
Constraint)Programming!
!Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Local search algorithms

Just!to!recall!

Constraint Satisfaction Problem (CSP) consists of:
–  a finite set of variables
–  domains – finite sets of possible values for variables
–  a finite set of constraints

•  constraint arity = the number of constrained variables

A feasible solution of a constraint satisfaction
problem is a complete consistent assignment of
values to variables.
–  complete = each variable has assigned a value
–  consistent = all constraints are satisfied

Looking!for!a!solu2on!

The goal: find a complete and consistent instantiation of variables

Two core solving approaches:

–  exploring complete but possibly inconsistent assignments
until a consistent assignment is found

•  generate and test, local search

–  extending a partial consistent
until a complete assignment is reached

•  backtracking and its extensions

We can explore assignments in two ways:

–  systematically (explore all possible assignments systematically)
•  a complete method, but could be too slow

–  non-systematically (some assignments can be skipped)
•  an incomplete method, but can found solution much faster

Note:
We will use constraints in a passive way, just to verify whether the given
assignment (even partial) satisfies the constraint.

Search!techniques!

Work plan:
–  start simple (with a trivial algorithm)
–  find weaknesses of the algorithm
–  repair the problems to get better algorithms

In particular:
–  start with generate and test method
–  improve the generator

•  local search methods (HC, RW, TS, GSAT, GENET, SA)
–  merge the generator with the tester

•  backtracking methods
•  improvements of chronological backtracking

–  backjumping, dynamic backtracking, backmarking

Generate!and!test!(GT)!

Probably!the!most!general!problem!solving!method!

1)!generate!a!candidate!for!solu9on!

2)!test!if!the!candidate!is!really!a!solu9on!

!

How!to!apply!GT!to!CSP?!

1)!assign!values!to!all!variables!

2)!test!whether!all!the!constraints!are!sa9sfied!!

!

GT!explores)complete)but)inconsistent)assignments)un9l!a!
(complete)!consistent!assignment!is!found.!

procedure GT(X:variables, C:constraints)
V ← construct a first complete assignment of X
while V does not satisfy all the constraints C do

 V ← construct systematically a complete assignment next to V
end while
return V

Weaknesses!and!improvements!of!GT

The!greatest!weakness!of!GT!is!exploring)too)many)
“visibly”)wrong)assignments.!
Example:)

X::{1,2}, Y::{1,2}, Z::{1,2} X = Y, X ≠ Z, Y > Z

•  How to improve GT?
–  smart generator

•  the next assignment improves over the current assignment
•  the core idea of local search techniques

–  merged generate and test stage (earlier detection of clash)
•  constraints are tested as soon as the involved variables are instantiated
•  backtracking

X
Y
Z

1
1
1

1
1
2

1
2
1

1
2
2

2
1
1

2
1
2

2
2
1

Local!search!

•  Generate'and'test)explores!complete!but!inconsistent!

assignments!un9l!a!complete!consistent!assignment!is!found.!

•  Weakness!of!GT!–!the!generator!does!not!exploit!fully!teh!

result!of!tes9ng!

•  The!next!assignment!can!be!constructed!in!such!a!way!that!

constraint!viola9on!is!smaller.!

–  only!“small”!(local)!changes!of!the!assignment!are!allowed!

–  the!next!assignment!should!be!“beKer”!than!the!current!one!

•  beKer!=!more!constraints!are!sa9sfied!

–  assignments!are!not!necessarily!generated!systema9cally!

•  we!lost!completeness,!but!

•  we!(hopefully)!get!beKer!efficiency!

Local!search!?!Terminology!

•  state!O!a!complete!assignment!of!values!to!variables!

•  evalua<on!O!a!value!of!the!objec9ve!func9on!(#!violated!constraints)!
•  neighbourhood)O!a!set!of!states!locally!different!from!the!current!state!

(the!states!differ!from!the!current!state!in!the!value!of!one!variable)!

