Properties of knowledge

(in the Kripke's semantics of possible worlds

VZ 2009

Can we "describe" all formulas with modalities K_1 , ..., K_n , that are ever true?

Let us consider a strukture $M = (S, \pi, K_1, ..., K_n)$ and a formula A. We define the following notions:

(i) <u>*A* is valid v</u> <u>*M*</u> (denoted as $M \models A$), if *A* is true in all the states of *M*, ie. in any state *s* of *M* holds (*M*, *s*) $\models A$.

(ii) <u>A is satisfiable in M</u>, if there is a state t in M such that $(M, t) \models A$.

(iii) <u>A</u> is valid (denoted as |=A), if it is valid in all structures.

(iv) \underline{A} is satisfiable, if there is some structure M such that A is satisfiable in M.

(v) a *formula* B *is a <u>logical consequence</u> of* A, if B is valid in any structure M, where A is valid (if $M \models A$, then $M \models B$).

Observation. A formula A is valid (is valid in M) if and only if (abr. iff) the formula $\neg A$ is not satisfiable (is not satisfiable in M).

There are many valid formulas (all propositional tautologies, ...)

We search for some algorithm that would characterize all **valid formulas** and **logic consequences** using purely syntactic means (that apply transformations of formulas only)!

Is there a FORMAL SYSTEM, that could do it?

Some examples of a FORMAL SYSTEM:

- A set of axioms + derivation rules for propositional logic.
- *Resolution rule for the 1st order logic.*

Let us identify some important valid formulas.

Our agents do know all the logical consequences of their knowledge: Suppose the agent 1 knows both A and A implies B. This means that

- both formulas A and $A \rightarrow B$ are true in all the states the agent 1 considers possible,
- **B** must be true in all the states the agent 1 considers possible this means that the agent 1 knows **B**, too.

This can be written formally as: $|=(K_i A \land K_i (A \rightarrow B)) \rightarrow K_i B$

This formula is referred to as the **Distribution Axiom** or Kripke's axiom (denoted as \mathbf{K}) because it allows to distribute the K_i operator over implication.

VZ 2009

Agents in the Kripke's structures are very strong and competent: Let us consider a structure **M** and a formula **A** valid in **M**. **Each agent** in **M** knows **A**.

If A is true in all states of the structure M, then A must be true in all states of the structure M the agent considers possible. THUS:

There holds for any structure M, if $M \models A$, then $M \models K_i A$.

This observation confirms correctness of the **Knowledge Generalization** *derivation rule "If A is given, one can derive* K_{*i*}A".

This rule is sometimes depicted in the form

Caution!

The Generalization Rule cannot be written in the form $A \rightarrow K_i A$ This formula claims ,, if A is true, then the agent i knows A ". But this is NOT a valid formula!

An agent does not have to know all facts that are true in the considered state:

In the case of muddy children a child with muddy forehead does not know this fact first. This knowledge is acquired later!

Our agents know all valid formulas, but nothing more! In other words they know only those formulas that are **true** *necessarily*.

They do not know formulas, that happen to be true in some of the worlds only (*by chance*).

Our agent does not have to know all facts that are true. But *if the agent knows something, then it holds*: $|= K_i A \rightarrow A$

This property is often referred to as the *Knowledge Axiom* or the *Truth Axiom* (denoted as **T**).

Validity of this axiom is a consequence of reflexivity of the admissibility relation describing what the agent considers possible:

If $K_i A$ is true in some world (M, s), A must hold in all states the agent *i* consideres possible – this includes (M, s), of course.

{Philosophers use this axiom to highlight the difference between **knowledge** and **belief**.}

In the case we want to describe belief of an agent, not its knowledge, it is necessary to replace the Truth Axiom $|= K_i A \rightarrow A$

by a weaker requirement that ensures consistency: $\neg K_i$ *false* This is the *Consistency Axiom*, often refered to as **D**.

VZ 2009

The next two properties describe what the agents know about their knowledge thanks to introspection. Our agents know, what they know and what they do not know:

 $\models K_i A \to K_i K_i A$ $\models \neg K_i A \to K_i \neg K_i A$

The first property is called *Positive Introspection Axiom* (often denoted as **4**),

The second one is the *Negative Introspection Axiom* (often denoted as **5**).

