Properties of knowledge

(in the Kripke's semantics of possible worlds)

Can we „describe" all formulas with modalities $K_{1}, . ., K_{n}$, that are ever true?
Let us consider a Kripke strukture $M=\left(S, \pi, K_{l}, \ldots, K_{n}\right)$ and a formula \boldsymbol{A}. We define the following notions:
 \boldsymbol{M}, ie. in any state \boldsymbol{s} of \boldsymbol{M} holds $(M, s) \mid=\boldsymbol{A}$.
(ii) $\underline{\boldsymbol{A} \text { is satisfiable in } \boldsymbol{M}}$, if there is a state \boldsymbol{t} in \boldsymbol{M} such that $(\boldsymbol{M}, \boldsymbol{t}) \mid=\boldsymbol{A}$.

(iv) \boldsymbol{A} is satisfiable, if there is some structure \boldsymbol{M} such that \boldsymbol{A} is satisfiable in \boldsymbol{M}.
(v) a formula \boldsymbol{B} is a logic consequence of \boldsymbol{A}, if \boldsymbol{B} is valid in any structure \boldsymbol{M}, where \boldsymbol{A} is valid (whenever $\boldsymbol{M} \mid=\boldsymbol{A}$, then $\boldsymbol{M} \mid=\boldsymbol{B}$).

Observation. A formula \boldsymbol{A} is valid (is valid in M) if and only if (abr. iff) the formula $\neg \boldsymbol{A}$ is not satisfiable (is not satisfiable in M).

There are many valid formulas (all propositional tautologies, ...)
We search for some algorithm that would characterize all valid formulas and logic consequences using purely syntactic means (that apply transformations of formulas only)!

Is there a FORMAL SYSTEM, that could do it?
Some examples of a FORMAL SYSTEM:

- A set of axioms + derivation rules for propositional logic.
- Resolution rule for the $1^{\text {st }}$ order logic.

Let us identify some important valid formulas.

Our agents do know all the logical consequences of their knowledge: Suppose the agent 1 knows both \boldsymbol{A} and \boldsymbol{A} implies \boldsymbol{B}. This means that

- both formulas \boldsymbol{A} and $A \rightarrow B$ are true in all the states the agent 1 considers possible,
- \boldsymbol{B} must be true in all the states the agent 1 considers possible - this means that the agent 1 knows \boldsymbol{B}, too.

This can be written formally as: $\mathrm{I}=\left(K_{i} A \wedge K_{i}(A \rightarrow B)\right) \rightarrow K_{i} B$
This formula is referred to as the Distribution Axiom or Kripke's axiom (denoted as \mathbf{K}) because it allows to distribute the $\boldsymbol{K}_{\mathrm{i}}$ operator over implication.

> Agents in the Kripke's structures are very strong and competent: Let us consider a structure \boldsymbol{M} and a formula \boldsymbol{A} valid in \boldsymbol{M}. Each agent in \boldsymbol{M} knows \boldsymbol{A}.

If \boldsymbol{A} is true in all states of the structure \boldsymbol{M}, then \boldsymbol{A} must be true in all states of the structure \boldsymbol{M} the agent considers possible. THUS:

There holds for any structure \boldsymbol{M},, if $\boldsymbol{M}=\boldsymbol{A}$, then $\boldsymbol{M}=\boldsymbol{K}_{\boldsymbol{i}} \boldsymbol{A}^{\text {" }}$
This observation confirms correctness of the Knowledge Generalization derivation rule, If \boldsymbol{A} is given, one can derive $\boldsymbol{K}_{i} \boldsymbol{A}$ " for any i.

This rule is sometimes depicted in the form

Caution!

The Generalization Rule cannot be written in the form $A \rightarrow K_{i} A$
This formula claims ,,if \boldsymbol{A} is true, then the agent i knows \boldsymbol{A} ". But this is NOT a valid formula!

An agent does not have to know all facts that are true in the considered state:

In the case of muddy children a child with muddy forehead does not know this fact first. This knowledge is acquired later!

Our agents know all formulas valid in the considered structure, but nothing more! In other words they know only those formulas that are true necessarily.

They do not know formulas, that happen to be true in some of the worlds only (by chance).

Our agent does not have to know all facts that are true. But if the agent knows something, then it holds:

$$
I=K_{i} A \rightarrow A
$$

This property is often referred to as the Knowledge Axiom or the Truth Axiom (denoted as \mathbf{T}).