•  local)op<mum)O!a!state!that!is!not!op9mal!and!there!is!no!state!with!beKer!

evalua9on!in!its!neighbourhood!

•  strict)local)op<mum)O!a!state!that!is!not!op9mal!and!there!are!only!states!

with!worse!evalua9on!in!its!neighbourhood!

•  non>strict)local)op<mum)O!local!op9mum!that!is!not!strict!

•  plateau!O!a!set!of!neighbouring!states!with!the!same!evalua9on!

•  global)op<mum)O!the!state!with!the!best!evalua9on!

plateau local
minimum

global
minimum

non-strict local
minimum

ev
al

ua
tio

n

states

Hill!Climbing!
•  Hill!climbing!is!perhaps!the!most!known!technique!of!local!search.!

–  start!at!randomly!generated!state!

–  look!for!the!best!state!in!the!neighbourhood!of!the!current!state!
•  neighbourhood!=!differs!in!the!value!of!any!variable!
•  neighbourhood!size!=!Σ

i=1..n

(D

i

O1)!(=!n*(dO1)!)!

–  “escape”!from!the!local!op9mum!via!restart!

Algorithm!Hill!Climbing!
procedure hill-climbing(Max_Steps)

restart: s ← random assignment of variables;
for j:=1 to Max_Steps do % restricted number of steps

if eval(s)=0 then return s
if s is a strict local minimum then

go to restart
else

s ← neighbourhood with the smallest evaluation value
end if

end for
go to restart

end hill-climbing

Min?Conflicts!
Observa<on:)

–  the!hill!climbing!neighbourhood!is!preKy!large!(n*(dO1))!

–  only!change!of!a!conflic9ng!variable!may!improve!the!valua9on!

Min>conflicts)method)
–  select!randomly!a!variable!in!conflict!and!try!to!improve!it!

•  neighbourhood!=!different!values!for!the!selected!variable!i!
•  neighbourhood!size!=!(D

i

O1)!(=!(dO1)!)!

Algorithm!Min?Conflicts!
procedure MC(Max_Moves)

s ← random assignment of variables
nb_moves ← 0
while eval(s)>0 and nb_moves<Max_Moves do

choose randomly a variable V in conflict
choose a value v' that minimises the number of conflicts for V
if v' ≠ current value of V then

assign v' to V
nb_moves ← nb_moves+1

end if
end while
return s

end MC

It cannot leave
a local optimum

Minton, Johnston, Laird (1997)

Random!Walk!

How!to!leave!the!local!op9mum!without!a!restart!

(i.e.!via!a!local!step)?!

–  By!adding!some!“noise”!to!the!algorithm!

Random walk
–  a state from the neighbourhood is selected randomly

(e.g., the value is chosen randomly)
–  such technique can hardly find a solution
–  so it needs some guide

•  Random walk can be combined
with the heuristic guiding the search
via probability distribution:

–  p - probability of using a random step
–  (1-p) - probability of using the heuristic guide

Min?Conflicts!Random!Walk!

•  MC!guides!the!search!(i.e.!sa9sfac9on!of!all!the!constraints)!and!RW!allows!

us!to!leave!the!local!op9ma.!

Algorithm!Min?Conflicts?Random?Walk!

procedure MCRW(Max_Moves,p)
s ← random assignment of variables
nb_moves ← 0
while eval(s)>0 and nb_moves<Max_Moves do

if probability p verified then
choose randomly a variable V in conflict
choose randomly a value v' for V

else
choose randomly a variable V in conflict
choose a value v' that minimises the number of conflicts for V

end if
if v' ≠ current value of V then

assign v' to V
nb_moves ← nb_moves+1

end if
end while
return s

end MCRW
0.02 ≤ p ≤ 0.1

Steepest!Descent!Random!Walk!

•  Random!walk!can!be!combined!with!the!hill!climbing!heuris9c!too.!

•  Then,!no!restart!is!necessary.!