Both are valid in the Kripke structures where admissibily relations are equivalences. *Try to prove it!*

Formal (axiomatic) system K_n

Axioms: **A1**. All the propositional tautologies

A2. ($K_i \alpha \land K_i (\alpha \rightarrow \beta)$) $\rightarrow K_i(\beta)$

Derivation rules:

- **R1.** From the formulas α and $\alpha \rightarrow \beta$ derive β (Modus Ponens)
- **R2.** From the formula α derive $K_i \alpha$ (Knowledge Generalization Rule)

Proof of a formula φ in the formal system is a sequence of formulas δ_1 , δ_2 , ..., δ_n such that δ_n is the formula φ and for any δ_i (i < n+1) holds

- > either δ_i is an axiom of the considered formal system
- > or there are numbers j and k smaller than i such that δ_i is the result of derivation rule application on δ_j or on δ_j are δ_k .
- The formula φ is **provable in the formal system** (denoted as $\vdash \varphi$), if φ has a proof.

Properties of the formal system K_n

Axioms:

A1. All the propositional tautologies **A2.** $(K_i \alpha \land K_i (\alpha \rightarrow \beta)) \rightarrow K_i(\beta)$

Derivation rules:

R1. From the formulas α and $\alpha \rightarrow \beta$ derive β (Modus Ponens)

R2. From the formula α derive $K_i \alpha$ (Knowledge Generalisation)

What is the **relation between**

 \succ the formulas that are provable in the system K_n and

> the formulas **valid** in all the Kripke structures with *n* agents ?

Formal system is correct, if any provable formula is also valid (ie. "For any formula A there holds that if $\vdash A$ than $\models A$ "). Formal system is complete, if all valid formulas can be proven (ie. "For any formula A hold that if $\models A$ than $\vdash A$ ")

$K_n \vdash K_i (a \land \beta) \rightarrow K_i a :$

Formal proof: [Clear explicit reasoning for the considered formula *must provide a reference to one of K_n axioms* or a *precise description of the derivation rule as it is applied* to the formulas appearing earlier in the proof]

1. $(\alpha \land \beta) \rightarrow \alpha$ [Prop.tautology]

2. $K_i((\alpha \land \beta) \rightarrow \alpha)$ [KG: 1, ie. "KG is applied to the formula from the row 1] 3. $(K_i(\alpha \land \beta) \land K_i((\alpha \land \beta) \rightarrow \alpha)) \rightarrow K_i \alpha$ [K] 4. $((K_i(\alpha \land \beta) \land K_i((\alpha \land \beta) \rightarrow \alpha)) \rightarrow K_i \alpha)$ $\rightarrow (K_i((\alpha \land \beta) \rightarrow \alpha) \rightarrow (K_i(\alpha \land \beta) \rightarrow K_i \alpha))$

[Prop. tautology $((p \land q) \rightarrow r) \rightarrow (q \rightarrow (p \rightarrow r))$]

5. $K_i((\alpha \land \beta) \rightarrow \alpha) \rightarrow (K_i(\alpha \land \beta) \rightarrow K_i \alpha)$ [MP: 3,4]

6. $K_i(\boldsymbol{\alpha} \wedge \boldsymbol{\beta}) \rightarrow K_i \boldsymbol{\alpha}$ [MP: 2,5]

$\mathbf{K}_{\boldsymbol{n}} \mid - K_i(\boldsymbol{\alpha} \wedge \boldsymbol{\beta}) \rightarrow (K_i \boldsymbol{\alpha} \wedge K_i \boldsymbol{\beta})$

- 1. $\mathbf{K}_n \models K_i(\alpha \land \beta) \to K_i \alpha$ [see the former page]
- 2. $\mathbf{K}_n \models K_i(\alpha \land \beta) \rightarrow K_i \beta$ [This proof is a minor modification of that of the formula on the line 1]
- 3. $(K_i(\alpha \land \beta) \to K_i \alpha) \to ((K_i(\alpha \land \beta) \to K_i \beta) \to (K_i(\alpha \land \beta) \to (K_i \alpha \land K_i \beta)))$ $[(\rho \to \phi) \to ((\rho \to \psi) \to (\rho \to (\phi \land \psi)))$ [propositional tautology]
- 4. $(K_i(\alpha \land \beta) \to K_i\beta) \to (K_i(\alpha \land \beta) \to (K_i\alpha \land K_i\beta))$ [MP: 1,3]
- 5. $K_i(\boldsymbol{\alpha} \wedge \boldsymbol{\beta}) \rightarrow (K_i \boldsymbol{\alpha} \wedge K_i \boldsymbol{\beta})$ [MP: 2,4]

Claim 1: $\mathbf{K}_n \mid -K_i(\alpha \land \beta) \equiv K_i \alpha \land K_i \beta$

Proof:

- The implication \rightarrow has been proven above.
- The inverse implication is on the next page.