Validity of this axiom is a consequence of reflexivity of the admissibility relation describing what the agent considers possible:

If $\boldsymbol{K}_{\boldsymbol{i}} \boldsymbol{A}$ is true in some world (M, s), \boldsymbol{A} must hold in all states the agent \boldsymbol{i} considers possible - this includes (M, s), since the considered admissibility relation is assumed to be reflexive.
\{Philosophers use this axiom to highlight the difference between knowledge and belief.\}

In the case we want to describe belief of an agent, not its knowledge, it is necessary to replace the Truth Axiom

$$
\mathrm{I}=K_{i} A \rightarrow A
$$

by a weaker requirement that ensures consistency: $\neg K_{i}$ false
This is the Consistency Axiom, often referred to as D.

The next two properties describe what the agents know about their knowledge thanks to introspection. Our agents know, what they know and what they do not know:

$$
\begin{aligned}
& \mathrm{I}=K_{i} A \rightarrow K_{i} K_{i} A \\
& \mathrm{I}=\neg K_{i} A \rightarrow K_{i} \neg K_{i} A
\end{aligned}
$$

The first property is called Positive Introspection Axiom (often denoted as 4),

The second one is the Negative Introspection Axiom (often denoted as 5).

Both are valid in the Kripke structures where admissibily relations are equivalences. Try to prove it!

Formal (axiomatic) system K_{n}

Axioms: A1. All the propositional tautologies
A2. $\left(K_{i} \alpha_{\wedge} K_{i}(\alpha \rightarrow \beta)\right) \rightarrow K_{i}(\beta)$
Derivation rules:
R1. From the formulas α and $\alpha \rightarrow \beta$ derive β (Modus Ponens)
R2. From the formula α derive $K_{i} \alpha$ (Knowledge Generalization Rule)
Proof of a formula φ in a formal system is a sequence of formulas δ_{1}, δ_{2},
\ldots, δ_{n} such that δ_{n} is the formula φ and for any $\delta_{i}(\boldsymbol{i}<\boldsymbol{n}+1)$ holds
$>$ either δ_{i} is an axiom of the considered formal system

- or there are numbers \boldsymbol{j} and \boldsymbol{k} smaller than \boldsymbol{i} such that δ_{i} is the result of derivation rule application on δ_{j} or on δ_{j} are δ_{k}.
The formula φ is provable in the formal system (denoted as $\vdash \varphi$), if φ has a proof in this system.

Properties of the formal system K_{n}

Axioms:
A1. All the propositional tautologies
A2. $\left(K_{i} \alpha_{\wedge} K_{i}(\alpha \rightarrow \beta)\right) \rightarrow K_{i}(\beta)$
Derivation rules:
R1. From the formulas α and $\alpha \rightarrow \beta$ derive β (Modus Ponens)
R2. From the formula α derive $K_{i} \alpha$ (Knowledge Generalisation)
What is the relation between
$>$ the formulas that are provable in the system and
$>$ the formulas valid in all the Kripke structures with \boldsymbol{n} agents?

Formal system is correct, if any provable formula is also valid (ie. „For any formula A there holds that if $\vdash \mathrm{A}$ thanl $=A$ ").
Formal system is complete, if all valid formulas can be proven (ie. "For any formula A hold that if $l=A$ than $\vdash A^{*}$)

$K_{n} \vdash K_{i}\left(a_{\wedge} \beta\right) \rightarrow K_{i} a:$

Formal proof - sequence of formulas: [Each formula in the sequence must provide a reference to one of $\mathbf{K}_{\boldsymbol{n}}$ axioms or a precise description of the derivation rule as it is applied to the formulas appearing earlier in the proof].

1. $\left(\alpha_{\wedge} \beta\right) \rightarrow \alpha$
[Prop.tautology]
2. $K_{i}((\boldsymbol{\alpha} \wedge \boldsymbol{\beta}) \rightarrow \boldsymbol{\alpha}) \quad$ [KG: 1, ie. "KG is applied to the formula from the row 1$]$
3. $\left(K_{i}(\boldsymbol{\alpha} \wedge \boldsymbol{\beta}) \wedge K_{i}\left(\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right) \rightarrow \boldsymbol{\alpha}\right)\right) \rightarrow K_{i} \boldsymbol{\alpha} \quad\left[\mathbf{K}_{\boldsymbol{n}}\right.$ distribution axiom $]$
4. $\left(\left(K_{i}(\boldsymbol{\alpha} \wedge \boldsymbol{\beta}) \wedge K_{i}((\boldsymbol{\alpha} \wedge \boldsymbol{\beta}) \rightarrow \boldsymbol{\alpha})\right) \rightarrow K_{i} \boldsymbol{\alpha}\right)$