Algorithm!Steepest?Descent?Random?Walk!

procedure SDRW(Max_Moves,p)
s ← random assignment of variables
nb_moves ← 0
while eval(s)>0 and nb_moves<Max_Moves do

if probability p verified then
choose randomly a variable V in conflict
choose randomly a value v' for V

else
choose a move <V,v'> with the best performance

end if
if v' ≠ current value of V then

assign v' to V
nb_moves ← nb_moves+1

end if
end while
return s

end SDRW

Tabu!search!
Observa<on:)

Being!trapped!in!a!local!op9mum!is!a!special!case!of!cycling.!

How)to)avoid)cycles)in)general?)
–  remember)already)visited)states!and!do!not!visit!them!again!

•  memory!consuming!(too!many!states)!

–  it!is!possible!to!remember!just!few!last!states!

•  prevents!„short“!cycles!
•  Tabu)list!=!a!list!of!forbidden!states!

–  a!state!can!be!represented!by!a!selected!aKribute!
•  〈variable,!value〉!O!describes!the!change!of!a!state!(a!previous!
value)!

–  the!tabu!list!has!a!fix!length!k!(tabu!tenure)!
•  „old“!states!are!removed!from!the!list!when!a!new!state!is!

added!

–  a!state!included!in!the!tabu!list!is!forbidden!(it!is!tabu)!
•  Aspira<on)criterion!=!reOenabling!states!that!are!tabu!

–  i.e.,!it!is!possible!to!visit!a!state!even!if!the!state!is!tabu!
–  example:!the!state!is!beKer!than!any!state!visited!so!far!

Galinier, Hao (1997)

Tabu!search!

•  The!tabu!list!prevents!short!cycles.!

•  It!allows!only!the!moves!out!of!the!tabu!list!or!the!moves!sa9sfying!the!

aspira9on!criterion.!

Algorithm!Tabu!Search!
procedure tabu-search(Max_Iter)

s ← random assignment of variables
nb_iter ← 0
initialise randomly the tabu list
while eval(s)>0 and nb_iter<Max_Iter do

choose a move <V,v'> with the best performance among the non-tabu
moves and the moves satisfying the aspiration criteria

introduce <V,v> in the tabu list, where v is the current value of V
remove the oldest move from the tabu list
assign v' to V
nb_iter ← nb_iter+1

end while
return s

end tabu-search

Local!Search!at!Glance!

•  LS methods explore complete but possible inconsistent
assignments until a consistent assigned is found
–  opposite to GT, they generate a new assignment based on the current

assignment with the goal to increase the number of satisfied constraints

Local search algorithm is defined by:

•  neighbourhood of the current assignment (state) and
a method to select the next assignment from the neighbourhood
(intensification)
–  HC heuristic – select the best assignment different at one variable from the

current assignment
•  sometimes, the first better assignment from the neighbourhood is taken

–  MC heuristic – select the best assignment different at one selected conflict
variable from the current assignment

•  a method for escaping from a local optimum (diversification)
–  restart – start in a completely new assignment

–  RW – select the next assignment randomly

–  Tabu – forbid some assignments

Local!Search!for!SAT!

Many problems can be formulated as problems of Boolean SATisfiability
= satisfying a logical formula in conjunctive normal form (CNF)
–  CNF = conjunction of clauses
–  clause = disjunction of literals (constraint)
–  literal = atomic variable or its negation

Example:
(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C ∨ ¬A)

•  Similarly to a CSP, SAT is also an NP-complete problem so no fast
(polynomial) solving algorithm can be expected.

•  Local search can find a solution to pretty large formulas.

Notes:
–  satisfaction formula in a disjunctive normal form can be decided fast
–  SAT is a special case of a CSP and vice-versa, any CSP can be translated

to SAT

Algorithm!GSAT!

•  The!GSAT!method!solves!SAT!problems!by!flipping!the!values!of!variables.!

•  The!goal!is!to!maximize!teh!(weighted)!number!of!sa9sfied!clauses.!

