ((α < v < β) and (child is not the first child))

 v := max(v,-negascout(child, depth-1, -β, -v, switch(Player))))

 α := max(α, v)

 if (β≤α) break

 b := α + 1

 return v

NegaScout

• Extracting selected moves

• Cache for previous results (transposition tables)

• Iterative deepening (using previous results in game playing)

• Implementation of game states (bit operations, modifications
have to be as quick as possible)

Alpha Beta and Negascout in Practice

• TEST on alpha beta and negascout

– 3.4. and 4.4. 2017 on seminars

Alpha Beta and Negascout in Practice

