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Just!to!recall!

Constraint Satisfaction Problem (CSP) consists of: 
–  a finite set of variables 
–  domains – finite sets of possible values for variables 
–  a finite set of constraints 

•  constraint arity = the number of constrained variables 

A feasible solution of a constraint satisfaction 
problem is a complete consistent assignment of 
values to variables. 
–  complete = each variable has assigned a value 
–  consistent = all constraints are satisfied 

Looking!for!a!solu2on!

The goal: find a complete and consistent instantiation of variables 

Two core solving approaches: 

–  exploring complete but possibly inconsistent assignments 
until a consistent assignment is found 

•  generate and test, local search 

–  extending a partial consistent 
until a complete assignment is reached 

•  backtracking and its extensions 

We can explore assignments in two ways: 

–  systematically (explore all possible assignments systematically) 
•  a complete method, but could be too slow 

–  non-systematically (some assignments can be skipped) 
•  an incomplete method, but can found solution much faster 

Note: 
We will use constraints in a passive way, just to verify whether the given 
assignment (even partial) satisfies the constraint. 

Search!techniques!

Work plan: 
–  start simple (with a trivial algorithm) 
–  find weaknesses of the algorithm 
–  repair the problems to get better algorithms 

In particular: 
–  start with generate and test method 
–  improve the generator 

•  local search methods (HC, RW, TS, GSAT, GENET, SA) 
–  merge the generator with the tester 

•  backtracking methods 
•  improvements of chronological backtracking 

–  backjumping, dynamic backtracking, backmarking 



Generate!and!test!(GT)!

Probably!the!most!general!problem!solving!method!

1)!generate!a!candidate!for!solu9on!

2)!test!if!the!candidate!is!really!a!solu9on!

!

How!to!apply!GT!to!CSP?!

1)!assign!values!to!all!variables!

2)!test!whether!all!the!constraints!are!sa9sfied!!

!

GT!explores)complete)but)inconsistent)assignments)un9l!a!
(complete)!consistent!assignment!is!found.!

procedure GT(X:variables, C:constraints) 
V ← construct a first complete assignment of X 
while V does not satisfy all the constraints C do 

 V ← construct systematically a complete assignment next to V  
end while 
return V 

Weaknesses!and!improvements!of!GT 

The!greatest!weakness!of!GT!is!exploring)too)many)
“visibly”)wrong)assignments.!
Example:)

X::{1,2}, Y::{1,2}, Z::{1,2}   X = Y, X ≠ Z, Y > Z 

•  How to improve GT? 
–  smart generator 

•  the next assignment improves over the current assignment 
•  the core idea of local search techniques 

–  merged generate and test stage (earlier detection of clash) 
•  constraints are tested as soon as the involved variables are instantiated 
•  backtracking 
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Local!search!

•  Generate'and'test)explores!complete!but!inconsistent!

assignments!un9l!a!complete!consistent!assignment!is!found.!

•  Weakness!of!GT!–!the!generator!does!not!exploit!fully!teh!

result!of!tes9ng!

•  The!next!assignment!can!be!constructed!in!such!a!way!that!

constraint!viola9on!is!smaller.!

–  only!“small”!(local)!changes!of!the!assignment!are!allowed!

–  the!next!assignment!should!be!“beKer”!than!the!current!one!

•  beKer!=!more!constraints!are!sa9sfied!

–  assignments!are!not!necessarily!generated!systema9cally!

•  we!lost!completeness,!but!

•  we!(hopefully)!get!beKer!efficiency!

Local!search!?!Terminology!

•  state!O!a!complete!assignment!of!values!to!variables!

•  evalua<on!O!a!value!of!the!objec9ve!func9on!(#!violated!constraints)!
•  neighbourhood)O!a!set!of!states!locally!different!from!the!current!state!

(the!states!differ!from!the!current!state!in!the!value!of!one!variable)!

•  local)op<mum)O!a!state!that!is!not!op9mal!and!there!is!no!state!with!beKer!

evalua9on!in!its!neighbourhood!

•  strict)local)op<mum)O!a!state!that!is!not!op9mal!and!there!are!only!states!

with!worse!evalua9on!in!its!neighbourhood!

•  non>strict)local)op<mum)O!local!op9mum!that!is!not!strict!

•  plateau!O!a!set!of!neighbouring!states!with!the!same!evalua9on!

•  global)op<mum)O!the!state!with!the!best!evalua9on!
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Hill!Climbing!
•  Hill!climbing!is!perhaps!the!most!known!technique!of!local!search.!

–  start!at!randomly!generated!state!

–  look!for!the!best!state!in!the!neighbourhood!of!the!current!state!
•  neighbourhood!=!differs!in!the!value!of!any!variable!
•  neighbourhood!size!=!Σ

i=1..n

(D

i

O1)!(=!n*(dO1)!)!

