

Constraint Programming

Roman Barták

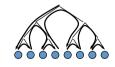
Department of Theoretical Computer Science and Mathematical Logic

Local search algorithms

Looking for a solution

The goal: find a complete and consistent instantiation of variables Two core solving approaches:

- exploring complete but possibly inconsistent assignments until a consistent assignment is found
 - generate and test, local search
- extending a partial consistent until a complete assignment is reached
 - backtracking and its extensions



We can explore assignments in two ways:

- systematically (explore all possible assignments systematically)
 - · a complete method, but could be too slow
- non-systematically (some assignments can be skipped)
 - · an incomplete method, but can found solution much faster

Note:

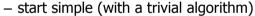
We will use constraints in a *passive way*, just to verify whether the given assignment (even partial) satisfies the constraint.

Constraint Satisfaction Problem (CSP) consists of:

- a finite set of variables
- **domains** finite sets of possible values for variables
- a finite set of constraints
 - constraint **arity** = the number of constrained variables
- A feasible solution of a constraint satisfaction problem is a complete consistent assignment of values to variables.
 - complete = each variable has assigned a value
 - consistent = all constraints are satisfied

Search techniques

Work plan:



- repair the problems to get better algorithms

In particular:

- start with generate and test method
- improve the generator
 - local search methods (HC, RW, TS, GSAT, GENET, SA)
- merge the generator with the tester
 - · backtracking methods
 - improvements of chronological backtracking
 - backjumping, dynamic backtracking, backmarking

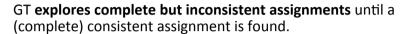
Generate and test (GT)

Probably the most general problem solving method

- 1) generate a candidate for solution
- 2) test if the candidate is really a solution

How to apply GT to CSP?

- 1) assign values to all variables
- 2) test whether all the constraints are satisfied



procedure GT(X:variables, C:constraints)

 $V \leftarrow construct \ a \ first \ complete \ assignment \ of \ X$

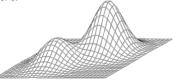
while V does not satisfy all the constraints C do

 $V \leftarrow \text{construct systematically a complete assignment next to } V$

end while

return V

- Generate and test explores complete but inconsistent assignments until a complete consistent assignment is found.
- Weakness of GT the generator does not exploit fully teh result of testing
- The next assignment can be constructed in such a way that constraint violation is smaller.
 - only "small" (local) changes of the assignment are allowed
 - the next assignment should be "better" than the current one
 - better = more constraints are satisfied
 - assignments are not necessarily generated systematically
 - we lost completeness, but
 - we (hopefully) get better efficiency



Weaknesses and improvements of GT

The greatest weakness of GT is **exploring too many** "visibly" wrong assignments.

Example:

 $X::\{1,2\}, Y::\{1,2\}, Z::\{1,2\}$ $X = Y, X \neq Z, Y > Z$

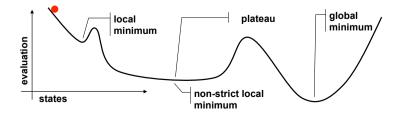
X Y	1	1	1	1	2	2	1
Υ	1	1	2	2	1	1	1
Z	1	2	1	2	1	2	•

• How to improve GT?

- smart generator
 - · the next assignment improves over the current assignment
 - · the core idea of local search techniques
- merged generate and test stage (earlier detection of clash)
 - constraints are tested as soon as the involved variables are instantiated
 - backtracking

Local search - Terminology

- state a complete assignment of values to variables
- evaluation a value of the objective function (# violated constraints)
- neighbourhood a set of states locally different from the current state (the states differ from the current state in the value of one variable)
- local optimum a state that is not optimal and there is no state with better evaluation in its neighbourhood
- strict local optimum a state that is not optimal and there are only states with worse evaluation in its neighbourhood
- non-strict local optimum local optimum that is not strict
- plateau a set of neighbouring states with the same evaluation
- global optimum the state with the best evaluation



Hill Climbing

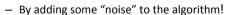
- Hill climbing is perhaps the most known technique of local search.
 - start at randomly generated state
 - look for the best state in the neighbourhood of the current state
 - neighbourhood = differs in the value of any variable
 - neighbourhood size = $\sum_{i=1,n} (D_i-1) (= n*(d-1))$
 - "escape" from the local optimum via restart

Algorithm Hill Climbing

```
procedure hill-climbing(Max_Steps)
restart: s ← random assignment of variables;
for j:=1 to Max_Steps do % restricted number of steps
if eval(s)=0 then return s
if s is a strict local minimum then
go to restart
else
s ← neighbourhood with the smallest evaluation value
end if
end for
go to restart
end hill-climbing
```

Random Walk

How to leave the local optimum without a restart (i.e. via a local step)?