$$
\rightarrow\left(K_{i}\left(\left(\alpha_{\wedge} \boldsymbol{\beta}\right) \rightarrow \boldsymbol{\alpha}\right) \rightarrow\left(K_{i}\left(\alpha_{\wedge} \boldsymbol{\beta}\right) \rightarrow K_{i} \boldsymbol{\alpha}\right)\right)
$$

[Prop. tautology $\left(\left(\boldsymbol{p}_{\wedge} \boldsymbol{q}\right) \rightarrow \boldsymbol{r}\right) \rightarrow(\boldsymbol{q} \rightarrow(\boldsymbol{p} \rightarrow \boldsymbol{r}))$]
5. $K_{i}((\boldsymbol{\alpha} \wedge \boldsymbol{\beta}) \rightarrow \boldsymbol{\alpha}) \rightarrow\left(K_{i}(\boldsymbol{\alpha} \wedge \boldsymbol{\beta}) \rightarrow K_{i} \boldsymbol{\alpha}\right) \quad[\mathrm{MP:} \mathrm{3,4]}$
6. $K_{i}(\boldsymbol{\alpha} \wedge \boldsymbol{\beta}) \rightarrow K_{i} \boldsymbol{\alpha}$
[MP: 2,5]

1. $\quad \mathbf{K}_{n} \mid-K_{i}\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right) \rightarrow K_{i} \boldsymbol{\alpha}$
[see the former page]
2. $\quad \mathbf{K}_{n} \mid-K_{i}\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right) \rightarrow K_{i} \boldsymbol{\beta} \quad$ [This proof is a minor modification of that of the formula on the line 1]
3. $\quad\left(K_{i}\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right) \rightarrow K_{i} \boldsymbol{\alpha}\right) \rightarrow\left(\left(K_{i}\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right) \rightarrow K_{i} \boldsymbol{\beta}\right) \rightarrow\left(K_{i}\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right) \rightarrow\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \boldsymbol{\beta}\right)\right)\right)$
$[(\rho \rightarrow \varphi) \rightarrow((\rho \rightarrow \psi) \rightarrow(\rho \rightarrow(\varphi, \psi))) \quad$ [propositional tautology]
4. $\quad\left(K_{i}\left(\alpha_{\wedge} \boldsymbol{\beta}\right) \rightarrow K_{i} \boldsymbol{\beta}\right) \rightarrow\left(K_{i}\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right) \rightarrow\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \boldsymbol{\beta}\right)\right)$
[MP: 1,3]
$K_{i}\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right) \rightarrow\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \boldsymbol{\beta}\right)$
[MP: 2,4]

Claim 1: $\mathbf{K}_{n} \mid-K_{i}\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right) \equiv K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \boldsymbol{\beta}$

