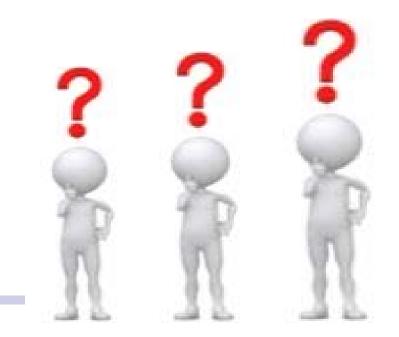
Properties of knowledge

(in the Kripke's semantics of possible worlds)



Can we ,,describe" all formulas with modalities K_1 , ..., K_n , that are ever true?

Let us consider a Kripke strukture $M = (S, \pi, K_1, ..., K_n)$ and a formula A. We define the following notions:

(i) <u>*A* is valid</u> in <u>*M*</u> (denoted as $M \models A$), if *A* is true in all the states of *M*, i.e. in any state *s* of *M* holds (*M*, *s*) $\models A$.

(ii) <u>A is satisfiable in M</u>, if there is a state t in M such that $(M, t) \models A$.

(iii) <u>A is valid</u> (denoted as |=A), if it is valid in all structures.

(iv) <u>*A is satisfiable*</u>, if there is some structure *M* such that *A* is satisfiable in *M*.

(v) a *formula* B *is a <u>logic consequence</u> of* A, if B is valid in any structure M, where A is valid (whenever $M \models A$, then $M \models B$).

Observation. A formula A is valid (is valid in M) if and only if (abr. iff) the formula $\neg A$ is not satisfiable (is not satisfiable in M).

There are many valid formulas (all propositional tautologies, ...)

We search for some algorithm that would characterize all **valid formulas** and **logic consequences** using purely syntactic means (that apply transformations of formulas only)!

Is there a FORMAL SYSTEM, that could do it?

Some examples of a FORMAL SYSTEM:

- A set of axioms + derivation rules for propositional logic.
- *Resolution rule for the 1st order logic.*

Let us identify some important valid formulas.

Our agents do know all the logical consequences of their knowledge: Suppose the agent 1 knows both *A* and *A* implies *B*. This means that

- both formulas A and $A \rightarrow B$ are true in all the states the agent 1 considers possible,
- **B** must be true in all the states the agent 1 considers possible this means that the agent 1 knows **B**, too.

This can be written formally as: $\models (K_i A \land K_i (A \rightarrow B)) \rightarrow K_i B$

This formula is referred to as the **Distribution Axiom** or Kripke's axiom (denoted as \mathbf{K}) because it allows to distribute the K_i operator over implication.

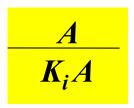
Agents in the Kripke's structures are very strong and competent: Let us consider a structure M and a formula A valid in M. Each agent in M knows A.

If A is true in all states of the structure M, then A must be true in all states of the structure M the agent considers possible. THUS:

There holds for any structure M, if M = A, then $M = K_i A$.

This observation confirms correctness of the **Knowledge Generalization** derivation rule *"If A is given, one can derive* $K_i A$ " for any *i*.

This rule is sometimes depicted in the form



Caution!

The Generalization Rule cannot be written in the form $A \rightarrow K_i A$ This formula claims ,, if A is true, then the agent i knows A ". But this is NOT a valid formula!

An agent does not have to know all facts that are true in the considered state:

In the case of muddy children a child with muddy forehead does not know this fact first. This knowledge is acquired later!

Our agents know all the **formulas valid** in the considered structure, but nothing more! In other words they know only those formulas that are **true** *necessarily*.

They do not have to know formulas, that happen to be true in some of the worlds only (e.g. *by chance*).

Our agent does not have to know all facts that are true. But *if the agent knows something, then it holds*: $|= K_i A \rightarrow A$

This property is often referred to as the *Knowledge Axiom* or the *Truth Axiom* (denoted as **T**).

Validity of this axiom is a consequence of reflexivity of the admissibility relation describing what the agent considers possible:

If $K_i A$ is true in some world (M, s), A must hold in all states the agent *i* considers possible – this includes (M, s), since the considered admissibility relation is assumed to be reflexive.

