Informed State Space Search A4B33ZUI, LS 2017

Branislav Bošanský, Karel Horák, Ondřej Vaněk

\{name.surname\}@agents.fel.cvut.cz
Artificial Intelligence Center, Czech Technical University

Informed Search Problems

- Problem
- Initial state - s_{0}

Successor function $-x \in S \rightarrow \operatorname{succ}(x) \in 2^{S}$
Goal test $-x \in S \rightarrow \operatorname{goal}(x)=T \mid F$
Arc cost $-c(x, \operatorname{succ}(x))$

Heuristic $\boldsymbol{s} \in \boldsymbol{S}: \boldsymbol{h}(\boldsymbol{s}) \rightarrow \boldsymbol{R}$

- $g(s):$ cost to reach the state s
- $h(s)$: estimated cost to get from state s to goal state

Best-first Search Algorithms

- Evaluation function $f(n)$ for each state/node

$$
\begin{gathered}
f(n)=g(n)+\mathbb{R}(n) \\
\text { COST HEURISTIC }
\end{gathered}
$$

- \rightarrow Selecting best node first - "best-first search"

Uniform cost search: $h(N)=0$
Greedy search: $g(N)=0, h(N)$ arbitrary
A search: $g(N), h(N)$ arbitrary
A* search: $g(N), h(N)$ admissible

$H(N)$ - Heuristic function

- We know the cost to the node $g(n)$ - nothing to tune here
- We don't know the exact cost from n to goal $h(n)$ - if we knew, no need to search - estimate it!
- $\mathrm{H}(\mathrm{N})$ - admissible and consistent heuristic
- Admissible =optimistic - it never overestimates the cost to the goal
$-0 \leq h(N) \leq h^{*}(N)$
- Consistent = Triangle inequality is valid
$-a+b \geq c$
$-g(N, M)+h(M) \geq h(N)$
$-\rightarrow$ once a node is expanded, the cost by which it was reached is the lowest possible

Consistent Heuristic

Modifications of A*

- A* finds optimal path for admissible heuristic h.
- A* is optimally efficient for any heuristic h.
- But...
- The number of expanded nodes might still be huge.

$$
O\left(b^{d}\right)
$$

(b - branching factor, d - depth of optimal solution)

Modifications of A*

- Question: What if we do have limited memory and the goal is deep?

Modifications of A*

- Question: What if we do have limited memory and the goal is deep?
- IDA* (Iterative Deepening A*)
- Space complexity linear in depth
- Lot of work done multiple time (despite same time complexity)
- Inefficient use of available memory

Modifications of A*

- Question: What if we do have limited memory and the goal is deep?
- IDA* (Iterative Deepening A*)
- Space complexity linear in depth
- Lot of work done multiple time (despite same time complexity)
- Inefficient use of available memory
- SMA* (Simplified Memory-Bounded A*)
- Works as A* until free memory is available
- Then it drops node that is the least likely to lead to solution

Simplified Memory-Bounded A*

- Ideas:
- Generate one node at a time by expanding node with the least f-value (the "most promising node")
- If the expansion exhausted memory, forget node with greatest f-value (the "least promising node")
- Values are backed up:
- Refined version of f when all children of a node are expanded
- Values of "forgotten" alternative

\mathbf{D}	\mathbf{X}			\mathbf{S}
\mathbf{X}		\mathbf{X}		
	\mathbf{X}			
	\mathbf{X}			
	\mathbf{X}	\mathbf{X}		

Simplified Memory-Bounded A*

Modifications of A*

- Question: What if the time for planning is bounded? e.g.
- graph is huge like in your assignment
- you need to plan really quickly (e.g. in real-time games)

Modifications of A^{*}

- Question: What if the time for planning is bounded? e.g.
- graph is huge like in your assignment
- you need to plan really quickly (e.g. in real-time games)
- We can sacrifice optimality for performance.
- We can sacrifice admissibility of the heuristic.

Modifications of A*

- Question: What if the time for planning is bounded? e.g.
- graph is huge like in your assignment
- you need to plan really quickly (e.g. in real-time games)
- We can sacrifice optimality for performance.
- We can sacrifice admissibility of the heuristic.
- Lower number of expanded nodes.
- Faster search

Modifications of A*

- ϵ-admissible heuristic $(\epsilon>1)$

$$
f(n)=g(n)+\epsilon \cdot h(n)
$$

- Using it leads to bounded approximation of the optimal path (no worse than ϵ times worse)

D		\mathbf{X}		

Bidirectional Search

- Unidirectional search - $O\left(b^{d}\right)$ nodes need to be expanded
- What if we search simultaneously from start in the forward sense and from the goal backwards?
- If we search to the depth $d / 2$ in both direction and happen to meet in the middle, the complexity becomes $O\left(b^{d / 2}\right)$
- Question: What do we need for doing bidirectional search?

Bidirectional Search

- Heuristics in bidirectional search:
- Front-to-Front
- Heuristics estimate distance needed to "meet" (i.e. distance to any node in the open list for opposite direction)
- Computationally expensive
- Proof that the searches meet in the middle missing
- Front-to-End
- Standard heuristics
- Distance to the goal (when searching forward) or the start (when searching backwards)

MM Search

- Is there a Front-to-End algorithm that guarantees that searches meet in the middle?
- "Bidirectional Search That Is Guaranteed to Meet in the Middle" by Holte et al. AAAI 2016
- Best-paper award
- The modification is rather simple

```
Algorithm 1: Pseudocode for MM
\(g_{F}(\) start \():=g_{B}(\) goal \():=0 ;\) Open \(_{F}:=\{\) start \(\} ;\)
    Open \(_{B}:=\{\) goal \(\} ; U:=\infty\)
    while \(\left(\right.\) Open \(\left._{F} \neq \emptyset\right)\) and \(\left(\right.\) Open \(\left._{B} \neq \emptyset\right)\) do
        \(C:=\min \left(\right.\) prmin \(_{F}\), prmin \(\left._{B}\right)\)
        if \(U \leq \max \left(C\right.\), fmin \(_{F}\), fmin \(_{B}\), gmin \(\left._{F}+\operatorname{gmin}_{B}+\epsilon\right)\)
        then
            return \(U\)
        if \(C=\operatorname{prmin}_{F}\) then
            // Expand in the forward direction
            choose \(n \in\) Open \(_{F}\) for which \(\operatorname{pr}_{F}(n)=\operatorname{prmin}_{F}\)
            and \(g_{F}(n)\) is minimum
            move \(n\) from Open \(_{F}\) to Closed \(_{F}\)
            for each child \(c\) of \(n\) do
                    if \(c \in\) Open \(_{F} \cup\) Closed \(_{F}\) and
                    \(g_{F}(c) \leq g_{F}(n)+\operatorname{cost}(n, c)\) then
                    continue
                    if \(c \in\) Open \(_{F} \cup\) Closed \(_{F}\) then
                    remove \(c\) from Open Olosed \(_{F}\)
                    \(g_{F}(c):=g_{F}(n)+\operatorname{cost}(n, c)\)
                    add \(c\) to Open \(_{F}\)
                    if \(c \in\) Open \(_{B}\) then
                    \(U:=\min \left(U, g_{F}(c)+g_{B}(c)\right)\)
        else
                            // Expand in the backward direction, analogously
    return \(\infty\)
```