–  “escape”!from!the!local!op9mum!via!restart!

Algorithm!Hill!Climbing!
procedure hill-climbing(Max_Steps) 

restart: s ← random assignment of variables; 
for j:=1 to Max_Steps do   % restricted number of steps 

if eval(s)=0 then return s 
if s is a strict local minimum then 

go to restart 
else 

s ← neighbourhood with the smallest evaluation value 
end if 

end for 
go to restart 

end hill-climbing 

Min?Conflicts!
Observa<on:)

–  the!hill!climbing!neighbourhood!is!preKy!large!(n*(dO1))!

–  only!change!of!a!conflic9ng!variable!may!improve!the!valua9on!

Min>conflicts)method)
–  select!randomly!a!variable!in!conflict!and!try!to!improve!it!

•  neighbourhood!=!different!values!for!the!selected!variable!i!
•  neighbourhood!size!=!(D

i

O1)!(=!(dO1)!)!

Algorithm!Min?Conflicts!
procedure MC(Max_Moves) 

s ←  random assignment of variables 
nb_moves ← 0 
while eval(s)>0 and nb_moves<Max_Moves do 

choose randomly a variable V in conflict 
choose a value v' that minimises the number of conflicts for V 
if v' ≠  current value of V then 

assign v' to V 
nb_moves  ←  nb_moves+1 

end if 
end while 
return s 

end MC 

It cannot leave 
a local optimum 

Minton, Johnston, Laird (1997) 

Random!Walk!

How!to!leave!the!local!op9mum!without!a!restart!

(i.e.!via!a!local!step)?!

–  By!adding!some!“noise”!to!the!algorithm! 

Random walk 
–  a state from the neighbourhood is selected randomly 

(e.g., the value is chosen randomly) 
–  such technique can hardly find a solution 
–  so it needs some guide 

•  Random walk can be combined 
with the heuristic guiding the search 
via probability distribution: 

–  p - probability of using a random step 
–  (1-p) - probability of using the heuristic guide 

Min?Conflicts!Random!Walk!

•  MC!guides!the!search!(i.e.!sa9sfac9on!of!all!the!constraints)!and!RW!allows!

us!to!leave!the!local!op9ma.!

Algorithm!Min?Conflicts?Random?Walk!

procedure MCRW(Max_Moves,p) 
s ← random assignment of variables 
nb_moves ← 0 
while eval(s)>0 and nb_moves<Max_Moves do 

if probability p verified then 
choose randomly a variable V in conflict 
choose randomly a value v' for V 

else 
choose randomly a variable V in conflict 
choose a value v' that minimises the number of conflicts for V 

end if 
if v' ≠  current value of V then 

assign v' to V 
nb_moves ← nb_moves+1 

end if 
end while 
return s 

end MCRW 
0.02 ≤ p ≤ 0.1 



Steepest!Descent!Random!Walk!

•  Random!walk!can!be!combined!with!the!hill!climbing!heuris9c!too.!

•  Then,!no!restart!is!necessary.!

Algorithm!Steepest?Descent?Random?Walk!

procedure SDRW(Max_Moves,p) 
s ← random assignment of variables 
nb_moves ← 0 
while eval(s)>0 and nb_moves<Max_Moves do 

if probability p verified then 
choose randomly a variable V in conflict 
choose randomly a value v' for V 

else 
choose a move <V,v'> with the best performance 

end if 
if v' ≠  current value of V then 

assign v' to V 
nb_moves ← nb_moves+1 

end if 
end while 
return s 

end SDRW 

Tabu!search!
Observa<on:)

Being!trapped!in!a!local!op9mum!is!a!special!case!of!cycling.!

How)to)avoid)cycles)in)general?)
–  remember)already)visited)states!and!do!not!visit!them!again!

•  memory!consuming!(too!many!states)!

–  it!is!possible!to!remember!just!few!last!states!

•  prevents!„short“!cycles!
•  Tabu)list!=!a!list!of!forbidden!states!

–  a!state!can!be!represented!by!a!selected!aKribute!
•  〈variable,!value〉!O!describes!the!change!of!a!state!(a!previous!
value)!

–  the!tabu!list!has!a!fix!length!k!(tabu!tenure)!
•  „old“!states!are!removed!from!the!list!when!a!new!state!is!

added!

–  a!state!included!in!the!tabu!list!is!forbidden!(it!is!tabu)!
•  Aspira<on)criterion!=!reOenabling!states!that!are!tabu!

–  i.e.,!it!is!possible!to!visit!a!state!even!if!the!state!is!tabu!
–  example:!the!state!is!beKer!than!any!state!visited!so!far!

Galinier, Hao (1997) 

Tabu!search!

