Sequential decision making under uncertainty

Jifi Kléma

Department of Computer Science,
Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky

Agenda

m Previous lecture: individual rational decisions under uncertainty
uncertainty = stochastic action outcomes — lottery, expected utility,
= how to optimally choose whole sequences of actions?

repeated decisions based on uncertain or incomplete information,
prizes/rewards typically delayed,
world does not have to be fully observable,

s Markov decision process

introduces Markov assumption /property — process with a limited memory,
works with stationarity and observability assumptions too,

world /environment well defined by its transition and reward functions,
m generalization in the next lecture

POMDP - the world is partially observable only,

reinforcement learning — no environment model available, no state-transition
and reward functions.

Markov process

m random process, prob of visiting future states given by recent states only,
m distant past is irrelevant provided that we know the recent past,
0 chain
discrete random process with Markov property,
chain m gives how many past states we need to concern
PX, =z, Xp1=2p1,.... X1 =21) =P Xy, =z, | X1 =Tp-1,- -, Xpnorn = Tum)
most often 1st order models,
commonly together with stationarity assumption (time invariance)
Pr(X,y1 = 2|X, =y) = Pr(X, = z[X,—1 =)
m examples of Markov chains
coin tosses — HTHHHT ...
* degenerate (zero order) Markov chain,

weather observed every day at noon — SSSCRRCSRR . ..
x categorized (S)unny, (C)loudy, (R)ain, the order is unknown.

Markov chain — weather example

s How to build a model based on the observed sequence?

let us have a sequence of length 41, assume 1st order,
SSCCRRRRRRRRSSSCRRRRRRRCCCSCSSRRSRRRCSCCC

model = transition matrix.

Stj—lct+1llf£t+1
Sy 143 3
Cy |2 6 2
R, [2 2 16

(0.4 0.3 0.3]
A= {CLZ'j} = 10.2 0.6 0.2
0.1 0.1 0.8]

Markov chain — weather example

s Which questions can be answered with the Markov model of the sequence?

1. sunny today, probability that weather will be SSRRSCS for next 7 days?
2. model in a known state, prob that the state will not change for d days?

3. what is the expected value of d in the individual states?

Markov chain — weather example

s Which questions can be answered with the Markov model of the sequence?

1. sunny today, probability that weather will be SSRRSCS for next 7 days?
2. model in a known state, prob that the state will not change for d days?

3. what is the expected value of d in the individual states?

= Solution

—

. P(O|M)=P(S5,S,5,R,R,S,C,S|M) =
= P(S) P(S|S) P(S|S) P(R|S) P(R|R) P(S|R) P(C|S) P(S|C) =
—1x04x04%x03x08x0.1x03%x02=23x10""

2.0 ={Qi,@i,...,Q;,Q; # Qi}, P(OIM,q = Qi) = af; (1 — ay) = pi(d),
d
3' CZZ — Zflil dpl<d> — Zfﬂil dagli_1<1 o aii) = 1—16%'2"
(sum of arithmetic-geometric series: > 1o, kr*~1 = ﬁ)

ds = 1.67, do = 2.5, dp = 5.

Sequential decision making under uncertainty

= commonly there are more steps/actions needed to reach the goal,

m let us assume

non-deterministic environment (actions with uncertain outcomes),

the goal state replaced by the aim of maximizing cumulative ,
m the sequence of actions cannot be found by classical planning

rational agent its steps during the process of solution
(execution of actions),

next action depends on current observations,

current observations depend on current state (= previous actions),
= solution

agent evaluates states instead of direct creation of action sequences,

in each state take the action leading to successor states with highest value.

Basic concepts, problem definition

s Reward R;

simple sum of immediate rewards obtained per episode:
Ry=ripn+ryo+ras+ -ty

discounted sum for infinite processes
(v is discount rate, 0 < v < 1):
R, = 2 ce = N Lk
t = Ti41 T YTe42 T YV Te43 + D 0V Tkt

= Policy m(s, a)
Is a mapping between states and actions,

it gives probability that action a will be executed in state s,

optimal policy 7 maximizes the total reward R;,

Basic concepts, problem definition

= State value V7 (s)

expected (cumulative) reward for following policy 7 starting from state s

VTi(s)=EA{R: | st =5} = Ex {nyerkH | s, = s}
k=0

= Action value Q™ (s, a)

expected (cumulative) reward starting from state s, taking action a and
thereafter following 7

QW(S, CL) = Eﬂ{Rt|St = S§,0+ = CI,} — E7r {Z/ykrt—i—/ﬁ—l ‘ St = S,y = a}

k=0

s Goal: find 7* (altogether with V*, QQ* that serve as means).