Random walk

- a state from the neighbourhood is selected randomly (e.g., the value is chosen randomly)
- such technique can hardly find a solution
- so it needs some guide
 - Random walk can be combined with the heuristic guiding the search via probability distribution:
 - p probability of using a random step
 - (1-p) probability of using the heuristic guide

Minton, Johnston, Laird (1997

Min-Conflicts

Observation:

- the hill climbing neighbourhood is pretty large (n*(d-1))
- only change of a conflicting variable may improve the valuation

Min-conflicts method

- select randomly a variable in conflict and try to improve it
 - neighbourhood = different values for the selected variable i
 - neighbourhood size = (D_i-1) (= (d-1))

Algorithm Min-Conflicts

```
procedure MC(Max_Moves)

s ← random assignment of variables
nb_moves ← 0

while eval(s)>0 and nb_moves<Max_Moves do
choose randomly a variable V in conflict
choose a value v' that minimises the number of conflicts for V

if v' ≠ current value of V then
assign v' to V
nb_moves ← nb_moves+1
end if
end while
return s
end MC
```

Min-Conflicts Random Walk

 MC guides the search (i.e. satisfaction of all the constraints) and RW allows us to leave the local optima.

Algorithm Min-Conflicts-Random-Walk

```
procedure MCRW(Max Moves,p)
    s ← random assignment of variables
    nb moves \leftarrow 0
     while eval(s)>0 and nb_moves<Max_Moves do
         if probability p verified then
               choose randomly a variable V in conflict
               choose randomly a value v' for V
         else
               choose randomly a variable V in conflict
               choose a value v' that minimises the number of conflicts for V
         end if
         if v' ≠ current value of V then
               assign v' to V
               nb moves ← nb moves+1
         end if
     end while
                                                        0.02 \le p \le 0.1
     return s
end MCRW
```

Steepest Descent Random Walk

- Random walk can be combined with the hill climbing heuristic too.
- Then, no restart is necessary.

Algorithm Steepest-Descent-Random-Walk

```
procedure SDRW(Max Moves,p)
    s ← random assignment of variables
    nb moves \leftarrow 0
    while eval(s)>0 and nb moves<Max Moves do
         if probability p verified then
              choose randomly a variable V in conflict
              choose randomly a value v' for V
         else
              choose a move <V,v'> with the best performance
         end if
         if v' ≠ current value of V then
              assign v' to V
              nb moves ← nb moves+1
         end if
    end while
    return s
end SDRW
```

Tabu search

- · The tabu list prevents short cycles.
- It allows only the moves out of the tabu list or the moves satisfying the aspiration criterion.

Algorithm Tabu Search

```
procedure tabu-search(Max_lter)

s ← random assignment of variables

nb_iter ← 0

initialise randomly the tabu list

while eval(s)>0 and nb_iter<Max_lter do

choose a move <V,v'> with the best performance among the non-tabu

moves and the moves satisfying the aspiration criteria

introduce <V,v> in the tabu list, where v is the current value of V

remove the oldest move from the tabu list

assign v' to V

nb_iter ← nb_iter+1

end while

return s

end tabu-search
```

Galinier, Hao (1997)

Tabu search

Observation:

Being trapped in a local optimum is a special case of cycling.

How to avoid cycles in general?

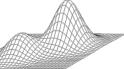
- remember already visited states and do not visit them again
 - memory consuming (too many states)
- it is possible to remember just few last states
 - prevents "short" cycles
- Tabu list = a list of forbidden states
 - a state can be represented by a selected attribute
 - (variable, value) describes the change of a state (a previous value)
 - the tabu list has a fix length k (tabu tenure)
 - "old" states are removed from the list when a new state is added
 - a state included in the tabu list is forbidden (it is tabu)
- Aspiration criterion = re-enabling states that are tabu
 - i.e., it is possible to visit a state even if the state is tabu
 - example: the state is better than any state visited so far

Local Search at Glance

- LS methods explore complete but possible inconsistent assignments until a consistent assigned is found
 - opposite to GT, they generate a new assignment based on the current assignment with the goal to increase the number of satisfied constraints

Local search algorithm is defined by:

- neighbourhood of the current assignment (state) and a method to select the next assignment from the neighbourhood (intensification)
 - HC heuristic select the best assignment different at one variable from the current assignment
 - sometimes, the first better assignment from the neighbourhood is taken
 - MC heuristic select the best assignment different at one selected conflict variable from the current assignment
- a method for escaping from a local optimum (diversification)
 - restart start in a completely new assignment
 - RW select the next assignment randomly
 - Tabu forbid some assignments



Local Search for SAT

Many problems can be formulated as problems of Boolean SATisfiability

- = satisfying a logical formula in conjunctive normal form (CNF)
- CNF = conjunction of clauses
- clause = disjunction of literals (constraint)
- literal = atomic variable or its negation

Example:

$$(A \lor B) \land (\neg B \lor C) \land (\neg C \lor \neg A)$$

- Similarly to a CSP, SAT is also an NP-complete problem so no fast (polynomial) solving algorithm can be expected.
- Local search can find a solution to pretty large formulas.

Notes:

- satisfaction formula in a disjunctive normal form can be decided fast
- SAT is a special case of a CSP and vice-versa, any CSP can be translated to SAT

GSAT and heuristics

- GSAT can be combined with various heuristics improving its practical performance (especially for so called structured problems):
- Random-Walk
 - can be used exactly as in MCRW

Clause weights

- Some clauses remain unsatisfied even after several iterations of the inner loop of GSAT – different clauses have different importance in formula satisfaction
- satisfaction of "hard" clauses can be preferred by increasing their weights in the clause selection process
- The algorithm can learn the weight itself
 - all clauses have identical weight at the beginning
 - After each iteration, the weights of unsatisfied clauses are increased

Solution averages

- in the GSAT algorithm each iteration starts from a random assignment of variables – hence the last reached assignment is "forgotten"
- we can reuse the common parts of found assignments
 - the new assignment after restart is taken from the last assignments of previous two iterations by keeping the same parts and setting the remaining variables randomly

Algorithm GSAT

- The GSAT method solves SAT problems by flipping the values of variables.
- The goal is to maximize teh (weighted) number of satisfied clauses.

Algorithm GSAT

```
procedure GSAT(A,Max_Tries,Max_Moves)

A: is a CNF formula

for i:=1 to Max_Tries do

S ← random assignment of variables

for j:=1 to Max_Moves do

if A satisfiable by S then return S

V ← the variable whose flip yield the most important raise

in the number of satisfied clauses

S ← S with V flipped

end for

return the best assignment found

end GSAT
```

Connectionistic approach

- Based on idea of representing the problem as a network of connected simple processors.
 - processors have several states (usually only two – on/off).
 - The next state of the processor is derived from the states of connected processors (the connection strengths may be different).
- The goal is to find a stable state of the network, i.e., the processors are no more changing their states..
- This stable states represents a solution to the problem.

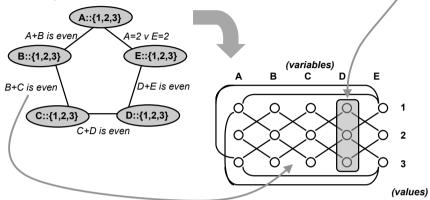
Features:

- massive parallelism (problems can be solved faster)
- Blackbox (not clear what is happening inside)
- Probably the most known representative is an artificial neural network (NN)
- A similar principle is used in celular automata.

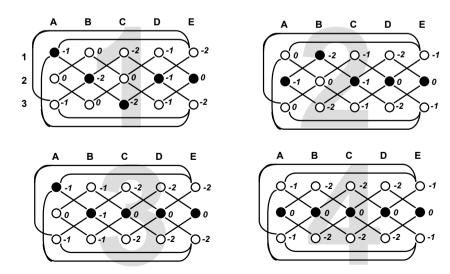
GENET – Binary CSP as a NN

- Each variable is modelled as a cluster of "neurons" (each value models a single neuron)
- Two neurons are connected by the inhibition link with negative weight if teh corresponfing values are incompatible.

Example:



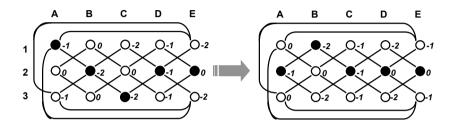
GENET computation cont'd



= "active" neuron; the numbers indicate inputs to neurons

GENET computation

- At the beginning one active neuron is selected in each cluster.
- Neurons change state in a **synchronous way** (all together)
 - based on the inputs (Σ w*s weighed sum of states of connected neurons)
 - For each cluster, the neuron with the largest input is activated
- The computation stops is a **stable state**.