Proof:
The implication \rightarrow has been proven above.
The inverse implication is on the next page.
6. $\quad \alpha \rightarrow\left(\beta \rightarrow\left(\alpha_{\wedge} \beta\right)\right)$
7. $\quad K_{i}\left(\alpha \rightarrow\left(\beta \rightarrow\left(\alpha_{\wedge} \boldsymbol{\beta}\right)\right)\right)$
8. $\quad K_{i} \boldsymbol{\alpha} \rightarrow\left(K_{i}\left(\boldsymbol{\alpha} \rightarrow\left(\boldsymbol{\beta} \rightarrow\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right)\right) \rightarrow K_{i}\left(\boldsymbol{\beta} \rightarrow\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right)\right)$
9. $\quad K_{i}\left(\boldsymbol{\alpha} \rightarrow\left(\boldsymbol{\beta} \rightarrow\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right)\right) \rightarrow\left(K_{i} \boldsymbol{\alpha} \rightarrow K_{i}\left(\boldsymbol{\beta} \rightarrow\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right)\right)$
10. $\quad\left(K_{i} \boldsymbol{\alpha} \rightarrow K_{i}(\boldsymbol{\beta} \rightarrow(\boldsymbol{\alpha} \wedge \boldsymbol{\beta}))\right)$
11. $\quad\left(K_{i} \boldsymbol{\alpha} \rightarrow K_{i}\left(\boldsymbol{\beta} \rightarrow\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right)\right) \rightarrow\left(K_{i} \boldsymbol{\beta} \rightarrow\left(K_{i} \boldsymbol{\alpha} \rightarrow K_{i}\left(\boldsymbol{\beta} \rightarrow\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right)\right)\right)$
[Prop.tautology]
12. $\quad K_{i} \boldsymbol{\beta} \rightarrow\left(K_{i} \boldsymbol{\alpha} \rightarrow K_{i}\left(\boldsymbol{\beta} \rightarrow\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right)\right)$
[MP 11,10]
13. $\quad\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \boldsymbol{\beta}\right) \rightarrow K_{i}\left(\boldsymbol{\beta} \rightarrow\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right)$
[,,prop.modification of" 12]
14. $\quad\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \boldsymbol{\beta}\right) \rightarrow\left(K_{i} \boldsymbol{\beta} \wedge K_{i}\left(\boldsymbol{\beta} \rightarrow\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right)\right)$
[,"prop.modification of" 13 , see *]
15. $\quad K_{i} \boldsymbol{\beta} \wedge K_{i}(\boldsymbol{\beta} \rightarrow(\boldsymbol{\alpha} \wedge \boldsymbol{\beta})) \rightarrow K_{i}(\boldsymbol{\alpha} \wedge \boldsymbol{\beta})$
[prop.tautology]

[KG:6]

[distribution axiom A2]
[,"prop.modification of" 8]
[MP: 9,7]
16. $\quad\left(\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \boldsymbol{\beta}\right) \rightarrow\left(K_{i} \boldsymbol{\beta} \wedge K_{i}\left(\boldsymbol{\beta} \rightarrow\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right) \rightarrow K_{i}(\boldsymbol{\alpha} \wedge \boldsymbol{\beta})\right)\right)$

$$
\rightarrow\left(\left(\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \boldsymbol{\beta}\right) \rightarrow K_{i} \boldsymbol{\beta} \wedge K_{i}(\boldsymbol{\beta} \rightarrow(\boldsymbol{\alpha} \wedge \boldsymbol{\beta}))\right) \rightarrow\left(\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \boldsymbol{\beta}\right) \rightarrow K_{i}\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right)\right) \text { [Prop.taut. **] }
$$

17. $\quad\left(K_{i} \boldsymbol{\beta}_{\wedge} K_{i}\left(\boldsymbol{\beta} \rightarrow\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right) \rightarrow K_{i}\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right) \rightarrow\left(\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \boldsymbol{\beta}\right) \rightarrow\left(K_{i} \boldsymbol{\beta} \wedge K_{i}\left(\boldsymbol{\beta} \rightarrow\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right) \rightarrow K_{i}\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right)\right)[$ P.t. ***]
18. $\quad\left(\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \boldsymbol{\beta}\right) \rightarrow\left(K_{i} \boldsymbol{\beta}_{\wedge} K_{i}\left(\boldsymbol{\beta} \rightarrow\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right) \rightarrow K_{i}\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right)\right)$
[MP: 15,17]
19. $\quad\left(\left(\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \boldsymbol{\beta}\right) \rightarrow K_{i} \boldsymbol{\beta} \wedge K_{i}\left(\boldsymbol{\beta} \rightarrow\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)\right)\right) \rightarrow\left(\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \boldsymbol{\beta}\right) \rightarrow K_{i}(\boldsymbol{\alpha} \wedge \boldsymbol{\beta})\right)\right)$
[MP: 16, 18]
20. $\quad\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \boldsymbol{\beta}\right) \rightarrow K_{i}\left(\boldsymbol{\alpha}_{\wedge} \boldsymbol{\beta}\right)$
[MP: 19, 14]

$$
\begin{array}{ll}
* \text { If } \mid-(A \& B) \rightarrow C \text { then } \mid-(A \& B) \rightarrow(B \& C)) & * *(\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow((\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)) \\
& * * *(\alpha \rightarrow(\beta \rightarrow \alpha))
\end{array}
$$

Theorem (see the lab work presentation).