$\mathbf{K}_{\boldsymbol{n}} \models K_i \boldsymbol{\alpha} \land K_i \boldsymbol{\beta} \to K_i (\boldsymbol{\alpha} \land \boldsymbol{\beta})$

- 6. $\alpha \to (\beta \to (\alpha \land \beta))$ [výroková tautologie]
- 7. $K_i(\boldsymbol{\alpha} \to (\boldsymbol{\beta} \to (\boldsymbol{\alpha} \land \boldsymbol{\beta})))$ [KG:6]

8.
$$K_i \alpha \to (K_i (\alpha \to (\beta \to (\alpha \land \beta))) \to K_i (\beta \to (\alpha \land \beta)))$$
 [A2]

9.
$$K_i(\alpha \to (\beta \to (\alpha \land \beta))) \to (K_i \alpha \to K_i(\beta \to (\alpha \land \beta)))$$
 ["prop.modification of" 8]

- 10. $(K_i \alpha \to K_i (\beta \to (\alpha \land \beta)))$ [MP: 7,9]
- 11. $(K_i \alpha \to K_i (\beta \to (\alpha \land \beta))) \to (K_i \beta \to (K_i \alpha \to K_i (\beta \to (\alpha \land \beta)))))$ [Prop.tautology]

12.
$$K_i \boldsymbol{\beta} \to (K_i \boldsymbol{\alpha} \to K_i (\boldsymbol{\beta} \to (\boldsymbol{\alpha} \land \boldsymbol{\beta})))$$
 [MP: 10,11]

- 13. $(K_i \alpha \land K_i \beta) \rightarrow K_i (\beta \rightarrow (\alpha \land \beta))$ [,,prop.modification of "12]
- 14. $(K_i \alpha \land K_i \beta) \rightarrow (K_i \beta \land K_i (\beta \rightarrow (\alpha \land \beta)))$ [,,prop.modification of "13, see *]
- 15. $K_i \beta \land K_i (\beta \to (\alpha \land \beta)) \to K_i (\alpha \land \beta)$ [A2]
- 16. $(K_i \alpha \land K_i \beta) \rightarrow (K_i \beta \land K_i (\beta \rightarrow (\alpha \land \beta)) \rightarrow K_i (\alpha \land \beta))$ $\rightarrow ((K_i \alpha \land K_i \beta) \rightarrow K_i \beta \land K_i (\beta \rightarrow (\alpha \land \beta))) \rightarrow ((K_i \alpha \land K_i \beta) \rightarrow K_i (\alpha \land \beta)))$ [Prop.taut.]
- 17. $(K_i \beta \land K_i (\beta \to (\alpha \land \beta)) \to K_i (\alpha \land \beta)) \to ((K_i \alpha \land K_i \beta) \to (K_i \beta \land K_i (\beta \to (\alpha \land \beta)) \to K_i (\alpha \land \beta)))$ [Pr.tau]
- 18. $((K_i \alpha \land K_i \beta) \rightarrow (K_i \beta \land K_i (\beta \rightarrow (\alpha \land \beta)) \rightarrow K_i (\alpha \land \beta)))$ [MP: 15,17]
- 19. $((K_i \alpha \land K_i \beta) \to K_i \beta \land K_i (\beta \to (\alpha \land \beta))) \to ((K_i \alpha \land K_i \beta) \to K_i (\alpha \land \beta))$ [MP: 18,16]

20. $(K_i \alpha \land K_i \beta) \rightarrow K_i (\alpha \land \beta)$ [MP: 14,19] * from the assumption (A&B) \rightarrow C one can prove (A&B) \rightarrow (C \rightarrow (B \rightarrow C))

Theorem (verified during the lab work).