•  The!tabu!list!prevents!short!cycles.!

•  It!allows!only!the!moves!out!of!the!tabu!list!or!the!moves!sa9sfying!the!

aspira9on!criterion.!

Algorithm!Tabu!Search!
procedure tabu-search(Max_Iter) 

s ← random assignment of variables 
nb_iter ← 0 
initialise randomly the tabu list 
while eval(s)>0 and nb_iter<Max_Iter do 

choose a move <V,v'> with the best performance among the non-tabu 
moves and the moves satisfying the aspiration criteria 

introduce <V,v> in the tabu list, where v is the current value of V 
remove the oldest move from the tabu list 
assign v' to V 
nb_iter ←  nb_iter+1 

end while 
return s 

end tabu-search 

Local!Search!at!Glance!

•  LS methods explore complete but possible inconsistent 
assignments until a consistent assigned is found 
–  opposite to GT, they generate a new assignment based on the current 

assignment with the goal to increase the number of satisfied constraints 

Local search algorithm is defined by:  

•  neighbourhood of the current assignment (state) and 
a method to select the next assignment from the neighbourhood 
(intensification) 
–  HC heuristic – select the best assignment different at one variable from the 

current assignment 
•  sometimes, the first better assignment from the neighbourhood is taken 

–  MC heuristic – select the best assignment different at one selected conflict 
variable from the current assignment 

•  a method for escaping from a local optimum (diversification) 
–  restart – start in a completely new assignment 

–  RW – select the next assignment randomly 

–  Tabu – forbid some assignments 



Local!Search!for!SAT!

Many problems can be formulated as problems of Boolean SATisfiability 
= satisfying a logical formula in conjunctive normal form (CNF) 
–  CNF = conjunction of clauses 
–  clause = disjunction of literals (constraint) 
–  literal = atomic variable or its negation 

Example: 
(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C ∨ ¬A) 

•  Similarly to a CSP, SAT is also an NP-complete problem so no fast 
(polynomial) solving algorithm can be expected. 

•  Local search can find a solution to pretty large formulas. 

Notes: 
–  satisfaction formula in a disjunctive normal form can be decided fast 
–  SAT is a special case of a CSP and vice-versa, any CSP can be translated 

to SAT 

Algorithm!GSAT!

•  The!GSAT!method!solves!SAT!problems!by!flipping!the!values!of!variables.!

•  The!goal!is!to!maximize!teh!(weighted)!number!of!sa9sfied!clauses.!

Algorithm!GSAT!

procedure GSAT(A,Max_Tries,Max_Moves) 
A: is a CNF formula 
for i:=1 to Max_Tries do 

S ←  random assignment of variables 
for j:=1 to Max_Moves do 

if A satisfiable by S then return S 
V ←  the variable whose flip yield the most important raise 

in the number of satisfied clauses 
S ← S with V flipped 

end for 
end for 
return the best assignment found 

end GSAT 

GSAT!and!heuris2cs!

•  GSAT can be combined with various heuristics improving its practical 
performance (especially for so called structured problems) : 

•  Random-Walk 
–  can be used exactly as in MCRW 

•  Clause weights 
–  Some clauses remain unsatisfied even after several iterations of the inner 

loop of GSAT – different clauses have different importance in formula 
satisfaction 

–  satisfaction of “hard” clauses can be preferred by increasing their weights 
in the clause selection process 

–  The algorithm can learn the weight itself 
•  all clauses have identical weight at the beginning 
•  After each iteration, the weights of unsatisfied clauses are increased 

•  Solution averages 
–  in the GSAT algorithm each iteration starts from a random assignment of 

variables – hence the last reached assignment is “forgotten” 
–  we can reuse the common parts of found assignments 

•  the new assignment after restart is taken from the last assignments of 
previous two iterations by keeping the same parts and setting the remaining 
variables randomly 

Connec2onis2c!approach!

•  Based on idea of representing the problem 
as a network of connected simple processors.. 
–  processors have several states 

(usually only two – on/off). 
–  The next state of the processor is derived from the states of 

connected processors (the connection strengths may be different). 

•  The goal is to find a stable state of the network, i.e., the processors are 
no more changing their states.. 

•  This stable states represents a solution to the problem. 

Features: 
–  massive parallelism (problems can be solved faster) 
–  Blackbox (not clear what is happening inside) 

•  Probably the most known representative is an artificial neural 
network (NN) 

•  A similar principle is used in celular automata. 



GENET!–!Binary!CSP!as!a!NN!

•  Each variable is modelled as a cluster of „neurons“ 
(each value models a single neuron) 

•  Two neurons are connected by the inhibition link with negative 
weight if teh corresponfing values are incompatible. 

