The formal system for modal logics

and some facts we can rely on

Axioms of propositional modal logics

The formal system K_{n} for of language with n agents:

1. Propositional tautologies
2. Distribution Axiom (denoted as $K)\left(K_{i} A \wedge K_{i}(A \rightarrow B)\right) \rightarrow K_{i} B$

Derivation rules:
R1. From the formulas $\boldsymbol{\alpha}$ and $\boldsymbol{\alpha} \rightarrow \boldsymbol{\beta}$ derive $\boldsymbol{\beta}$ (Modus Ponens)
R2. From the formula α derive $\boldsymbol{K}_{\boldsymbol{i}} \boldsymbol{\alpha}$ (Knowledge Generalization)
can be complemented by additional axioms corresponding to properties of the used admissibility relations - reflexivity, transitivity or symmetry
3. Knowledge Axiom (denoted as T)

$$
K_{i} A \rightarrow A
$$

4. Positive Introspection Axiom (den.as 4) $\quad K_{i} A \rightarrow K_{i} K_{i} A$
5. Negative Introspection Axiom (den.as 5) $\neg K_{i} A \rightarrow K_{i} \neg K_{i} A$
6. Consistency Axiom (den.as D) $\neg K_{i}$ false

Propositional logics: its formal system and some of its useful tautologies

```
Prop-Ax1: }\varphi->(\psi->\varphi
Prop-Ax2: (\varphi->(\psi->\sigma)) ->((\varphi->\psi)->(\varphi->\sigma))
Prop-Ax3:(\neg\psi->\neg\varphi)}->(\varphi->\psi
```


Modus ponens:

$\frac{\varphi,(\varphi \rightarrow \psi)}{\psi}$

$$
\begin{array}{ll}
\text { Prop-T1: } & (\varphi \rightarrow(\psi \rightarrow \tau)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \tau)) \\
\text { Prop-T2: } & (\alpha 1 \rightarrow \beta) \rightarrow((\alpha 2 \rightarrow \beta) \rightarrow((\alpha 1 \vee \alpha 2) \rightarrow \beta)) \\
\text { Prop-T3: } & (\alpha \rightarrow \beta) \rightarrow(\neg \beta \rightarrow \neg \alpha) \\
\text { Prop-T4a: } & \neg \text { false } \\
\text { Prop-T4b: } & \neg \alpha \vee \alpha \\
\text { Prop-T4c: } & \alpha \rightarrow(\neg \alpha \rightarrow \tau) \\
\text { Prop-T5: } & ((\alpha \rightarrow \beta) \rightarrow(\neg \alpha \vee \beta)) \&((\neg \alpha \vee \beta) \rightarrow(\alpha \rightarrow \beta)) \\
\text { Prop-T6: } & ((\neg \alpha \vee \neg \beta) \rightarrow \neg(\alpha \& \beta)) \&(\neg(\alpha \& \beta) \rightarrow(\neg \alpha \vee \neg \beta)) \\
\text { Prop-T7a: } & \alpha \rightarrow(\alpha \vee \beta) \\
\text { Prop-T7b: } & (\alpha \rightarrow \beta) \rightarrow((\alpha \vee \varphi) \rightarrow(\beta \vee \varphi))
\end{array}
$$

M-Tla: $\mathrm{K}_{\mathrm{n}},(\varphi \rightarrow \psi) \mid-\mathrm{K}_{\mathrm{i}} \varphi \rightarrow \mathrm{K}_{\mathrm{i}} \psi \quad$ (see the lecture)
M-T1b: Let φ, ψ be two equiv. fomulas (ie. $(\varphi \rightarrow \psi)_{\wedge}(\psi \rightarrow \varphi)$ is a tautology and this is denoted as $\varphi \equiv \psi$) then $\mathbf{K}_{n} \mid-K_{i} \varphi \equiv K_{i} \psi$