For all structures \boldsymbol{M} with n agents where the admissibility relations are interpreted by relations that are equivalences, there holds for any formulas A, B :

$$
\begin{array}{ll}
\text { (i) } M \mid=\left(K_{i} A \wedge K_{i}(A \rightarrow B)\right) \rightarrow K_{i} B & \\
\text { (ii) if } M \perp A \text { than } M \mid=K_{i} A & \\
\text { (iii) } M \mid=K_{i} A \rightarrow A & \text { reflexivity } \\
\text { (iv) } M \mid=K_{i} A \rightarrow K_{i} K_{i} A & \text { transitivity } \\
\text { (v) } M \mid=\neg K_{i} A \rightarrow K_{i} \neg K_{i} A & \text { symmetric+transitive r. }
\end{array}
$$

Axioms of propositional modal logics

1. Propositional tautologies
2. Distribution Axiom (denoted as \mathbf{K})

$$
\left(K_{i} A \wedge K_{i}(A \rightarrow B)\right) \rightarrow K_{i} B
$$

3. Knowledge Axiom) (denoted as \mathbf{T}) $K_{i} A \rightarrow A$
4. Positive Introspection Axiom (den.as 4) $\quad K_{i} A \rightarrow K_{i} K_{i} A$
5. Negative Introspection Axiom (den.as 5) $\neg K_{i} A \rightarrow K_{i} \neg K_{i} A$
6. Consistency Axiom (den.as D) $\neg K_{i}$ false

Derivation rules:

R1. From the formulas α and $\boldsymbol{\alpha} \rightarrow \boldsymbol{\beta}$ derive $\boldsymbol{\beta}$ (Modus Ponens)
R2. From the formula α derive $K_{i} \alpha$ (Knowledge Generaliration)

Proof of a formula φ in the formal system under assumption α is a sequence of formulas $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ such that δ_{n} is the formula φ and for any $\delta_{i}(i<n+1)$ holds
> either δ_{i} is an axiom of the considered formal system or the assumption α
> or there are numbers \boldsymbol{j} and \boldsymbol{k} smaller than \boldsymbol{i} such that $\boldsymbol{\delta}_{i}$ is the result of derivation rule application on δ_{j} or on δ_{j} are δ_{k}.

The formula φ is provable in the formal system under assumption α (denoted as $\alpha \vdash \varphi$), if φ has a proof under assumption α.

Claim $1 \mathbf{K}_{n},(\varphi \rightarrow \psi) \vdash K_{i} \varphi \rightarrow K_{i} \psi$

(The formula $K_{i} \varphi \rightarrow K_{i} \psi$ is a consequence of the assumption $(\varphi \rightarrow \psi)$ in the formal system $\left.\mathbf{K}_{n}\right):(\varphi \rightarrow \psi) \quad$ [assumption]

$$
\begin{array}{lll}
\text { 1. } & K_{i}(\varphi \rightarrow \psi) & \text { [KG ,,assumption"] } \\
\text { 2. } & K_{i} \varphi \rightarrow\left(K_{i}(\varphi \rightarrow \psi) \rightarrow K_{i} \psi\right) & \text { [distribution axiom K] } \\
\text { 3. } & \left(K_{i} \varphi \rightarrow\left(K_{i}(\varphi \rightarrow \psi) \rightarrow K_{i} \psi\right)\right) \rightarrow\left(K_{i}(\varphi \rightarrow \psi) \rightarrow\left(K_{i} \varphi \rightarrow K_{i} \psi\right)\right) \\
& & {[\operatorname{Prop-T1:~}(\varphi \rightarrow(\psi \rightarrow \tau)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \tau))]} \\
\text { 4. } & K_{i}(\varphi \rightarrow \psi) \rightarrow\left(K_{i} \varphi \rightarrow K_{i} \psi\right) & {[\mathrm{MP} 2,3]} \\
\text { 5. } & \left(K_{i} \varphi \rightarrow K_{i} \psi\right) & {[\mathrm{MP} 1,4]}
\end{array}
$$

Claim 2: Let the formulas φ, ψ be equivalent (ie. the formula $(\varphi \rightarrow \psi)_{\wedge}(\psi \rightarrow \varphi)$ is a tautology, denoted as $\varphi \equiv \psi$). There holds $\mathbf{K}_{n}, \varphi \equiv \psi \mid-K_{i} \varphi \equiv K_{i} \psi$.
This is a direct consequence of the above statement .

Let us denote by $\boldsymbol{M}_{\boldsymbol{n}}(\boldsymbol{\Phi})$ the set of all Kripke structures over the set $\boldsymbol{\Phi}$ of primitive propositions and a set of \boldsymbol{n} agents. Denote that no requirements are set on the relations \boldsymbol{K}_{i} in this case.