Sequential decision making as finite MDP

= Finite Markov Decision Process (MDP)

Markov assumption + the sets of states S and actions A are finite,
MDP = {S,A,P,R}, can be written as a transition graph,
P transition probability, R reward function,
P! = Pr{s;,1=5|s =s,a; =a}
Ry =FE{rii|ss=s,as=a,841 =5}
this definition leads to particular values of V" and @),
= implicit assumptions

environment is observable (the current state is always known),
environment is describable (P and R known),

counter example: blackjack card game (reaching P and R a part of solu-
tion).

Sequential decision making as finite MDP

s How to obtain state values from a known environment and policy?

by transition to the recursive V' definition,

state value = immediate reward for action execution + expected reward
for development of possible successor states.

S
(s,a,)
P2, L

58 Y

O

Sutton, Barto: Reinforcement Learning: An Introduction.

Recursive V' definition (Bellman equation)

VT(s)=E{R: | s = s} =

(00
= B, < Z’Yk"“tJrkJrl | st = S} =

\ k=0

(00
k
Tyl + 7Y E Vriskt2 | StS} =

\ k=0
- Z (s, a) Z P, | Ryy +vE;, {Z Yori o | Sie1 = s’}] —
a 5/]{:0

= " nls,a) D> Pl [Rey + V()]

7\

= in the beginning V7™ (s), V™(s') and 7 (s, a) unknown

iterative calculation /improvement,

— effort analogous to one who would lift himself by his
own bootstraps.

Dynamic programming

= The basic approach to solve MDP (find 7*)

dynamic = iterative procedure
* to find V(s) in step k + 1 use V(s') from step £,
programming = searching for an acceptable sequence of actions,

= polynomial complexity in the number of states | S| and actions |A]

despite the space of policies with cardinality \AUS‘,

state space search necessarily performs worse,
still often intractable for real problems
* the above-mentioned estimate holds for single iteration,
* the number of iterations can be large (exponential when v — 1),
* unknown process parameters (see reinforcement learning),
x computationally intractable
- often too many states,
- we cannot iterate systematically — asynchronous DP.

Dependency between policy and value functions

s When solving MDP, one simultaneously and interactively

adapts state/action values according to the current policy,

adapts the policy to maximize reward given the current state/action values.

evaluation

n %

TT—greedy(V')

improvement

. starting
V n

V"
L]

Sutton, Barto: Reinforcement Learning: An Introduction.

Policy iteration — Pl

: E I E I I E
s Keyidea: mp = V0 = m = VT = .. =571 = V7

*

1. policy 7 evaluation (E step):

= find state values V"™ (s),
= start: V(s) = 0 V non-terminal states (V' known in them),
= iteration: until V (s) gets steady (maxg |Vii1(s) — Vi(s)| < €),

2. policy improvement m — 7’ (I step):

= adapt to the new state values,
m deterministic 7: in every state takes single action,
if Q"(s,7'(s)) > V7(s) for Vs, 7" is not worse than T,
obviously 7'(s) = arg max, Q™ (s, a), chooses the currently best action,
m stochastic 7: action selection is driven by a probability distribution,
the same logic except for Q™ (s, 7'(s)) = > 7'(s,a)Q™(s,a),

3. if m and 7’ differ in at least one state, go to step 1 with 7.

