
Multithreading programming

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 08

B3B36PRG – C Programming Language

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 1 / 60

Overview of the Lecture

Part 1 – Multithreading Programming

Introduction

Multithreading applications and operating system

Models of Multi-Thread Applications

Synchronization Mechanisms

POSIX Threads

C11 Threads

Debugging

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 2 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Part I

Part 1 – Multithreading Programming

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 3 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Outline

Introduction

Multithreading applications and operating system

Models of Multi-Thread Applications

Synchronization Mechanisms

POSIX Threads

C11 Threads

Debugging

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 4 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Terminology – Threads

Thread is an independent execution of a sequence of instructions
It is individually performed computational flow

Typically a small program that is focused on a particular part

Thread is running within the process
It shares the same memory space as the process
Threads running within the same memory space of the process

Thread runtime environment – each thread has its separate
space for variables

Thread identifier and space for synchronization variables
Program counter (PC) or Instruction Pointer (IP) – address of the
performing instruction

Indicates where the thread is in its program sequence
Memory space for local variables stack

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 5 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Where Threads Can be Used?

Threads are lightweight variants of the processes that share the
memory space
There are several cases where it is useful to use threads, the most
typical situations are

More efficient usage of the available computational resources
When a process waits for resources (e.g., reads from a periphery),
it is blocked, and control is passed to another process
Thread also waits, but another thread within the same process can
utilize the dedicated time for the process execution
Having multi-core processors, we can speedup the computation us-
ing more cores simultaneously by parallel algorithms

Handling asynchronous events
During blocked i/o operation, the processor can be utilized for
other computational
One thread can be dedicated for the i/o operations, e.g., per
communication channel, another threads for computations

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 6 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Examples of Threads Usage

Input/output operations
Input operations can take significant portions of the run-time, which
may be mostly some sort of waiting, e.g., for a user input
During the communication, the dedicated CPU time can be utilized
for computationally demanding operations

Interactions with Graphical User Interface (GUI)
Graphical interface requires immediate response for a pleasant user
interaction with our application
User interaction generates events that affect the application
Computationally demanding tasks should not decrease interactivity
of the application

Provide a nice user experience with our application

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 7 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Outline

Introduction

Multithreading applications and operating system

Models of Multi-Thread Applications

Synchronization Mechanisms

POSIX Threads

C11 Threads

Debugging

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 8 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Threads and Processes

Process

Computational flow
Has own memory space
Entity (object) of the OS.
Synchronization using OS (IPC).
CPU allocated by OS scheduler

- Time to create a process

Threads of a process

Computational flow
Running in the same memory
space of the process
User or OS entity
Synchronization by exclusive
access to variables
CPU allocated within the
dedicated time to the process

+ Creation is faster than creating
a process

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 9 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Multi-thread and Multi-process Applications

Multi-thread application
+ Application can enjoy higher degree of interactivity
+ Easier and faster communications between the threads using the

same memory space
− It does not directly support scaling the parallel computation to

distributed computational environment with different
computational systems (computers)

Even on single-core single-processor systems, multi-thread
application may better utilize the CPU

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 10 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Threads in the Operating System

Threads are running within the process, but regarding the
implementation, threads can be:

User space of the process – threads are implemented by a user
specified library

Threads do not need special support from the OS
Threads are scheduled by the local scheduler provided by the
library
Threads typically cannot utilize more processors (multi-core)

OS entities that are scheduled by the system scheduler
It may utilized multi-core or multi-processors computational
resources

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 11 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Threads in the User Space

Library Scheduler

Library Scheduler

Library Scheduler

ProcessorsOperating SystemProcesses

OS Scheduler

(processes)

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 12 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Threads as Operating System Entities

Scheduler

ProcessorsOperating SystemProcesses

Library

Library

Library

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 13 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

User Threads vs Operating System Threads

User Threads

+ Do not need support of the OS
+ Creation does need (expensive)

system call
- Execution priority of threads is
managed within the assigned
process time

- Threads cannot run
simultaneously
(pseudo-parallelism)

Operating System Threads

+ Threads can be scheduled in
competition with all threads in
the system

+ Threads can run simultaneously
(on multi-core or multi-processor
system – true parallelism)

- Thread creation is a bit more
complex (system call)

A high number of threads scheduled by the OS may increase overhead.
However, modern OS are using O(1) schedulers – scheduling a process
is an independent on the number of processes. Scheduling algorithms
based on complex heuristics.

