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Temporal logics
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Temporal logics(TL) offers means for analysis of dynamic(imperative) 
state systems and forverification of their properties. The role of TL in this 
context can be compared to that of classical logic forsystems of 
mathematics.

Important properties in formal verification that can be expressed using
linear temporal logic:

� safetyproperties usually state that something bad never happens, 

� livenessproperties state that something good keeps happening.

Intuitively, the state systems are described by their behaviour during their 
way (travel) through sequences of such states. 

Examples: program modules, communication protocols, DataBase systems, 
logic circuits, chips, computational processes …..
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We will be concerned with the propositional version of TL.  

States. Let the states be described by primitive propositions
expressing simple statements of the type „the global variablex
has the value 10“.

Each state is characterized by its evaluation of primitive 
propositions (it can be either finite or infinite). 

Recommendation for studying this text: The important parts are 
highlighted in yellow(similarly to this paragraph). The remaining
text explains the context or offers some additional information.
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Time. Computation processes advance in individual steps => 
we consider discrete time. 

Future of the system can be modelled by diverse ordering of 
the considered time points.
The simplest (and rather realistic) choice is to consider their 
linear ordering. 

In this case the time points are represented by a finite or 
infinite sequence numbered by natural numbers

m0 , m1 , m2 , m3 ,  ... , mn , mn+1 ,  ...
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This ordering is characteristic for propositional Linear 
Temporal Logics (LTL ). 

In more complex cases, e.g. tree-like structures are applied. 
In this case we are talking about branching time. 

Let V be the set of the primitive formulas. The weakest
language of propositional temporal logicsLLTL  consists of

• all  formulas from V  and

• symbols false → □ ○ (    ) .

This language is often enhanced by 

• additional connectives, namely∨, & (∧) and ≡ and 

• further operators, e.g. unary op. ◊ , binary op. U („until“).
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Temporal operators○, □ , ◊ are described by the following 
English expressions 

○ nexttime or simply next ,  

□ always  or henceforthand

◊ sometime.  

The formulas ○A , □ A and ◊A  have the following English and 
(Czech) reading

○A : nextA ( příště A ),

□ A : alwaysA, ( vždy A )

◊A  : sometimeA, ( někdy A )

Preference ¬ , ○ , □ , ◊ bind more strongly than the classic 
connectives∨,  ∧ , → and ≡ .
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Temporal operators

and natural language

Let us introduce following abbreviations

� α „The Moon circulates around the Earth. “

� β „The moon is rising“,

� γ „The moon is setting down“.

� ◊β, expresses the claim „The moon will rise once“,

� □◊β means „The moon will be rising again and 

again.“,

� □(β → ◊γ) means „Whenever the moon will rise, it 

will set down  later“.
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Definition. (LTL-formula constructed from the set V of 
primitive formulas)

1. Any primitive formula from the setV is a LTL-formula.

2. Propositional constant false is a LTL-formula.

3. If A  and B  are LTL-formulas, A → B is LTL-formula, too.

4. If  A is a LTL-formula, then ○A and  □A are LTL formulas.  

Other connectives and the operator ◊ are understood as abbreviations 
for more complex constructs, namely: 

• ¬A    stands  for ¬ (false→ A)

• true stands  for ¬ false

• ◊A  stands  for ¬ □ ¬ A

• the connectives ∨,  & (∧) , ≡ have the same meaning as in 
classic logic.
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Informal reading for some frequently used temporal formulas.

A → ○B „If A holds now, B will be true in the following (next) state.“

A → □ B „ If A holds now, then B is true now as well and it will remain true 
in all the states from now on“

A → ◊B „ If A holds now, B is true now or in at least one of the states
that will follow in future.“

□(A → B) „For all the states from now on there holds that if A is true then B 
must be true as well“

□◊A „Now and for all the future states there holds that A is true now or 
in at least one of the states that will follow in future.“

„ (Since now) A will be true in infintely many states.“

„The formulaA will be true again and again.