Vi for the Greedy Policy
Random Policy wrt Vi P
0,01 0.0] 0.0] 0.0 - 4 5 6 7 r= —1. .
k=0 0.0} 0.0 0.0 0.0 ME B\ e random on all transitions
0.0{ 0.0] 0.0] 0.0 - - policy 8 9 10 |11
0.0] 0.0 0.0[0.0 ol actions U
0.0]-1.0[-1.0[-1.0 : e
k=1 s T ,T :: Random policy evaluation:
10-10]-1.0[0.0 i o (greedy deterministic to illustrate only)
0.0]-1.7|-2.0[-2.0 - ::]-.+ [} V(S) = Za ’J‘T(S, (1.) ZS; ng,r [Rgg, + ’YV?T(S!):I .
=2 Badd TERLEL m(s,a) = 1/4, Riy = =1, Py = 1,7 =1
e e U » k=0: VsV (s) = 0, no change in ter-
0.0]-2.4]-2.9] 3.0 - 5 minal states
B 2.4]-2.9]-3.0[-2.9 Pl |
=3 e IR s k=1 V(1) = V(2) = .. = V(14) =
-3.0]-2.9]-2.4] 0.0 i e Za ‘JT(S? a) Zs’ gs" [gs" + PYVW(SI)] -
0.0]-6.1]-8.4]-9.0 o — |9 4(1/4 * 1(_1 + 1% 0)) =—1
7.7|-8.4|-8.4 timal
k=10 PopTREae 1‘ L.‘_:_, : policy m k=2: V(1) =1/4Bx1%(—=1+1(—1))+ 1%
9.0/ 8.4]-6.1] 00 ool - I(=141%0)=-7/4=—1.75
0.0]-14.]-20.]-22. o - 1 m k=3: V(l) = 1/4(2 * 1 % (—1 + 1(—2)) +
k=oo RN RESEmE 1% 1(=14+1(=1.75)) + 1% 1(=1+1%0)) =
-22.1-20.]-14.] 0.0 L o - —975/4 = —2.44
EEEEEEEEEEENEEEREREOOOOOOOOOODODO

http://cw.felk.cvut.cz

Value iteration — VI

m is it necessary to evaluate/know the state values for the given policy perfectly?

late iterations often leave policy unchanged,

and may spend most of the time of the whole dynamic algorithm,

policy evaluation stopped after first iteration,
more frequent policy changes,

in some tasks faster convergence, but does not outperform Pl in general,

= in terms of Bellman equation, a new iteration rule originates

V() = max > Py (Rl +4V7(s)

MDP - recycling robot

:: Mobile robot that cleans up/collects cans

= two internal states — battery low or high,
m three actions — search for cans, remain stationary, go to home base to recharge,

m positive reward for each can, negative reward when depleted needing rescue.

. collect as many cans as possible without any external aid.

. develop a policy that maximizes long term reward.

o, R3¢

Sutton, Barto: Reinforcement Learning: An Introduction.

Recycling robot — DP solution

s Bellman equation: V7(s) =>" 7(s,a)) P, [RZS, + WVW(S’)]

= Iteration equations for particular deterministic action (policy) choices
high=h, wait=w, etc.:

w(h,w)=1: V(h)=Q(h,w)=R"+~V(h)

m(h,s) = V(h)=Q(h,s) =R +~|aV(h)+ (1 —a)V(l)]

m(l,r) = V() =Q,r)=~V(h)

n(l,w) =1 V(I)=Q(,w)=R"+~V()

m(l,s) = V() =Q(,s)=BR = 3(1 = B)+~[BV() + (1= B)V(h)]

Recycling robot — DP solution

:: Parameters: aa =0.95, =09, R°=2, R"=1,v=10.9, ¢ =0.01
:: Method: policy iteration (El cycle)

1. Randomly choose a deterministic policy:
m(low, wait) = w(high, wait) = 1,
2. set V(low) =V (high) =0,
3. use the iteration equations until V' values get steady,
4. use evaluations in V' to determine optimal actions:
V(s) = max, Q7 (s,a), 7'(s) =~ arg max, Q" (s, a)

5. in the case of no policy change stop, go to step 2 otherwise.

Initialize: Improvement 2:

?T(l}u!)zqr(hj-u;): 1 ?T(l??‘):ﬂ'(h,s) =1

V(h)=RY+~V(h), V()= R* +yV () V() =R +7aV(h)+ (1 -)V (I)]
V(l) =~V (h)

Evaluation 1: .