For all structures M with n agents where the admissibility relations are interpreted by relations that are equivalences, there holds for any formulas A, B:

(*i*)
$$M \models (K_i A \land K_i (A \rightarrow B)) \rightarrow K_i B$$

(*ii*) $je - li \quad M \models A \quad potom \quad M \models K_i A$
(*iii*) $M \models K_i A \rightarrow A$
(*iv*) $M \models K_i A \rightarrow K_i K_i A$
(*v*) $M \models \neg K_i A \rightarrow K_i \neg K_i A$

Axioms of propositional modal logics

- **1.** Propositional tautologies
- 2. Distribution Axiom (denoted as **K**) $(K_i A \wedge K_i (A \rightarrow B)) \rightarrow K_i B$
- **3.** Knowledge Axiom) (denoted as T) $K_i A \rightarrow A$
- 4. Positive Introspection Axiom (den.as 4) $K_i A \rightarrow K_i K_i A$
- 5. Negative Introspection Axiom (den.as 5) $\neg K_i A \rightarrow K_i \neg K_i A$
- 6. Consistency Axiom (den.as **D**) $\neg K_i$ false

Derivation rules:

R1. From the formulas α and $\alpha \rightarrow \beta$ derive β (Modus Ponens) **R2.** From the formula α derive $K_i \alpha$ (Knowledge Generalization)

Proof of a formula φ in the formal system **under assumption** α is a sequence of formulas $\delta_1, \delta_2, \dots, \delta_n$ such that δ_n is the formula φ and for any δ_i (i < n+1) holds

- > either δ_i is an axiom of the considered formal system or the assumption α
- > or there are numbers j and k smaller than i such that δ_i is the result of derivation rule application on δ_j or on δ_j are δ_k .
- The formula φ is **provable** in the formal system **under assumption** α (denoted as $\alpha \vdash \varphi$), if φ has a proof **under assumption** α .

Claim 1 \mathbf{K}_n , $(\phi \rightarrow \psi) \vdash K_i \phi \rightarrow K_i \psi$

(The formula $K_i \phi \to K_i \psi$ is a consequence of the assumption $(\phi \to \psi)$ in the formal system \mathbf{K}_n): $(\phi \to \psi)$ [assumption]

1. $K_i(\phi \rightarrow \psi)$ [KG ,,assumption"]

2.
$$K_i \phi \to (K_i(\phi \to \psi) \to K_i \psi)$$
 [K]

3.
$$(K_i \phi \to (K_i (\phi \to \psi) \to K_i \psi)) \to (K_i (\phi \to \psi) \to (K_i \phi \to K_i \psi))$$

[Prop-T1: $(\phi \to (\psi \to \tau)) \to (\psi \to (\phi \to \tau))$]

4.
$$K_i(\phi \to \psi) \to (K_i\phi \to K_i\psi)$$
 [MP 2,3]

5. $(K_i \phi \to K_i \psi)$ [MP 1,4]

Claim 2: Let the formulas φ , ψ be equivalent (i.e. the formula ($\varphi \rightarrow \psi$) $(\psi \rightarrow \varphi)$ is a tautology, denoted as $\varphi \equiv \psi$). There holds \mathbf{K}_n , $\varphi \equiv \psi \mid K_i \varphi \equiv K_i \psi$.

This is a direct consequence of the above statement.

VZ 2009

Let us denote by $\mathbf{M}_{n}(\Phi)$ the set of all Kripke structures over the set Φ of primitive propositions and a set of n agents. Denote that no requirements are set on the relations K_{i} in this case.

Let $\mathcal{M}_n^{rst}(\Phi)$ be the subset of $\mathcal{M}_n(\Phi)$ consisting of all the Kripke structures from where all the admissibility relations have the identified properties *rst*, namely they are:

- reflexive
- symetric
- transitive.
- (They are **equivalences**).

Theorem 1: The system K_n represents correct and complete syntactic description of all formulas that are valid in the set $\mathcal{M}_n(\Phi)$ of all Kripke struktures (K_n is an axiomatization w.r.t. $\mathcal{M}_n(\Phi)$).

Theorem 2:

Let T be the axiom $K_i A \to A$. The system $T_n = (K_n + axiom T)$ is the axiomatization w.r.t. $\mathcal{M}_n^r(\Phi)$.

Let 4 be the axiom $K_i A \to K_i K_i A$. The system $S4_n = (T_n + axiom 4)$) is the axiomatization w.r.t. $\mathcal{M}_n^{rt}(\Phi)$.

Let 5 be the axiom $\neg K_i A \rightarrow K_i \neg K_i A$. The systém $S5_n = (S4_n + axiom 5)$ is the axiomatization w.r.t. k $\mathcal{M}_n^{rts}(\Phi)$.