{Philosophers use this axiom to highlight the difference between **knowledge** and **belief**.}

In the case we want to describe belief of an agent instead of its knowledge, it is necessary to replace the *Truth Axiom*

$$= K_i A \rightarrow A$$

by a weaker requirement that ensures consistency, namely

 $\neg K_i$ false

This is the *Consistency Axiom*, often refered to as **D**.

The next two properties describe what the agents know about their knowledge thanks to introspection. Our agents know, what they know and what they do not know:

 $\mid = K_i A \to K_i K_i A$ $\mid = \neg K_i A \to K_i \neg K_i A$

The first property is called *Positive Introspection Axiom* (often denoted as 4),

The second one is the *Negative Introspection Axiom* (often denoted as **5**).

Both are valid in the Kripke structures where admissibily relations are equivalences. *Try to prove it!*

Formal (axiomatic) system K_n

Axioms: A1. All the propositional tautologies

A2. $(K_i \alpha \land K_i (\alpha \rightarrow \beta)) \rightarrow K_i(\beta)$

Derivation rules:

- **R1**. From the formulas α and $\alpha \rightarrow \beta$ derive β (Modus Ponens)
- **R2**. From the formula α derive $K_i \alpha$ (Knowledge Generalization Rule)

Proof of a formula φ in a formal system is a sequence of formulas δ_1 , δ_2 , ..., δ_n such that δ_n is the formula φ and for any δ_i (i < n+1) holds

- > either δ_i is an axiom of the considered formal system
- > or there are numbers j and k smaller than i such that δ_i is the result of derivation rule application on δ_j or on δ_j are δ_k .

The formula φ is **provable in the formal system** (denoted as $\vdash \varphi$), if φ has a proof in this system.

Properties of the formal system K_n

Axioms: **A1.** All the propositional tautologies **A2.** $(K_i \alpha \land K_i (\alpha \rightarrow \beta)) \rightarrow K_i(\beta)$

Derivation rules:

R1. From the formulas α and $\alpha \rightarrow \beta$ derive β (Modus Ponens)

R2. From the formula α derive $K_i \alpha$ (Knowledge Generalisation)

What is the **relation between**

 \succ the formulas that are provable in the system K_n and

> the formulas valid in all the Kripke structures with *n* agents ?

Formal system is **correct**, if any provable formula is also valid (ie. ,,For any formula *A* there holds that if $\vdash A$ than $\models A$ "). Formal system is **complete**, if all valid formulas can be proven (ie. ,,For any formula *A* there holds that if $\models A$ than $\vdash A$ ")

$K_n \vdash K_i (a \land \beta) \rightarrow K_i a$:

Formal proof – sequence of formulas: [Each formula in the sequence *must provide a reference to one of* K_n *axioms* or a *precise description of the derivation rule as it is applied* to the formulas appearing earlier in the proof].

1. $(\alpha \land \beta) \rightarrow \alpha$ [Prop.tautology] 2. $K_i((\alpha \land \beta) \rightarrow \alpha)$ [KG: 1, ie. "KG is applied to the formula from the row 1] 3. $(K_i(\alpha \land \beta) \land K_i((\alpha \land \beta) \rightarrow \alpha)) \rightarrow K_i \alpha$ [K_n distribution axiom] 4. $((K_i(\alpha \land \beta) \land K_i((\alpha \land \beta) \rightarrow \alpha)) \rightarrow K_i \alpha)$ $\rightarrow (K_i((\alpha \land \beta) \rightarrow \alpha) \rightarrow (K_i(\alpha \land \beta) \rightarrow K_i \alpha))$ [Prop. tautology $((p \land q) \rightarrow r) \rightarrow (q \rightarrow (p \rightarrow r))$]

5. $K_i((\alpha \land \beta) \rightarrow \alpha) \rightarrow (K_i(\alpha \land \beta) \rightarrow K_i \alpha)$ [MP: 3,4] 6. $K_i(\alpha \land \beta) \rightarrow K_i \alpha$ [MP: 2,5]

$\mathbf{K}_{\boldsymbol{n}} \mid -K_i(\boldsymbol{\alpha} \wedge \boldsymbol{\beta}) \rightarrow (K_i \boldsymbol{\alpha} \wedge K_i \boldsymbol{\beta})$