M-T2a: $\mathbf{K}_{n} \mid-K_{i}(\boldsymbol{\alpha} \& \boldsymbol{\beta}) \rightarrow K_{i} \boldsymbol{\alpha}$
$\mathbf{M}-\mathbf{T 2 b}: \mathbf{K}_{n} \mid-K_{i}(\boldsymbol{\alpha} \& \boldsymbol{\beta}) \equiv K_{i} \boldsymbol{\alpha} \& K_{i} \boldsymbol{\beta} \quad$ (see the lecture)
M-T3: $\left(K_{n}+\mathbf{A 3}\right) \mid-K_{i}(\neg$ false $)$
A6
M-T4a: $(\mathbf{K 2}+\mathbf{A 3}) \mid-\neg K_{i} \boldsymbol{\alpha} \vee \neg K_{i} \neg K_{i} \boldsymbol{\alpha}$
\mathbf{M} - T4b: $(\mathbf{K 2}+\mathbf{A} 3) \mid-\neg K_{i}\left(\boldsymbol{\alpha} \& \neg K_{i} \boldsymbol{\alpha}\right)$
M-T5: $\left(K_{n}+\mathbf{A 6}\right) \mid-\neg\left(K_{i} \alpha \& K_{i} \neg \alpha\right)$
M-T6: $K_{n} \mid-\left(K_{i} \neg\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right)\right) \rightarrow\left(K_{i} \boldsymbol{p}, K_{i}\left(\neg K_{i} \boldsymbol{p}\right)\right)$
\mathbf{M}-77: $\operatorname{In}\left(\mathbf{K}_{n}+\mathbf{A} 3\right)$, it is impossible to prove the formula $K_{i} \neg\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right)$

We know that $\quad \mathbf{K}_{n},(\boldsymbol{\alpha} \rightarrow \boldsymbol{\beta}) \mid-K_{i} \boldsymbol{\alpha} \rightarrow K_{i} \boldsymbol{\beta}$

$$
\mathbf{K}_{n} \mid-K_{i}(\alpha \& \boldsymbol{\beta}) \equiv K_{i} \boldsymbol{\alpha} \boldsymbol{\&} K_{i} \boldsymbol{\beta}
$$

Can one prove $K_{n} \mid-K_{i}(\alpha \vee \boldsymbol{\beta}) \equiv K_{i} \boldsymbol{\alpha} \vee K_{i} \boldsymbol{\beta}$?
Certainly not! Why?
Step 1. We can prove that $\mathbf{K}_{n} \mid-K_{i} \boldsymbol{\alpha} \rightarrow K_{i}(\boldsymbol{\alpha} \vee \boldsymbol{\beta})$ and $\mathbf{K}_{n} \mid-K_{i} \boldsymbol{\beta} \rightarrow K_{i}(\boldsymbol{\alpha} \vee \boldsymbol{\beta})$. These too formulas can be combined using following prop. tautology

$$
\begin{aligned}
& \text { Prop-T2 }:(\alpha 1 \rightarrow \beta) \rightarrow((\alpha 2 \rightarrow \beta) \rightarrow((\alpha 1 \vee \alpha 2) \rightarrow \beta)) \\
& \text { and we get } \mathbf{K}_{n} \mid-\left(K_{i} \boldsymbol{\alpha} \vee K_{i} \boldsymbol{\beta}\right) \rightarrow K_{i}(\alpha \vee \boldsymbol{\beta})
\end{aligned}
$$

Step 2. To show that the inverse implication $K_{n} \mid-K_{i}(\boldsymbol{\alpha} \vee \boldsymbol{\beta}) \rightarrow\left(K_{i} \boldsymbol{\alpha} \vee K_{i} \boldsymbol{\beta}\right)$ is not valid it is enough to construct simple Kripke structure with 3 states, where this formula is not valid.

Some proofs:

M-T3: c1) $\mathbb{K} 2, T(A 3) \mid-\neg K_{i}$ false

1. K_{i} false \rightarrow false
2. \neg false $\rightarrow\left(\neg K_{i}\right.$ false $) \quad$ [eq.transf.of 1 based on Prop-T3]
3. \neg false
4. $\neg K_{i}$ false
[A3]
[Prop-T4]
[Modus Ponens: 2,3]

M-T4a: $\mathbb{K} 2, T \mid-\neg K_{i} \boldsymbol{\alpha} \vee \neg K_{i} \neg K_{i} \boldsymbol{\alpha}$
[eq.transf. based on Prop-T5 "replacement of \rightarrow by \mathbf{v} " in the axiom T $\left.K_{i}\left(\neg K_{i} \boldsymbol{\alpha}\right) \rightarrow \neg K_{i} \boldsymbol{\alpha}\right]$
M-T4b: $\mathbb{K} 2, \mathbb{T} \mid-\neg K_{i}\left(\boldsymbol{\alpha} \boldsymbol{\&} \neg K_{i} \boldsymbol{\alpha}\right)$