◊□A „There will occure a state in which A becomes true and it will 
remain so.“

„ A is true almost ever(from certain instant on). “
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Semantics of Linear Temporal Logics (LTL)

Let V be the set of elementary formulas. 

Temporal  (or Kripke) structurefor  V is an infinite sequence
M =  (η0 , η1 , η2 , ... )  of evaluations

.                                          ηi : V  =>  {ff , tt }
providing truth values (tt for true anf ff for false) to all the 
primitive formulas. Each evaluation is referred to as astate
(world) . 

The state η0 is the initial state of M in the time pointm0

and ηn+1 is the state following the stateηn .
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Definition.

Let us consider the formulaA, the temporal structureM and the index
i. The truth value Mi (A) of  A in the time pointi of M is definedby 
induction:

Mi (p )  = η i (p)         p ∈ V

Mi (false)  =  ff

Mi (A → B)  = tt iff * Mi (A)  =  ff   or Mi (B)  =  tt

For the operators

Mi (○A)   =  Mi+ 1 (A) 

Mi (□A)   =  tt iff Mj (A)   =  tt for every j > i

.                                                       

* 
iff stands forif and only iffand it is sometimes expressed by the symbol �
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Definition continued for the defined symbols 

�Mi (¬ A) =  tt iff Mi (A)  =  ff 

�Mi (A ∨ B) =  tt iff M i (A) =  tt or M i (B)   =  tt

�Mi (A & B) =  tt iff Mi (A)  =  ttand Mi (B)   =  tt

�Mi (A ≡ B) =  tt iff Mi (A) =  Mi (B)

�Mi (◊ A)   =  tt iff Mj (A)   =  tt for somej > i

Interesting observation:

Mi (◊A) =  tt iff Mi (¬ □ ¬A) = tt

iff Mi (□ ¬A) = ff

iff Mj ( ¬A) = ff for somej > i

iff Mj (A) = tt for somej > i
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Definition (validity, semanticor logical consequence)

Let A be a LTL-formula with a set of primitive variables V and let
T be a set of formulas of the same language.

The formulaA is valid in a temporal structureM for V (or A is 
true in M), of Mi (A) = tt for all i. This is denoted as  M |= A or
|=M A.

The structureM is a model of the set of formulasT, if M |= B for 
all formulas B from T .

The formulaA is a semanticconsequemce of T (denoted asT |=  
A) if A is valid in any model M of the set of formulasT .   

A is valid (denoted as |=  A ), if A is valid in any temporal 
structureM . In other words,  A is valid iff ∅ |=  A .
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Example. ¬○A ≡ ○¬A  is a valid formula .

It is necessary to show, that Mi(¬○A) = Mi(○¬A)   holds in 
any structre M and for all its time pointsi .

Mi(¬○A) = tt � Mi(○A) = ff

� Mi+ 1(A) = ff

� Mi+ 1(¬A) = tt

� Mi(○¬A) = tt
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Lemma 1.  (correctness of the rule Modus Ponens)

Let M be a temporal structure andi ∈ N (the set of natural
numbers). If Mi (A) = tt and Mi (A → B) = tt, then  Mi (B) = tt .

Proof.Mi (A → B) = tt iff Mi (A) = ff  or Mi (B) = tt .

Combining this with the assumptionMi (A) = tt, we getMi (B) = tt.

Theorem 2. If T |=  A and  T |=  A → B, thenT |=  B .

Proof. Let the structureM be a model ofT. This means that  for 
any i there holds both 

Mi (A) = tt andMi (A → B) = tt
According to Lemma 1 we can conclude thatMi (B)  = tt and 
thus T |= B .
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Theorem3.  If T |=   A , then T |=   ○A and  T |= □ A .
Namely there holdsA |= ○A and A |= □ A .