1.
$$\mathbf{K}_{n} \models K_{i}(\alpha \land \beta) \rightarrow K_{i} \alpha$$
 [see the former page]
2. $\mathbf{K}_{n} \models K_{i}(\alpha \land \beta) \rightarrow K_{i} \beta$ [This proof is a minor modification of that of the formula on the line 1]
3. $(K_{i}(\alpha \land \beta) \rightarrow K_{i} \alpha) \rightarrow ((K_{i}(\alpha \land \beta) \rightarrow K_{i} \beta) \rightarrow (K_{i}(\alpha \land \beta) \rightarrow (K_{i} \alpha \land K_{i} \beta)))$
 $[(\rho \rightarrow \varphi) \rightarrow ((\rho \rightarrow \psi) \rightarrow (\rho \rightarrow (\varphi \land \psi)))$ [propositional tautology]
4. $(K_{i}(\alpha \land \beta) \rightarrow K_{i} \beta) \rightarrow (K_{i}(\alpha \land \beta) \rightarrow (K_{i} \alpha \land K_{i} \beta))$ [MP: 1,3]
5. $K_{i}(\alpha \land \beta) \rightarrow (K_{i} \alpha \land K_{i} \beta)$ [MP: 2,4]

Claim 1: $\mathbf{K}_n \mid -K_i(\boldsymbol{\alpha} \wedge \boldsymbol{\beta}) \equiv K_i \boldsymbol{\alpha} \wedge K_i \boldsymbol{\beta}$

Proof:

- The implication \rightarrow has been proven above.
- The inverse implication is on the next page.

$$\begin{aligned} \mathbf{K}_{n} \left[-K_{i} \alpha \wedge K_{i} \beta \rightarrow K_{i} \left(\alpha \wedge \beta \right) \right] \\ & \left[\text{prop.tautology} \right] \\ & \left[\text{for } (\mathbf{a} \rightarrow (\beta \rightarrow (\alpha \wedge \beta)) \right] \right] \\ & \left[\text{for } (\mathbf{a} \rightarrow (\beta \rightarrow (\alpha \wedge \beta)) \right] \\ & \left[\text{for } (\mathbf{a} \rightarrow (\beta \rightarrow (\alpha \wedge \beta)) \right] \right] \\ & \left[\text{for } (\mathbf{a} \rightarrow (\beta \rightarrow (\alpha \wedge \beta)) \right] \right] \\ & \left[\text{for } (\mathbf{a} \rightarrow (\beta \rightarrow (\alpha \wedge \beta)) \right] \\ & \left[\text{for } (\mathbf{a} \rightarrow (\beta \rightarrow (\alpha \wedge \beta)) \right] \right] \\ & \left[\text{for } (\mathbf{a} \rightarrow (\beta \rightarrow (\alpha \wedge \beta)) \right] \\ & \left[\text{for } (\mathbf{a} \rightarrow (\beta \rightarrow (\alpha \wedge \beta)) \right] \right] \\ & \left[\text{for } (\mathbf{a} \rightarrow (\beta \rightarrow (\alpha \wedge \beta)) \right] \\ & \left[\text{for } (\mathbf{a} \rightarrow (\beta \rightarrow (\alpha \wedge \beta)) \right] \\ & \left[\text{for } (\mathbf{a} \rightarrow (\beta \rightarrow (\alpha \wedge \beta)) \right] \right] \\ & \left[(K_{i} \alpha \rightarrow K_{i} (\beta \rightarrow (\alpha \wedge \beta)) \right] \\ & \left[(K_{i} \alpha \rightarrow K_{i} (\beta \rightarrow (\alpha \wedge \beta)) \right] \\ & \left[(K_{i} \alpha \wedge K_{i} \beta \rightarrow K_{i} (\beta \rightarrow (\alpha \wedge \beta)) \right] \\ & \left[(K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \beta \wedge K_{i} (\beta \rightarrow (\alpha \wedge \beta))) \right] \\ & \left[(K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \beta \wedge K_{i} (\beta \rightarrow (\alpha \wedge \beta)) \rightarrow K_{i} (\alpha \wedge \beta)) \right] \\ & \left[((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \beta \wedge K_{i} (\beta \rightarrow (\alpha \wedge \beta)) \rightarrow K_{i} (\alpha \wedge \beta)) \right] \\ & \left[((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \beta \wedge K_{i} (\beta \rightarrow (\alpha \wedge \beta)) \rightarrow K_{i} (\alpha \wedge \beta)) \right] \\ & \left[((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \beta \wedge K_{i} (\beta \rightarrow (\alpha \wedge \beta)) \rightarrow K_{i} (\alpha \wedge \beta)) \right] \\ & \left[((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \beta \wedge K_{i} (\beta \rightarrow (\alpha \wedge \beta)) \rightarrow K_{i} (\alpha \wedge \beta)) \right] \\ & \left[((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \beta \wedge K_{i} (\beta \rightarrow (\alpha \wedge \beta)) \rightarrow (K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \alpha \wedge \beta)) \rightarrow (K_{i} (\alpha \wedge \beta)) \right] \\ & \left[((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \beta \wedge K_{i} (\beta \rightarrow (\alpha \wedge \beta)) \rightarrow (K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \alpha \wedge \beta)) \rightarrow (K_{i} (\alpha \wedge \beta)) \rightarrow (K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \alpha \wedge \beta)) \right] \\ & \left[((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \beta \wedge K_{i} (\beta \rightarrow (\alpha \wedge \beta)) \rightarrow (K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \alpha \wedge \beta)) \rightarrow (K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \alpha \wedge \beta)) \right] \\ & \left[((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \beta \wedge K_{i} (\beta \rightarrow (\alpha \wedge \beta))) \rightarrow ((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \alpha \wedge \beta)) \rightarrow ((K_{i} \alpha \wedge \beta)) \rightarrow ((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \alpha \wedge \beta)) \rightarrow ((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \alpha \wedge \beta)) \rightarrow ((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \alpha \wedge \beta)) \rightarrow ((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \alpha \wedge \beta)) \rightarrow ((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \alpha \wedge \beta)) \rightarrow ((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \alpha \wedge \beta)) \rightarrow ((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \alpha \wedge \beta)) \rightarrow ((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \alpha \wedge \beta)) \rightarrow ((K_{i} \alpha \wedge K_{i} \beta \rightarrow (K_{i} \alpha \wedge \beta)) \rightarrow ((K_{i} \alpha \wedge K_{i} \beta$$