Let $\boldsymbol{M}_{\boldsymbol{n}}{ }^{r s t}(\boldsymbol{\Phi})$ be the subset of $\boldsymbol{M}_{\boldsymbol{n}}(\boldsymbol{\Phi})$ consisting of all the Kripke structures from where all the admissibility relations have the identified properties $\boldsymbol{r s t}$, namely they are:
reflexive
symetric
transitive.
(They are equivalences).

Theorem 1: The system \mathbf{K}_{n} represents correct and complete syntactic description of all formulas that are valid in the set $\boldsymbol{M}_{n}(\boldsymbol{\Phi})$ of all Kripke struktures $\left(\mathbf{K}_{n}\right.$ is an axiomatization w.r.t. $\boldsymbol{M}_{n}(\boldsymbol{\Phi})$).

Theorem 2:

Let T be the axiom $K_{i} A \rightarrow A$. The system $\mathbf{T}_{n}=\left(\mathbf{K}_{n}+\operatorname{axiom~T}\right)$ is the axiomatization w.r.t. $\boldsymbol{M}_{n}{ }^{r}(\boldsymbol{\Phi})$.

Let 4 be the axiom $K_{i} A \rightarrow K_{i} K_{i} A$. The system $\mathbf{S} 4_{n}=\left(\mathbf{T}_{n}+\right.$ axiom 4)) is the axiomatization w.r.t. $\boldsymbol{M}_{n}{ }^{r t}(\boldsymbol{\Phi})$.

Let 5 be the axiom $\neg K_{i} A \rightarrow K_{i} \neg K_{i} A$. The systém $\mathbf{S} 5_{n}=\left(\mathbf{S} 4_{n}+\right.$ axiom 5) is the axiomatization w.r.t. $\mathrm{k} \boldsymbol{M}_{n}{ }^{r t s}(\boldsymbol{\Phi})$.

Some more valid statements:

$$
\begin{aligned}
& \text { c1) } \mathbf{K} 2, \mathrm{~T}(\text { Axiom } 3) \vdash \neg K_{i} \text { false } \\
& \text { 1. } K_{i} \text { false } \rightarrow \text { false } \\
& \text { 2. } \neg \text { fals } \boldsymbol{e} \rightarrow\left(\neg K_{i} \text { false }\right) \quad \text { [prop.modification of 1] } \\
& \text { 3. } \neg \text { false [prop.tautology] } \\
& \text { 4. } \neg K_{i} \text { false } \quad[\mathrm{MP}: 3,2] \\
& \text { c2) } \mathbf{K} 2, \mathrm{~T} \vdash \neg K_{i} \boldsymbol{\alpha} \vee \neg K_{i} \neg K_{i} \boldsymbol{\alpha} \\
& \text { c3) } \mathbf{K} \mathbf{2}, \mathrm{T} \vdash \neg K_{i}\left(\boldsymbol{\alpha}_{\wedge} \neg K_{i} \boldsymbol{\alpha}\right) \\
& \text { 1. } K_{i} \neg K_{i} \boldsymbol{\alpha} \rightarrow \neg K_{i} \boldsymbol{\alpha} \\
& \text { 2. } \neg K_{i} \neg K_{i} \boldsymbol{\alpha} \vee \neg K_{i} \boldsymbol{\alpha} \\
& \text { 3. } \neg\left(K_{i} \neg K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \boldsymbol{\alpha}\right) \\
& \text { 4. } \neg K_{i}\left(\neg K_{i} \boldsymbol{\alpha}_{\wedge} \boldsymbol{\alpha}\right) \\
& \text { [prop.modification of } \rightarrow \text { in 1], viz a1 } \\
& \text { [prop.modification of } \mathrm{v} \text { in 2] } \\
& \text { [transitivity of } K_{i} \text { in the formula 3], viz a2 }
\end{aligned}
$$