1. $K_{i} \neg K_{i} \boldsymbol{\alpha} \rightarrow \neg K_{i} \boldsymbol{\alpha} \quad$ [A3, the axiom T]
2. $\neg K_{i} \neg K_{i} \boldsymbol{\alpha} \mathbf{v} \neg K_{i} \boldsymbol{\alpha} \quad$ [eq.transf.of 1 based on Prop-T5]
3. $\neg\left(K_{i} \neg K_{i} \boldsymbol{\alpha} \boldsymbol{\&} K_{i} \boldsymbol{\alpha}\right) \quad$ [eq.transf.of 2 based on Prop-T6]
4. $\neg K_{i}\left(\neg K_{i} \boldsymbol{\alpha} \boldsymbol{\&} \boldsymbol{\alpha}\right) \quad$ [eq.transf.of 3 based on Mol-T2b], viz a2

$$
\text { Proof of M-T5: }\left(\mathrm{K}_{n}+\mathrm{A} 6\right) \mid-\neg\left(K_{i} \alpha_{\wedge} K_{i} \neg \boldsymbol{\alpha}\right) .
$$

1. $\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \neg \boldsymbol{\alpha}\right) \equiv K_{i}\left(\boldsymbol{\alpha}_{\wedge} \neg \boldsymbol{\alpha}\right) \quad$ M-T2b:
2. $\neg K_{i}($ false $)$
[A6]
3. false $\equiv(\boldsymbol{\alpha} \wedge \neg \boldsymbol{\alpha})$
[tautology: A1]
4. K_{i} false $\equiv K_{i}\left(\boldsymbol{\alpha}_{\wedge} \neg \boldsymbol{\alpha}\right)$

M-T1b
5. $\neg K_{i}(\boldsymbol{\alpha} \wedge \neg \boldsymbol{\alpha})$
[MP for 2 and 4]
6. $\neg\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \neg \boldsymbol{\alpha}\right) \equiv \neg K_{i}\left(\boldsymbol{\alpha}_{\wedge} \neg \boldsymbol{\alpha}\right)$ [taut.transcript of 1.1]
7. $\neg\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \neg \boldsymbol{\alpha}\right)$
[MP for 6 and 5]

M-T6: $K_{n} \mid-\left(K_{i} \neg\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right)\right) \rightarrow\left(K_{i} \boldsymbol{p} \& K_{i}\left(\neg K_{i} \boldsymbol{p}\right)\right)$

Crucial steps of the proof
a) $\neg\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right) \equiv\left(\boldsymbol{p}_{\wedge} \neg K_{i} \boldsymbol{p}\right)$
b) $K_{i} \neg\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right) \equiv K_{i}\left(\boldsymbol{p} \& \neg K_{i} \boldsymbol{p}\right)$
c) $K_{i}\left(\boldsymbol{p} \boldsymbol{\&} \neg K_{i} \boldsymbol{p}\right) \rightarrow\left(K_{i} \boldsymbol{p} \& K_{i}\left(\neg K_{i} \boldsymbol{p}\right)\right)$
[M-T2b]
d) $\left(K_{i} \neg\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right)\right) \rightarrow\left(K_{i} \boldsymbol{p} \& K_{i}\left(\neg K_{i} \boldsymbol{p}\right)\right)$ [lines b,c and transitivity of " \rightarrow "]
[Taut]
[M-T1b]

Mod_T7: The formula $K_{i} \neg\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right)$ is not provable in $\left(\mathrm{K}_{n}+\mathrm{Ax} 3\right)$.
Proof. Suppose $K_{i} \neg\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right)$ is provable. We could apply modus ponens to Mod_T6 and $K_{i} \neg\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right)$ to prove the formula $K_{i} \boldsymbol{p} \& K_{i}\left(\neg K_{i} \boldsymbol{p}\right)$. Let us assume that $K_{i} \boldsymbol{p} \& K_{i}\left(\neg K_{i} \boldsymbol{p}\right)$ holds:

```
\({ }_{1} K_{i} \boldsymbol{p} \& K_{i}\left(\neg K_{i} \boldsymbol{p}\right) \quad\) [assumption]
\({ }_{2} K_{i} \boldsymbol{p}\)
з \(K_{i}\left(\neg K_{i} \boldsymbol{p}\right)\)
[1 and property of conjunction \((\alpha \& \beta) \rightarrow \beta\) ]
\({ }^{4} K_{i}\left(\neg K_{i} \boldsymbol{p}\right) \rightarrow \neg K_{i} \boldsymbol{p} \quad[\mathbf{A x} 3]\)
5. \(\neg K_{i} \boldsymbol{p} \quad\) [Modus ponens: 3,4]
6. false [definition of false and the lines 2 and 5]
```