Algorithm!GSAT!

procedure GSAT(A,Max_Tries,Max_Moves)
A: is a CNF formula
for i:=1 to Max_Tries do

S ← random assignment of variables
for j:=1 to Max_Moves do

if A satisfiable by S then return S
V ← the variable whose flip yield the most important raise

in the number of satisfied clauses
S ← S with V flipped

end for
end for
return the best assignment found

end GSAT

GSAT!and!heuris2cs!

•  GSAT can be combined with various heuristics improving its practical
performance (especially for so called structured problems) :

•  Random-Walk
–  can be used exactly as in MCRW

•  Clause weights
–  Some clauses remain unsatisfied even after several iterations of the inner

loop of GSAT – different clauses have different importance in formula
satisfaction

–  satisfaction of “hard” clauses can be preferred by increasing their weights
in the clause selection process

–  The algorithm can learn the weight itself
•  all clauses have identical weight at the beginning
•  After each iteration, the weights of unsatisfied clauses are increased

•  Solution averages
–  in the GSAT algorithm each iteration starts from a random assignment of

variables – hence the last reached assignment is “forgotten”
–  we can reuse the common parts of found assignments

•  the new assignment after restart is taken from the last assignments of
previous two iterations by keeping the same parts and setting the remaining
variables randomly

Connec2onis2c!approach!

•  Based on idea of representing the problem
as a network of connected simple processors..
–  processors have several states

(usually only two – on/off).
–  The next state of the processor is derived from the states of

connected processors (the connection strengths may be different).

•  The goal is to find a stable state of the network, i.e., the processors are
no more changing their states..

•  This stable states represents a solution to the problem.

Features:
–  massive parallelism (problems can be solved faster)
–  Blackbox (not clear what is happening inside)

•  Probably the most known representative is an artificial neural
network (NN)

•  A similar principle is used in celular automata.

GENET!–!Binary!CSP!as!a!NN!

•  Each variable is modelled as a cluster of „neurons“
(each value models a single neuron)

•  Two neurons are connected by the inhibition link with negative
weight if teh corresponfing values are incompatible.

Example:

(variables)
A B C D E

1

2

3

(values)

A=2 v E=2

D+E is even

A+B is even

B+C is even

C+D is even

A::{1,2,3}

B::{1,2,3}

C::{1,2,3} D::{1,2,3}

E::{1,2,3}

GENET!computa2on!

•  At the beginning one active neuron is selected in each cluster.

•  Neurons change state in a synchronous way (all together)
–  based on the inputs (Σ w*s – weighed sum of states of connected neurons)
–  For each cluster, the neuron with the largest input is activated

•  The computation stops is a stable state.

= „active“ neuron; the numbers indicate inputs to neurons

A B C D E

0

-1

0

-2

0

-2

-1

-1

-1

-2

0

-2

-1

0

-1

A B C D E

1

2

3

-1

0

-1

0

-2

0

-2

0

-2

-1

-1

-1

-2

0

-2

3 4
2 1

GENET!computa2on!cont’d!

A B C D E

0

-1

0

-2

0

-2

-1

-1

-1

-2

0

-2

-1

0

-1

A B C D E

1

2

3

-1

0

-1

0

-2

0

-2

0

-2

-1

-1

-1

-2

0

-2

= „active“ neuron; the numbers indicate inputs to neurons

A B C D E A B C D E

-1

0

-1

-1

-1

-1

-2

0

-2

-2

0

-2

-2

0

-2

-1

0

-1

-2

0

-2

-2

0

-2

-2

0

-2

-1

0

-1

Escape!from!local!op2mum!

•  What of we reach a stable state that is not a solution?
–  So far we used either restart or “noise”.
–  We can try to modify the space of state evaluations.

•  How? By modifying the evaluation function!
–  dynamic local search

This can be done by modifying the weight of connections in
GENET!