Theorem (see the lab work presentation).

For all structures M with n agents where the admissibility relations are interpreted by relations that are equivalences, there holds for any formulas A, B:

(i)
$$M \models (K_i A \land K_i (A \rightarrow B)) \rightarrow K_i B$$

(ii) if $M \models A$ than $M \models K_i A$
(iii) $M \models K_i A \rightarrow A$ reflexivity
(iv) $M \models K_i A \rightarrow K_i K_i A$ transitivity
(v) $M \models \neg K_i A \rightarrow K_i \neg K_i A$ symmetric+transitive r

Axioms of propositional modal logics

s+t

- 1. Propositional tautologies
- 2. Distribution Axiom (denoted as K) $(K_i A \wedge K_i (A \rightarrow B)) \rightarrow K_i B$
- **3.** Knowledge Axiom (denoted as T) $K_i A \rightarrow A$
- 4. Positive Introspection Axiom (den.as 4) $K_i A \rightarrow K_i K_i A$
- 5. Negative Introspection Axiom (den.as 5) $\neg K_i A \rightarrow K_i \neg K_i A$
- 6. Consistency Axiom (den.as **D**) $\neg K_i$ false

Derivation rules:

R1. From the formulas α and $\alpha \rightarrow \beta$ derive β (Modus Ponens) **R2.** From the formula α derive $K_i \alpha$ (Knowledge Generalization) **Proof of a formula** φ in the formal system **under assumption** α is a sequence of formulas $\delta_1, \delta_2, \dots, \delta_n$ such that δ_n is the formula φ and for any δ_i (i < n+1) holds

- > either δ_i is an axiom of the considered formal system or the assumption α
- > or there are numbers j and k smaller than i such that δ_i is the result of derivation rule application on δ_j or on δ_j are δ_k .

The formula φ is **provable** in the formal system **under assumption** α (denoted as $\alpha \vdash \varphi$), if φ has a proof **under assumption** α .