V(h) =V(l) = 10, 46 steps Evaluation 3:

12 - V(h)=19.1, V(I) = 17.1, 52 steps
10 -
Improvement 3:

w(l,r) =m(h,s)=1— STOP

8 4

4 g
2 14
’ 1 1 21 31 a1 51 1: |
——V(low) :\J{high)| 61
Improvement 1: :
m(l,s) =m(h,s)=1 0
V(h) = R* +[aV(h) + (1 —a)V ()] ot e
V() =BR*=3(1—3)+~[pV(l)+(1—3)V(h) (==l — vibigh)
SUMMARY:
Evaluation 2: policy: low — recharge, high — search
V(h) =19, V(I) = 16.8, 52 steps V(h) =19.1, V(I) = 17.1, 150 iterations

H B B R BB E R EEEEEEEEEEREREC00O0OO0OOO0OO http://cw.felk.cvut.cz

Recycling robot — DP solution

:: Parameters: a =0.95, 6 =09, R°=2, R"=1,~v=0.9, ¢ = 0.01,

:: Method: value iteration

1. Set V(low) = V(high) = 0.
2. Use evaluations in V' to determine optimal actions:
V(s) = max,Q™(s,a), '(s) ~ arg max, Q™ (s, a).
3. apply once the current best actions and recompute values in V (s),

4. in the case of no state value change larger than ¢ stop,

go to step 2 otherwise.

Recycling robot — DP solution

step O:
step 1:
step 9:

step b2:

20 -
18 |
16 -
14
12 1

10 4

o] B o] @
L L L 1

V(I)=V(h)=0,n(l,s)=mn(h,s)=1
V(I)=15 V(h)=2 7n(l,s) =n(h,s)=1
V()=9.2 V(h)=11.1, n(l,r) =7w(h,s) =1

policy change
V()=171,V(h)=19.1, n(l,r) = w(h,s) = 1,
all V' perturbations smaller than ¢, STOP

SUMMARY:
policy: low — recharge, high — search
V(h) =19.1, V(I) = 17.1, 52 iterations

1

6

T T T T T 1
11 16 21 26 31 36
Step

[=—V(low) — Vv (high)]

Why does value iteration certainly converge?

= contraction ¢(x)

Ik Vrixs - d(c(xy) — c(x9)) < kd(x1 — x9),
d is a metric (distance function), constant 0 < k < 1,
fixed point b.: ¢(b.) = b, c(c(...c(x))) = be,
each contraction has only one fixed point,
example: c(x) = §, d(z,y) = |v — yl, b. = 0,
= value iteration equation
Vigi(s) = max,)4 P2, [RZS/ + 7‘/7;(5’)}
can be simplified as V,,; < BV},
as d we employ max norm ||V|| = max,|V (s)],

= the above defined B is wrt || || contraction (without proof)

|1BV; = BVY|| < ~||Vi = V/]|.

Why does value iteration certainly converge?

= provided that B is a contraction wrt || ||

for any pair of state utility vectors it holds
|BV; = BVY|| < A[lVi = V|| = [|[Viea = Vill <AI[Vi = Vi

x value iteration converges for v < 1,

the fixed point is the actual state utility vector V'*
« || BV = V¥ < A|[Vi = V7],

x converges exponentially with ~.

Summary

s MDPs allow to search stochastic state spaces
computational complexity is increased due to stochasticity,
m problem solving = policy finding
policy assigns each state the optimal action, can be stochastic too,

basic approaches are policy iteration and value iteration,

other choices can be modified iteration approaches, possibly asynchronous,
s techniques similar to MDP

POMDP for partially observable environments,

RL for environments with unknown models,
= applications

agent technology in general, robot control and path planning in robotics,

network optimization in telecommunication, game playing.

Recommended reading, lecture resources

:: Reading

= Russell, Norvig: Al: A Modern Approach, Making Complex Decisions
— chapter 17,

— online on Google books:
http://books.google.com/books?id=87jZBksh-bUMC,

= Sutton, Barto: Reinforcement Learning: An Introduction

— MIT Press, Cambridge, 1998,
— http://www.cs.ualberta.ca/ "sutton/book/the-book.html.

@ @ B E B B R R RN EEEEE RN DR EEEEEEBE[http://CW.felk.CVllt.CZ

Demo

m RL simulator

— find the optimal path in a maze
— implemented in Java

— http://www.cs.cmu.edu/ awm/rlsim/

(©Kelkar, Mehta: Robotics Institute, Carnegie Mellon University

http://cw.felk.cvut.

cz