VZ 2009

Some more valid statements:

- c1) K2, T(Axiom 3) $\vdash \neg K_i$ false
- 1. K_i false \rightarrow false [A3]
- 2. $\neg false \rightarrow (\neg K_i false)$ [prop.modification of 1]
- 3. ¬*false* [prop.tautology]
- 4. $\neg K_i$ *false* [MP: 3,2]

c2) K2, T
$$\vdash \neg K_i \alpha \lor \neg K_i \neg K_i \alpha$$

c3) K2,
$$\mathbf{T}_{\vdash} \neg K_i(\boldsymbol{\alpha} \land \neg K_i \boldsymbol{\alpha})$$

1.
$$K_i \neg K_i \alpha \rightarrow \neg K_i \alpha$$
 (A3, Truth Axiom)

- 2. $\neg K_i \neg K_i \alpha \lor \neg K_i \alpha$ (prop.modification of \rightarrow in 1), *viz* a1
- 3. $\neg (K_i \neg K_i \alpha \land K_i \alpha)$ (prop.modification of **v** in 2)
- 4. $\neg K_i (\neg K_i \alpha \land \alpha)$ (transitivity of K_i in the formula 3), *viz* a2

Some more relations that can be proven:

- a) $(\mathbf{K}_n + \mathbf{A6}) \vdash \neg (K_i \alpha \land K_i \neg \alpha)$
- b) $(K_n + A3) \vdash A6$
- c) $\mathbf{K}_{n} \vdash K_{i} \neg (p \rightarrow K_{i}p) \equiv K_{i}(p \land \neg K_{i}p) \equiv (K_{i}p \land K_{i}(\neg K_{i}p))$
- d) It is not possible to prove $K_i \neg (p \rightarrow K_i p)$ in $(\mathbf{K}_n + \mathbf{A3})$.

$$E_G \quad C_G \quad D_G$$

Let G be a subset of $\{1, 2, ..., n\}$, E_GA holds iff every agent from G knows A. Thus

Axiom C1.
$$E_G A \iff \bigotimes_{i \in G} K_i A$$

Intuitively, **common knowledge** specifies something *"what is cristal clear to everyone*". It should be no surprise that **common knowledge has the properties** that have been described in the **Distribution Axiom**, in the **Knowledge Axiom**, and in the **Positive** and **Negative Introspection Axioms**, see the next page.

Common knowledge of two groups of agents:

If $Q \subseteq G$ then $C_G A \to C_Q A$

It can be verified that the following formulas are valid (they are true in all Kripke structures):

- (i) $(C_G A \& C_G (A \to B)) \to C_G B$
- (*ii*) $C_G A \rightarrow A$
- (*iii*) $C_G A \rightarrow C_G C_G A$
- $(iv) \neg C_G A \rightarrow C_G \neg C_G A$

The assumptions on properties of the underlying admissibility relations for all K_i are the same as in the case of reasoning about knowledge.

Distributed knowledge

charakterize knowledge the agents can acquire when ,,*all of them share all their individual knowledge*".

Even this modal operator has similar properties (axioms) as knowledge of a single agent. Let us point to some specific cases:

- Distributed knowledge in the group with a single agent is that of the agent, namely $\models D_{\{i\}}A \leftrightarrow K_iA$
- The bigger the considered group the bigger their distributed knowledge :

If
$$G \subseteq Q$$
 then $\models D_G A \to D_Q A$

VZ 2009

Task-MOL2a Could the modality be defined as a boolean function?(2 points)

Let us consider for simplicity only Kripke structures with a single agent whose knowledge is described by the modal operator **K**. We have verified the following propeties in all the corresponding Kripke structures where **K** is interpreted by equivalence

- a) there is valid the formula $K \alpha \rightarrow \alpha$ (Knowledge Axiom),
- b) but the formulas $\alpha \rightarrow K \alpha$ and $\neg K \alpha$ are not valid.

Utilize these facts to show that such a behaviour of the modal operator **K** cannot be encoded by a boolean function (ie. Truth values defined by a table).

Hint: Suppose the truth value of **K** α can be calculated from the truth value of α using a truth table for **K** e(in the same way as $\neg \alpha$ is calculated form α). Consider all possible truth tables for **K** and show that none of them grants the properties a) and b) mentioned above.

Task-MOL2b Ann and Bob (2 points)

Ann and Bob take part in a quizz. First, the organizer selects from an urn a natural number n < 10, that he writes on the forehead of one of the players and continues by writing the neighboring number (either n+1 or n-1) on the forhead of the second player. Neither Ann nor Bob knows her/his number – each sees only the other's forehead. They can take turns in announcing nothing but "I do not know my number." or "I know my number." Suppose Ann starts and she can see the symbol **6**.

- Draw the corresponding Kripke structure and describe at least 3 steps of information exchange between A and B.
- Can one of them be the first to identify her/his number?