Claim 1 \mathbf{K}_{μ} , $(\phi \rightarrow \psi) \vdash K_i \phi \rightarrow K_i \psi$

(The formula $K_i \phi \to K_i \psi$ is a consequence of the assumption $(\phi \to \psi)$ in the formal system \mathbf{K}_{μ}) : $(\phi \rightarrow \psi)$ [assumption]

1. $K_i(\phi \rightarrow \psi)$ [KG ,,assumption"] 2. $K_i \phi \rightarrow (K_i (\phi \rightarrow \psi) \rightarrow K_i \psi)$ [distribution axiom **K**] $(K_i \phi \to (K_i (\phi \to \psi) \to K_i \psi)) \to (K_i (\phi \to \psi) \to (K_i \phi \to K_i \psi))$ 3 [Prop-T1: $(\phi \rightarrow (\psi \rightarrow \tau)) \rightarrow (\psi \rightarrow (\phi \rightarrow \tau))$] $K_i(\phi \to \psi) \to (K_i\phi \to K_i\psi)$ [MP 2.3] 4. 5. $(K_i \phi \rightarrow K_i \psi)$ [MP 1.4]

Claim 2: Let the formulas φ , ψ be equivalent (i.e. the formula ($\varphi \rightarrow \psi$) $(\psi \rightarrow \varphi)$ is a tautology, denoted as $\varphi \equiv \psi$). There holds \mathbf{K}_{μ} , $\varphi \equiv \psi \mid -K_{i} \varphi \equiv K_{i} \psi$.

This is a direct consequence of the above statement.

Let us denote by $M_n(\Phi)$ the set of all Kripke structures over the set Φ of primitive propositions and a set of n agents. Denote that no requirements are set on the relations K_i in this case.

Let $\mathcal{M}_n^{rst}(\Phi)$ be the subset of $\mathcal{M}_n(\Phi)$ consisting of all the Kripke structures from where all the admissibility relations have the identified properties *rst*, namely they are:

- reflexive
- symetric
- transitive.

(ie. The considered admissibility relationsare equivalences).

Theorem 1: The system K_n represents correct and complete syntactic description of all formulas that are valid in the set $\mathcal{M}_n(\Phi)$ of all Kripke struktures (K_n is an axiomatization w.r.t. $\mathcal{M}_n(\Phi)$).

Theorem 2:

- Let T be the axiom $K_i A \to A$. The system $\mathbf{T}_n = (\mathbf{K}_n + \operatorname{axiom} \mathbf{T})$ is the axiomatization w.r.t. $\mathbf{M}_n^r(\mathbf{\Phi})$.
- Let 4 be the axiom $K_i A \to K_i K_i A$. The system $S4_n = (T_n + axiom 4)$) is the axiomatization w.r.t. $M_n^{rt}(\Phi)$.
- Let 5 be the axiom $\neg K_i A \rightarrow K_i \neg K_i A$. The systém $S_{5_n} = (S_{4_n} + axiom 5)$ is the axiomatization w.r.t. k $M_n^{rts}(\Phi)$.

Some more valid statements:

c1) K_n , T(Axiom 3: $K_i a \rightarrow a$) $\vdash \neg K_i$ false 1. K_i false \rightarrow false [A3] 2. \neg false $\rightarrow (\neg K_i$ false) [prop.modification of 1] 3. \neg false [prop.tautology] 4. $\neg K_i$ false [MP: 3,2]

c2)
$$\mathbf{K}_{\mathbf{n}}, \mathbf{T} \vdash \neg K_i \boldsymbol{\alpha} \vee \neg K_i \neg K_i \boldsymbol{\alpha}$$

c3)
$$\mathbf{K_n}, \mathbf{T} \vdash \neg K_i(\alpha \land \neg K_i \alpha)$$

1. $K_i \neg K_i \alpha \rightarrow \neg K_i \alpha$ [A3, Truth Axiom]
2. $\neg K_i \neg K_i \alpha \lor \neg K_i \alpha$ [prop.modification of \rightarrow in 1], viz a1
3. $\neg (K_i \neg K_i \alpha \land K_i \alpha)$ [prop.modification of \lor in 2]
4. $\neg K_i(\neg K_i \alpha \land \alpha)$ [transitivity of K_i in the formula 3], viz a2

Some more relations that can be proven:

- a) $(\mathbf{K}_n + \mathbf{A6}) \vdash \neg (K_i \alpha \land K_i \neg \alpha)$
- b) $(K_n + A3) \vdash A6$
- c) $\mathbf{K}_n \vdash K_i \neg (\mathbf{p} \rightarrow K_i \mathbf{p}) \equiv K_i (\mathbf{p} \land \neg K_i \mathbf{p}) \equiv (K_i \mathbf{p} \land K_i (\neg K_i \mathbf{p}))$
- d) It is not possible to prove $K_i \neg (p \rightarrow K_i p)$ in $(K_n + A3)$.

$$E_G \quad C_G \quad D_G$$

Let G be a subset of $\{1, 2, ..., n\}$, E_GA holds iff every agent from G knows A. Thus

Axiom C1.
$$E_G A \Leftrightarrow \bigotimes_{i \in G} K_i A$$

Intuitively, **common knowledge** specifies something *"what is crystal clear to everyone*". It should be no surprise that **common knowledge has the properties** that have been described in the **Distribution Axiom**, in the **Knowledge Axiom**, and in the **Positive** and **Negative Introspection Axioms**, see the next page.

Common knowledge of two groups of agents:

If $Q \subseteq G$ then $C_{Q}A \to C_{Q}A$

It can be verified that the following formulas are valid (they are true in all Kripke structures):

- (i) $(C_G A \& C_G (A \to B)) \to C_G B$
- (*ii*) $C_G A \rightarrow A$
- $(iii) \quad C_G A \to C_G C_G A$
- $(iv) \neg C_G A \rightarrow C_G \neg C_G A$

The assumptions on properties of the underlying admissibility relations for all K_i are the same as in the case of reasoning about knowledge.

Distributed knowledge

charakterize knowledge the agents can acquire when ,,*all of them share all their individual knowledge*".

Even this modal operator has similar properties (axioms) as knowledge of a single agent. Let us point to some specific cases:

- Distributed knowledge in the group with a single agent is that of the agent, namely $\models D_{\{i\}}A \leftrightarrow K_iA$
- The bigger the considered group the bigger their distributed knowledge :

If
$$Q \subseteq G$$
 then $\models D_Q A \to D_G A$

Task7 Could the modality be defined as a boolean function?(2 points)

Let us consider for simplicity only Kripke structures with a single agent whose knowledge is described by the modal operator **K**. We know that in all the corresponding Kripke structures where **K** is interpreted by equivalence there holds for any formula α

- a) the formula $K \alpha \rightarrow \alpha$ (Knowledge Axiom) is valid ,
- b) but the formulas $\alpha \rightarrow K \alpha$ and $\neg K \alpha$ are not valid.

Utilize these facts to show that such a behaviour of the modal operator \mathbf{K} cannot be encoded by any boolean function (ie. Truth values defined by a table).

Hint: Suppose the truth value of $K \alpha$ can be calculated from the truth value of α using a truth table for K (in the same way as $\neg \alpha$ is calculated form α). Consider all possible truth tables for Kand show that none of them grants the properties a) and b) mentioned above.

Task 8 Math puzzle (1 point)

X and **Y** are two different whole numbers greater than 1. Their sum is not greater than 100, and **Y** is greater than **X**.

S and **P** are two mathematicians (and consequently perfect logicians); **S** knows the sum **X** + **Y** and **P** knows the product **X** * **Y**. Both **S** and **P** know nothing about **X** and **Y** but the facts listed in this paragraph. The following conversation occurs:

- **S** says "**P** does not know **X** and **Y**."
- P says "Now I know X and Y."
- **S** says "Now I also know **X** and **Y**."

Can the input of X=4 and Y=13 result in this conversation?

Task 9 Ann and Bob (2 points)

Ann and Bob take part in a quizz. First, the organizer selects from an urn a natural number n < 10, that he writes on the forehead of one of the players and continues by writing the neighboring number (either n+1 or n-1) on the forhead of the second player. Neither Ann nor Bob knows her/his number – each sees only the other's forehead. They can take turns in announcing nothing but *"I do not know my number."* or *"I know my number."* Suppose Ann starts and she can see the symbol 5.

- Who will be the first to identify her/his number?
- Demonstrate your conclusion about the winner using the corresponding Kripke structure and its modification during information exchange between A and B.