Informed State Space Search A4B33ZUI, LS 2017

Branislav Bošanský, Karel Horák, Ondřej Vaněk {name.surname}@agents.fel.cvut.cz Artificial Intelligence Center, Czech Technical University

Informed Search Problems

- Problem
- Initial state $-s_0$
- Successor function $-x \in S \rightarrow succ(x) \in 2^S$
- **Goal test** $-x \in S \rightarrow goal(x) = T \mid F$
- Arc cost -c(x, succ(x))

Heuristic
$$s \in S: h(s) \rightarrow R$$

- g(s): cost to reach the state s
- h(s): **<u>estimated</u>** cost to get from state s to goal state

Best-first Search Algorithms

• Evaluation function f(n) for each state/node

$$f(n) = g(n) + h(n)$$

COST HEURISTIC

• → Selecting **best** node first – "best-first search"

```
Uniform cost search: h(N) = 0
Greedy search: g(N) = 0, h(N) arbitrary
A search: g(N), h(N) arbitrary
A* search: g(N), h(N) admissible
```

H(N) – Heuristic function

- We know the cost to the node g(n) nothing to tune here
- We don't know the exact cost from n to goal h(n) if we knew, no need to search – estimate it!
- H(N) admissible and consistent heuristic
- Admissible = optimistic it never overestimates the cost to the goal
 - $\ 0 \le h(N) \le h^*(N)$
- Consistent = Triangle inequality is valid
 - $-a+b \ge c$
 - $-g(N,M) + h(M) \ge h(N)$
 - → once a node is expanded, the cost
 by which it was reached is the lowest possible

Consistent Heuristic

- A* finds optimal path for admissible heuristic *h*.
- A* is optimally efficient for any heuristic *h*.
- But...
- The number of expanded nodes might still be huge. $O(b^d)$

(b - branching factor, d - depth of optimal solution)

Question: What if we do have limited memory and the goal is deep?

- Question: What if we do have limited memory and the goal is deep?
- IDA* (Iterative Deepening A*)
 - Space complexity linear in depth
 - Lot of work done multiple time (despite same time complexity)
 - Inefficient use of available memory

- Question: What if we do have limited memory and the goal is deep?
- IDA* (Iterative Deepening A*)
 - Space complexity linear in depth
 - Lot of work done multiple time (despite same time complexity)
 - Inefficient use of available memory
- SMA* (Simplified Memory-Bounded A*)
 - Works as A* until free memory is available
 - Then it drops node that is the least likely to lead to solution

Simplified Memory-Bounded A*

- Ideas:
 - Generate one node at a time by expanding node with the least *f*-value (the "most promising node")
 - If the expansion exhausted memory, forget node with greatest *f*-value (the "least promising node")
 - Values are backed up:
 - Refined version of *f* when all children of a node are expanded
 - Values of "forgotten" alternative

Simplified Memory-Bounded A*

- **Question:** What if the time for planning is bounded? e.g.
 - graph is huge like in your assignment
 - you need to plan really quickly (e.g. in real-time games)

- **Question:** What if the time for planning is bounded? e.g.
 - graph is huge like in your assignment
 - you need to plan really quickly (e.g. in real-time games)
- We can sacrifice optimality for performance.
- We can sacrifice **admissibility** of the heuristic.

- **Question:** What if the time for planning is bounded? e.g.
 - graph is huge like in your assignment
 - you need to plan really quickly (e.g. in real-time games)
- We can sacrifice optimality for performance.
- We can sacrifice **admissibility** of the heuristic.
- Lower number of expanded nodes.
- Faster search

- ϵ -admissible heuristic ($\epsilon > 1$) $f(n) = g(n) + \epsilon \cdot h(n)$
- Using it leads to bounded approximation of the optimal path (no worse than ϵ times worse)

D	Χ			S
	Χ		Χ	
	Χ			
	Х			
	Х	Х		

Bidirectional Search

- Unidirectional search $O(b^d)$ nodes need to be expanded
- What if we search simultaneously from start in the forward sense and from the goal backwards?
 - If we search to the depth d/2 in both direction and happen to meet in the middle, the complexity becomes $O(b^{d/2})$
- **Question:** What do we need for doing bidirectional search?

Bidirectional Search

- Heuristics in bidirectional search:
- Front-to-Front
 - Heuristics estimate distance needed to "meet"
 (i.e. distance to any node in the open list for opposite direction)
 - Computationally expensive
 - Proof that the searches meet in the middle missing
- Front-to-End
 - Standard heuristics
 - Distance to the goal (when searching forward) or the start (when searching backwards)

MM Search

- Is there a Front-to-End algorithm that guarantees that searches meet in the middle?
 - "Bidirectional Search That Is Guaranteed to Meet in the Middle" by Holte et al. AAAI 2016
 - Best-paper award

MM Search

The modification is rather simple
 p = max (f(n), 2g(n))

D	Х			S
	Χ		Х	
	Χ			
	Χ			
	Χ	Χ		

Algorithm 1: Pseudocode for MM					
$1 \ g_F(start) := g_B(goal) := 0; Open_F := \{start\};$					
$Open_B := \{goal\}; U := \infty$					
2 while $(Open_F \neq \emptyset)$ and $(Open_B \neq \emptyset)$ do					
$C := min(prmin_F, prmin_B)$					
4 if $U \le \max(C, fmin_F, fmin_B, gmin_F + gmin_B + \epsilon)$					
then					
return U					
6 if $C = prmin_F$ then					
7 // Expand in the forward direction					
s choose $n \in Open_F$ for which $pr_F(n) = prmin_F$					
and $g_F(n)$ is minimum					
9 move <i>n</i> from $Open_F$ to $Closed_F$					
10 for each child c of n do					
11 if $c \in Open_F \cup Closed_F$ and					
$g_F(c) \leq g_F(n) + cost(n,c)$ then					
12 continue					
13 $if c \in Open_F \cup Closed_F$ then					
14 remove c from $Open_F \cup Closed_F$					
15 $g_F(c) := g_F(n) + cost(n,c)$					
16 add c to $Open_F$					
if $c \in Open_B$ then					
18 $\bigcup U := \min(U, g_F(c) + g_B(c))$					
19 else					
20 // Expand in the backward direction, analogously					
21 return ∞					