•  If there is a connection between two active neurons (= constraint
violation), increase the weight of the connection.
–  new_weight,y = old_weightx,y – sx* sy

•  This also changes the evaluation function (Guided Local Search).

3 4
2 1

Example!of!changing!connec2on!weights!
In local optimum we strengthen weights of violated connections (which makes the

state instable).

0

-1

0

0

-2

0

0

-2

0

-1

-1

-1

-1

-1

-1

-1

-1

-1

0

-2

0

0

-2

0

0

-2

0

-1

-1

-1

-1

-1

-1

-1

-1

-1

0

-2

0

0

-2

0

0

-1

0

-2

0

-2

0

-2

0

-1

-1

-1

0

-2

0

-2

-1

-1

...

(-2)

(-2)

(-2) (-2)

(-2)

(-2)

Algorithm!GENET!

procedure GENET(connectionist network)
 one arbitrary node per cluster is switched on;
 repeat
 repeat % network convergence
 modified ← false;
 for each cluster C do in parallel
 on_node ← currently switched on node in cluster C;
 label_set ← the set of nodes in C which input are maximum;
 if on_node is not in label_set then
 switch off on_node;
 modified ← true;
 switch on arbitrary node in label_set;
 end if
 end for
 until not modified
 if sum of input to all switched-on nodes < 0 then
 for each connection c connecting nodes x & y do in parallel
 if both x and y are switched on then
 decrease the weight of c by 1;
 end for
 end if
 until input to all switched-on nodes are 0

end GENET

Simulated!annealing!

•  Base on the idea of simulating the process of metal cooling.
–  Higher temperature means faster movement of atoms so the

probability of changing position is higher.
–  By cooling down, the atoms “try” to find the “best” position – the

position with the smallest energy.

•  A very similar process can be modelled in optimisation algorithms:
–  so called simulated annealing:

•  start with a random state
•  a local change is accepted if:

–  improves the current state
– makes the state worse,

but such a state is accepted only with
some probability dependent on “temperature”

•  „temperature“ is continuously decreased
so the probability of accepting a worsening step
is also decreasing – a cooling scheme is used
to define how the temperature decreases

Algorithm!SA!

procedure SA(InitT, MinT, MaxMoves)
 s ← random assignment of variables
 best ← s
 T ← InitT
 while MinT<T do
 num_errors ← 0
 while num_error<MaxMoves do
 next_s ← a random local change of s
 if eval(next_s) < eval(s) then
 s ← next_s
 if eval(s) < eval(best_s) then best ← s
 else
 p ← random number in [0,1)
 if p < e(eval(s)-eval(next_s))/T then
 s ← next_s
 else
 num_errors ← num_errors+1
 end while
 T ← 0.8 x T
 end while
 return best

end SA

Metropolis heuristic

čas

ev
al

ua
ce

 cooling curve

Localizer!

•  The!local!search!algorithms!have!a!similar!structure!that!can!be!encoded!in!

the!common!skeleton.!This!skeleton!is!filled!by!procedures!implemen9ng!a!

par9cular!technique.!

Local!Search!Skeleton!

procedure local-search(Max_Tries,Max_Moves)
s ← random assignment of variables
for i:=1 to Max_Tries while Gcondition do

for j:=1 to Max_Moves while Lcondition do
if eval(s)=0 then

 return s
end if
select n in neighbourhood(s)
if acceptable(n) then

 s ← n
end if

end for
s ← restartState(s)

end for
return best s

end local-search

Michel, Van Hentenryck (1997) Local!Search!?!Summary!

•  Local search techniques start from some state and by moving
to neighbouring states they try to reach a goal state.

•  Each algorithm is specified by:
–  state neighbourhood and allowed states in the neighborhood
–  heuristic to select the next state from the neighbourhood

(intensification)
–  meta-heuristic to escape local optima (diversification)

www.comet-online.org

Lokalizer was the base of the
Comet system (MaxOS X,
Linux, Win), that allows
description of local search
algorithms in a declarative
way.

© 2013 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