Proof.Let M be any temporal lin. structure, that is a model
of T. We have to show that for an arbitrary natural number i
we select there holds Mi (○A) = tt and Mi (□A) = tt . 

According to the assumptionMj(A) = tt for all j ϵ N, we can 
be sure that this is true for the special cases bellow

Mi+ 1(A) =  tt and  Mk(A) =  tt for all k, k  > i .

Thos means that

T |= ○A and        T |= □A .
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Proof. LetM be a model ofT. let us distinguish 2 cases: 

• If M |= ¬ A , then the claim of the theorem resluts form the properities of the boolean
connective „→“ .

• Suppose thatM |= ¬ A does not hold. There must exist a state k such that Mk |= A. Let 
us choose the lowesti such thatMi |= A. Since it must be the case that Mi |= A → ○A, 

we know that Mi |= ○A. By induction we getMi |= □ A andMi |= □B as simple 
consequences of introductory assumptions. Thus for allj there holdsMj |= A → □ B

Theorem4.   If  T |=  A → B and    T |=  A → ○A , then                        
T |=  A → □ B (the induction rule).

Notation. Let M =  (η0 , η1 , η2 , ... )  be some linear temporal structure for 
the primitive formulasV . Let i be any firmly selected natural number. Let us 
define the temporal structureMi , that is obtained fromM by “shifting time” 
by i  steps into future:

Mi =  (η0’ , η1’, η2’, ... )

where ηj’ =   ηi+j for anyj . Mi   is again a temporal structure according to the 
original definition. We can describe it in more direct way as

Mi =  (ηi , ηi+1 , ηi+ 2 , ... , ηi+j , ηi+j+1 , … ) .
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Theorem6 (deduction theorem for LTL). T ∪ { A} |=  B    právě když   T
|=  □A → B  .

Semantic proof: <= This is clear.

=> Suppose T ∪ { A} |=  B holds. Let S be a structure for T such that it is not 
a structure for T ∪ { A}. This means that the set £={si from S: Si(A) =  ff } is 
not empty! If £ is finite, let us denote k its maximum number. Then 

a) for all i < k+1 there does not  hold £i |=  □A (and thus £i |=  □A → B)

b) for all j > k there holds S j |=  □A & B (and thus S I |=  □A → B).

If £ is infinite it is clear that S |= ¬ □A and thus S |= □A → B 

Theorem7.  If T |=  A → B then T ∪ { A} |=  B .

The inverse implication does not hold in LTL! Sit is enough to show a 
cointer example.LetT be an empty set. By Theorem3  there holds A |=  □A 
for any formuli. But the implicationA → □A does not have to be valid 
(consider LTL structure  M such that for some i  and j  > i there holds
Mi(A) =  tt   a    Mj(A) =  ff )
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Important valid formulas

|= □¬A ≡ ¬ ◊A
|= □ A → ○ A

(1) |= ○ A → ◊ A 

|= □ (A → B) → (◊ A → ◊ B)

|= (◊ ◊ A → ◊A)

|= □ ◊ ¬A ≡ ¬ ◊ □ A                |= ◊ □ ¬A ≡ ¬ □ ◊ A

|= ○¬A ≡ ¬ ○A

|= ○(A → B) ≡ (○A → ○B)

|= □ A ≡ (A & ○□A )

Following valid implications cannot be strengthened into equivalences

|= A → ◊ A                        |= □ A → A
|= ○ A → ◊ A        |= □ A → ○ A
|= □ A → ◊ A        |= □ A → ○ □ A
|= A ∪ B → ◊ A        |= ◊ □ A → □ ◊ A
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Idempotency of ◊ , □ , □◊ a  ◊□

|= ◊◊A ≡ ◊A |= □□A ≡ □A
|= ◊□ ◊□ A ≡ ◊□ A |= □◊ □◊ A ≡ □◊ A

Of course, this cannot be true about the “next”operator: 
theformula ○○A ≡ ○A is not valid !