Example: 

(variables) 
A  B  C  D  E 

1 

2 

3 

(values) 

A=2 v E=2 

D+E is even 

A+B is even 

B+C is even 

C+D is even 

A::{1,2,3} 

B::{1,2,3} 

C::{1,2,3} D::{1,2,3} 

E::{1,2,3} 

GENET!computa2on!

•  At the beginning one active neuron is selected in each cluster. 

•  Neurons change state in a synchronous way (all together) 
–  based on the inputs (Σ w*s – weighed sum of states of connected neurons) 
–  For each cluster, the neuron with the largest input is activated 

•  The computation stops is a stable state. 

= „active“ neuron; the numbers indicate inputs to neurons 
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GENET!computa2on!cont’d!
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= „active“ neuron; the numbers indicate inputs to neurons 
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Escape!from!local!op2mum!

•  What of we reach a stable state that is not a solution? 
–  So far we used either restart or “noise”. 
–  We can try to modify the space of state evaluations. 

•  How? By modifying the evaluation function! 
–  dynamic local search 

This can be done by modifying the weight of connections in 
GENET! 

•  If there is a connection between two active neurons (= constraint 
violation), increase the weight of the connection. 
–  new_weight,y = old_weightx,y – sx* sy 

•  This also changes the evaluation function (Guided Local Search). 
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Example!of!changing!connec2on!weights!
In local optimum we strengthen weights of violated connections (which makes the 

state instable). 
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Algorithm!GENET!

procedure GENET(connectionist network) 
 one arbitrary node per cluster is switched on; 
 repeat 
  repeat  % network convergence 
   modified ← false; 
   for each cluster C do in parallel 
    on_node ←  currently switched on node in cluster C; 
    label_set ← the set of nodes in C which input are maximum; 
    if on_node is not in label_set then 
     switch off on_node; 
     modified ← true; 
     switch on arbitrary node in label_set; 
    end if 
   end for 
  until not modified 
  if sum of input to all switched-on nodes < 0 then 
   for each connection c connecting nodes x & y do in parallel 
    if both x and y are switched on then 
     decrease the weight of c by 1; 
   end for 
  end if 
 until input to all switched-on nodes are 0 

end GENET 

Simulated!annealing!

•  Base on the idea of simulating the process of metal cooling. 
–  Higher temperature means faster movement of atoms so the 

probability of changing position is higher. 
–  By cooling down, the atoms “try” to find the “best” position – the 

position with the smallest energy. 

•  A very similar process can be modelled in optimisation algorithms: 
–  so called simulated annealing: 

•  start with a random state 
•  a local change is accepted if: 

–  improves the current state 
– makes the state worse, 

but such a state is accepted only with 
some probability dependent on “temperature” 

•  „temperature“ is continuously decreased 
so the probability of accepting a worsening step 
is also decreasing – a cooling scheme is used 
to define how the temperature decreases 

Algorithm!SA!

procedure SA(InitT, MinT, MaxMoves) 
 s ← random assignment of variables 
 best ← s 
 T ← InitT 
 while MinT<T do 
  num_errors ← 0 
  while num_error<MaxMoves do 
   next_s ← a random local change of s 
   if eval(next_s) < eval(s) then 
             s ← next_s 
             if eval(s) < eval(best_s) then best ← s  
   else 
             p ← random number in [0,1) 
             if p < e(eval(s)-eval(next_s))/T then 
     s ← next_s 
             else 
     num_errors ← num_errors+1 
  end while 
  T ← 0.8 x T 
 end while 
 return best 

end SA 

Metropolis heuristic 
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Localizer!

•  The!local!search!algorithms!have!a!similar!structure!that!can!be!encoded!in!

the!common!skeleton.!This!skeleton!is!filled!by!procedures!implemen9ng!a!

par9cular!technique.!

Local!Search!Skeleton!

procedure local-search(Max_Tries,Max_Moves) 
s ← random assignment of variables 
for i:=1 to Max_Tries while Gcondition do 

for j:=1 to Max_Moves while Lcondition do 
if eval(s)=0 then 

 return s 
end if 
select n in neighbourhood(s) 
if acceptable(n) then 

 s ← n 
end if 

end for 
s ← restartState(s) 

end for 
return best s 

end local-search 

Michel, Van Hentenryck (1997) Local!Search!?!Summary!

•  Local search techniques start from some state and by moving 
to neighbouring states they try to reach a goal state. 

•  Each algorithm is specified by: 
–  state neighbourhood and allowed states in the neighborhood 
–  heuristic to select the next state from the neighbourhood 

(intensification) 
–  meta-heuristic to escape local optima (diversification) 

www.comet-online.org 

Lokalizer was the base of the 
Comet system (MaxOS X, 
Linux, Win), that allows 
description of local search 
algorithms in a declarative 
way. 
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