Some more relations that can be proven:
a) $\left(\mathrm{K}_{n}+\mathrm{A} 6\right) \vdash \neg\left(K_{i} \boldsymbol{\alpha}_{\wedge} K_{i} \neg \boldsymbol{\alpha}\right)$
b) $\left(\mathrm{K}_{n}+\mathrm{A} 3\right) \vdash \mathrm{A} 6$
c) $\mathbf{K}_{n} \vdash K_{i} \neg\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right) \equiv K_{i}\left(\boldsymbol{p}_{\wedge} \neg K_{i} \boldsymbol{p}\right) \equiv\left(K_{i} \boldsymbol{p}_{\wedge} K_{i}\left(\neg K_{i} \boldsymbol{p}\right)\right)$
d) It is not possible to prove $K_{i} \neg\left(\boldsymbol{p} \rightarrow K_{i} \boldsymbol{p}\right)$ in ($\left.\mathrm{K}_{n}+\mathrm{A} 3\right)$.

$$
\begin{array}{lll}
\boldsymbol{E}_{G} & \boldsymbol{C}_{G} & \boldsymbol{D}_{G}
\end{array}
$$

Let \boldsymbol{G} be a subset of $\{1,2, \ldots, \mathrm{n}\}, \boldsymbol{E}_{G} \boldsymbol{A}$ holds iff every agent from \boldsymbol{G} knows \boldsymbol{A}. Thus

Axiom C1. $\quad E_{G} A \Leftrightarrow \underset{i \in G}{\&} K_{i} A$

Intuitively, common knowledge specifies something „what is crystal clear to everyone". It should be no surprise that common knowledge has the properties that have been described in the Distribution Axiom, in the Knowledge Axiom, and in the Positive and Negative Introspection Axioms, see the next page.

Common knowledge of two groups of agents:

$$
\text { If } Q \subseteq G \text { then } C_{G} A \rightarrow C_{Q} A
$$

It can be verified that the following formulas are valid (they are true in all Kripke structures):
(i) $\left(C_{G} A \& C_{G}(A \rightarrow B)\right) \rightarrow C_{G} B$
(ii) $C_{G} A \rightarrow A$
(iii) $C_{G} A \rightarrow C_{G} C_{G} A$
(iv) $\neg C_{G} A \rightarrow C_{G} \neg C_{G} A$

The assumptions on properties of the underlying admissibility relations for all $\boldsymbol{K}_{\boldsymbol{i}}$ are the same as in the case of reasoning about knowledge.

Distributed knowledge

charakterize knowledge the agents can acquire when ,,all of them share all their individual knowledge".

Even this modal operator has simmilar properties (axioms) as knowledge of a single agent. Let us point to some specific cases:

■ Distributed knowledge in the group with a single agent is that of the agent, namely $\mathrm{l}=D_{\{i\rangle} A \leftrightarrow K_{i} A$

■ The bigger the considered group the bigger their distributed knowledge:

$$
\text { If } G \subseteq Q \text { then } l=D_{G} A \rightarrow D_{Q} A
$$

Task6a Could the modality be defined as a boolean function? (1 point)

Let us consider for simplicity only Kripke structures with a single agent whose knowledge is described by the modal operator \boldsymbol{K}. We know that in all the corresponding Kripke structures where K is interpreted by equivalence there holds for any formula α
a) the formula $K \alpha \rightarrow \alpha$ (Knowledge Axiom) is valid ,
b) but the formulas $\alpha \rightarrow \boldsymbol{K} \alpha$ and $\neg \boldsymbol{K} \alpha$ are not valid.

Utilize these facts to show that such a behaviour of the modal operator \boldsymbol{K} cannot be encoded by any boolean function (ie. Truth values defined by a table).

Hint: Suppose the truth value of $\boldsymbol{K} \alpha$ can be calculated from the truth value of α using a truth table for \boldsymbol{K} (in the same way as $\boldsymbol{\sim} \alpha$ is calculated form α). Consider all possible truth tables for \boldsymbol{K} and show that none of them grants the properties a) and b) mentioned above.

Task 6b Ann and Bob (2 points)

Ann and Bob take part in a quizz. First, the organizer selects from an urn a natural number $\mathbf{n}<\mathbf{1 0}$, that he writes on the forehead of one of the players and continues by writing the neighboring number (either $\mathbf{n + 1}$ or $\mathbf{n - 1}$) on the forhead of the second player. Neither Ann nor Bob knows her/his number - each sees only the other's forehead. They can take turns in announcing nothing but „, do not know my number." or „, know my number." Suppose Ann starts and she can see the symbol 5.

- Who will be the first to identify her/his number?
- Demonstrate your conclusion about the winner using the corresponding Kripke structure and its modification during information exchange between \mathbf{A} and \mathbf{B}.