Combination of modalities□◊ and ◊□:  „consume“  all other modalities
with one argument. This can be expressed as follows

|= (□◊) A ≡ ○ (□◊) A ≡ ◊ (□◊) A ≡ □ (□◊) A
.            |= □◊ (□◊) A ≡ ◊□ (□◊) A

.                   |= (◊□) A ≡ ○ (◊□) A ≡ ◊ (◊□) A ≡ □ (◊□) A .            
|= □◊ (◊□) A ≡ ◊□ (◊□) A
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According to their definition the operators◊ and □◊ describeexistential
properies while the operators□ and ◊□ can be understood as descriptors 
of universal properties. 

It is no surprise that they exhibit similar behaviour as theexistencialand 
universalquantifier of propositional logic.

|=  ◊ (A ∨ B) ≡ (◊ A ∨ ◊ B)        |= □◊ (A ∨ B) ≡ (□◊ A ∨ □◊ B)  

|=  □ (A ∧ B) ≡ (□ A ∧ □ B)         |= ◊□ (A ∧ B) ≡ (◊□ A ∧ ◊□ B) 
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The basic valid tranformations for the operator  ∪ (until)  and the boolean
connectives (distributivity):

|= ((A ∧ B) ∪ C) ≡ ((A ∪ C) ∧ (B ∪ C))                                                    

.     |= (A ∪ (B ∨ C)) ≡ ((A ∪ C) ∨ (B ∪ C)) 

We have focused our attention to the unary operators, only. Just for completeness 
let us intoduce interpretation for the operator “until”  

Definition. A ∪ B

For a temporal structureM ,  index   i and the formulasA , B the meaning of 
the formulaMi (A ∪ B)  is defined as follows

Mi (A ∪ B) = tt �

there is a j , j > i such that Mj (B) = tt and for  all k , i < k < j Mk (A) = tt
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The operator  ○ (next) refers to a single time point. That is why it can be 
distributed over all boolean connectives.

|= ○(A ∨ B) ≡ (○A ∨ ○B) |= ○(A ∧ B) ≡ (○A ∧ ○B)
|= ○(A → B) ≡ (○A→○B) |= ○(A ≡ B) ≡ (○A ≡ ○B)

The equivalence|= ○¬A ≡ ¬ ○A has been mentioned earlier already.

The following formulas are valid but they cannot be strengthened into 
equivalences.

|= (□ A ∨ □ B) →□ (A ∨ B)         |= ◊□ (A ∨ B) → (◊□ A ∨ ◊□ B) 
|=  ◊ (A ∧ B) → (◊ A ∧ ◊ B)        |= □◊ (A ∧ B) → (□◊ A ∧ □◊ B)
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The introduced operators exhibitmonotonicity in all arguments.
|= □(A →B) → (□A → □B)          |=□(A → B) → (◊A → ◊B)
|= ○(A →B) → (○A → ○B)                                                                                
|= □(A →B) → (◊□A → ◊□B)       |=□(A → B) → (◊□A → ◊□B)

An interesting observation: All over  □A → (A → ○□A ) is a
valid formula, the formule describing the inverse implication, 
namely(A → ○□A) → □A , is not valid !

The temporal operators can be characterized as fixed points.

|= ◊A ≡ ( A ∨ ○◊A ) |= □A ≡ (A ∧ ○□A)

Some characteristic relations for the “until”operator: 
|= □(A → B) → ((A ∪ C) →(B ∪ C))
|= □(A → B) → ((C ∪ A) → (C ∪ B))
|= (A ∪ B) ≡ B ∨ (A ∧ ○(A ∪ B))
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Recommended reading for more detailed treatment:

� Huth M., Ryan M.: Logic in Computer Science, 
Cambridge University Press, 2004

� Manna/Pnueli: The Temporal Verification of Reactive 
Systems: Progress, Springer Verlag 1995, 
http://theory.stanford.edu/~zm/tvors3.html

� Program system SPIN