But the axiom system ($\mathrm{K}_{n}+\mathrm{Ax} 3$) has a model - that is why it cannot be contradictory and the formula false cannot be provable there. What is wrong with our proof? It must be based a wrong assumption! There were assumed $K_{i} \neg\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right)$ and its direct consequence (obtained through MP and Mod_T6) the formula $K_{i} \boldsymbol{p} \& K_{i}\left(\neg K_{i} \boldsymbol{p}\right)$.
The original assumption „the formula $K_{i} \neg\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right)$ is provable" must be wrong!.

```
Mod_T8a: \(\mathbf{K}_{n}, \mathbf{A x 3}, \mathbf{A x} 5, K_{i}\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right) \mid-K_{i} p \vee K_{i} \neg p\)
1. \(K_{i}\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right) \quad\) assumption
2. \(K_{i} p \vee \neg K_{i} p \quad\) Prop_T4b \(\alpha \vee \neg \alpha\)
3. \(K_{i} p \rightarrow \boldsymbol{K}_{\boldsymbol{i}} \boldsymbol{p} \vee \boldsymbol{K}_{\boldsymbol{i}} \neg \boldsymbol{p} \quad\) Prop-T7a \(\alpha \rightarrow(\alpha \vee \beta)\)
4. \(K_{i}\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right) \rightarrow\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right) \quad \mathrm{Ax} 3\)
5. \(\quad \boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\)
6. \(\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right) \rightarrow\left(\neg K_{i} p \rightarrow \neg p\right) \quad\) Prop_T3
7. \(\neg K_{i} p \rightarrow \neg p\)
8. \(\neg K_{i} p \rightarrow K_{i} \neg K_{i} p\)
9. \(K_{i} \neg K_{i} p \rightarrow K_{i} \neg p\)
10. \(\neg K_{i} p \rightarrow K_{i} \neg p\)
11. \((\alpha \rightarrow \beta) \rightarrow(\gamma \vee \alpha \rightarrow \gamma \vee \beta) \quad\) Prop-T7b
12. \(\left(K_{i} p \vee \neg K_{i} p\right) \rightarrow\left(K_{i} p \vee K_{i} \neg p\right)\) Modus Ponens for lines 10,11 and \(\gamma=K_{i} p\)
13. \(\left(K_{i} p \vee K_{i} \neg p\right)\)
Modus Ponens for lines 12 and 2
```

Mod_T8b: $K_{n}, \operatorname{Ax} 4,\left(K_{i} p \vee K_{i} \neg p\right) \mid-K_{i}\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right)$

1. $K_{i} \boldsymbol{p} \rightarrow\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right) \quad$ propositional axiom
2. $K_{i} K_{i} \boldsymbol{p} \rightarrow K_{i}\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right) \quad$ Mod_T1 for the line 1
3. $K_{i} \boldsymbol{p} \rightarrow K_{i} K_{i} \boldsymbol{p}$
4. $K_{i} \boldsymbol{p} \rightarrow K_{i}\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right) \quad$ transitivity of " \rightarrow " for the lines 3 a 2
5. $\neg \boldsymbol{p} \rightarrow\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right) \quad$ Prop_4c
6. $K_{i} \neg \boldsymbol{p} \rightarrow K_{i}\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right) \quad$ Mod_T1 for the line 5
7. $(\alpha 1 \rightarrow \beta) \rightarrow((\alpha 2 \rightarrow \beta) \rightarrow((\alpha 1 \vee \alpha 2) \rightarrow \beta))$ Prop-T2 for

$$
\alpha 1=K_{i} p, \alpha 2=K_{i} \neg p, \beta=K_{i}\left(p \rightarrow K_{i} p\right)
$$

8. $\quad\left(K_{i} p \vee K_{i} \neg p\right) \rightarrow K_{i}\left(p \rightarrow K_{i} p\right) \quad$ Modus ponens applied first to 7 and 4 and later to this formula with 6
9. $\left(K_{i} p \vee K_{i} \neg p\right)$
10. $K_{i}\left(p \rightarrow K_{i} p\right)$
assumption
Modus ponens applied to 8 and 10