= "active" neuron; the numbers indicate inputs to neurons

Escape from local optimun

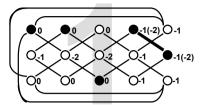
- What of we reach a stable state that is not a solution?
 - So far we used either restart or "noise".
 - We can try to modify the **space of state evaluations**.
 - How? By modifying the evaluation function!

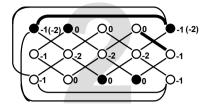
This can be done by modifying the **weight of connections** in GENET!

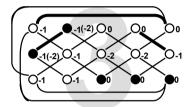
- If there is a connection between two active neurons (= constraint violation), increase the weight of the connection.
 - new_weight_v = old_weight_{x,v} $s_x^* s_v$
- This also changes the evaluation function (Guided Local Search).

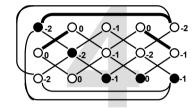
Example of changing connection weights

In local optimum we **strengthen weights** of violated connections (which makes the state instable).









Simulated annealing

- Base on the idea of simulating the process of metal cooling.
 - Higher temperature means faster movement of atoms so the probability of changing position is higher.
 - By cooling down, the atoms "try" to find the "best" position the position with the smallest energy.
- A very similar process can be modelled in optimisation algorithms:
 - so called **simulated annealing**:
 - start with a random state
 - a local change is accepted if:
 - improves the current state
 - makes the state worse, but such a state is accepted only with some probability dependent on "temperature"
 - "temperature" is continuously decreased so the probability of accepting a worsening step is also decreasing – a **cooling scheme** is used to define how the temperature decreases

Algorithm GENET

```
procedure GENET(connectionist network)
   one arbitrary node per cluster is switched on;
         repeat % network convergence
              modified ← false:
              for each cluster C do in parallel
                    on node ← currently switched on node in cluster C;
                    label set ← the set of nodes in C which input are maximum;
                    if on node is not in label set then
                          switch off on node;
                         modified ← true:
                          switch on arbitrary node in label set;
                    end if
              end for
         until not modified
         if sum of input to all switched-on nodes < 0 then for each connection c connecting nodes x & y do in parallel
                    if both x and y are switched on then
                         decrease the weight of c by 1;
               end for
         end if
   until input to all switched-on nodes are 0
end GENET
```

Algorithm Sa

```
procedure SA(InitT, MinT, MaxMoves)
                                                                   cooling curve
   s ← random assignment of variables
   best ← s
   T ← InitT
   while MinT<T do
       num errors \leftarrow 0
      while num error<MaxMoves do
          next s \leftarrow a random local change of s
          if eval(next_s) < eval(s) then</pre>
                 `s ← néxt s
                  if eval(s) < eval(best s) then best \leftarrow s
          else
                  p \leftarrow random number in [0,1)
                  if p < e(eval(s)-eval(next_s))/T then-
                                                       Metropolis heuristic
                    s \leftarrow next s
                  else
                     num errors ← num errors+1
      end while
      T \leftarrow 0.8 \times T
   end while
   return best
end SA
```

Michel, Van Hentenryck (1997)

• The local search algorithms have a similar structure that can be encoded in the common skeleton. This skeleton is filled by procedures implementing a particular technique.

Local Search Skeleton

```
procedure local-search(Max Tries,Max Moves)
    s ← random assignment of variables
    for i:=1 to Max Tries while Gcondition do
        for j:=1 to Max_Moves while Lcondition do
             if eval(s)=0 then
                     return s
             end if
             select n in neighbourhood(s)
             if acceptable(n) then
                     s ← n
             end if
        end for
        s ← restartState(s)
    end for
    return best s
end local-search
```


© 2013 Roman Barták

Department of Theoretical Computer Science and Mathematical Logic bartak@ktiml.mff.cuni.cz

Local Search - Summary

- Local search techniques start from some state and by moving to neighbouring states they try to reach a goal state.
- Each algorithm is specified by:
 - state neighbourhood and allowed states in the neighborhood
 - heuristic to select the next state from the neighbourhood (intensification)
 - meta-heuristic to escape local optima (diversification)

www.comet-online.org

Lokalizer was the base of the **Comet** system (MaxOS X, Linux, Win), that allows description of local search algorithms in a declarative way.