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 14 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Combining User and OS Threads

Blocked

Blocked

Blocked

Scheduler

ProcessorsOperating SystemProcesses

Library Scheduler

Library Scheduler

Library Scheduler

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 15 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Outline

Introduction

Multithreading applications and operating system

Models of Multi-Thread Applications

Synchronization Mechanisms

POSIX Threads

C11 Threads

Debugging

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 16 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

When to use Threads

Threads are advantageous whenever the application meets any of
the following criteria:

It consists of several independent tasks
It can be blocked for a certain amount of time
It contains a computationally demanding part (while it is also desir-
able to keep interactivity)
It has to promptly respond to asynchronous events
It contains tasks with lower and higher priorities than the rest of the
application
The main computation part can be speed by a parallel algorithm
using multi-core processors

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 17 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Typical Multi-Thread Applications

Servers – serve multiple clients simultaneously. It may require access
to shared resources and many i/o operations.
Computational application – having multi-core or multi-processor
system, the application runtime can be decreased by using more
processors simultaneously
Real-time applications – we can utilize specific schedulers to meet
real-time requirements. Multi-thread application can be more effi-
cient than complex asynchronous programming; a thread waits for
the event vs. explicit interrupt and context switching

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 18 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Models of Multithreading Applications

Models address creation and division of the work to particular
threads

Boss/Worker – the main thread control division of the work to
other threads
Peer – threads run in parallel without specified manager (boss)
Pipeline – data processing by a sequence of operations

It assumes a long stream of input data and particular threads works
in parallel on different parts of the stream

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 19 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Boss/Worker Model

Boss

Task

Task

Task

Workers

ResourcesProgram

Input Resource

Resource

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 20 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Boss/Worker Model – Roles

The main threads is responsible for managing the requests. It
works in a cycle:
1. Receive a new request
2. Create a thread for serving the particular request

Or passing the request to the existing thread
3. Wait for a new request

The output/results of the assigned request can be controlled by
Particular thread (worker) solving the request
The main thread using synchronization mechanisms (e.g., event
queue)

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 21 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Example – Boss/Worker

1 // Boss
2 while(1) {
3 switch(getRequest()) {
4 case taskX :
5 create_thread(taskX);
6 break;
7 case taskY:
8 create_thread(taskY);
9 break;

10 }
11 }

1 // Task solvers
2 taskX()
3 {
4 solve the task //

synchronized usage of
shared resources

5 done;
6 }
7

8 taskY()
9 {

10 solve the task //
synchronized usage of
shared resources

11 done;
12 }

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 22 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Thread Pool
The main thread creates threads upon new request is received
The overhead with creation of new threads can be decreasing
using the Thread Pool with already created threads
The created threads wait for new tasks

Queue of Requests

Thread pool

Workers

Properties of the thread pool needs to consider
Number of pre-created threads
Maximal number of the request in the queue of requests
Definition of the behavior if the queue is full and none of the
threads is available E.g., block the incoming requests.

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 23 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Peer Model

Task

Task

Task

Workers

ResourcesProgram

Input Resource

Resource

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 24 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Peer Model Properties and Example
It does not contain the main thread
The first thread creates all other threads and then

It becomes one of the other threads (equivalent)
It suspends its execution and waits to other threads

Each thread is responsible for its input and output
Example:

1 // Boss
2 {
3 create_thread(task1);
4 create_thread(task2);
5 .
6 .
7 start all threads;
8 wait to all threads;
9 }

1 // Task solvers
2 task1()
3 {
4 wait to be exectued
5 solve the task // synchronized

usage of shared resources
6 done;
7 }
8
9 task2()

10 {
11 wait to be exectued
12 solve the task // synchronized

usage of shared resources
13 done;
14 }

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 25 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Data Stream Processing – Pipeline

Program

Part 1 Part 2 Part 3Input Output

Resource

Resource

Resource

Resource

Resource

Resource

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 26 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Pipeline Model – Properties and Example
A long input stream of data with a
sequence of operations (a part of processing) – each input data unit
must be processed by all parts of the processing operations
At a particular time, different input data units are processed by
individual processing parts – the input units must be independent

main()
{

create_thread(stage1);
create_thread(stage2);
...
...
wait // for all pipeline;

}

stage1()
{

while(input) {
get next program input;
process input;
pass result to next the stage;

}
}

stage2()
{

while(input) {
get next input from thread;
process input;
pass result to the next stage;

}
}
...
stageN()
{

while(input) {
get next input from thread;
process input;
pass result to output;

}
}

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 27 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Producer–Consumer Model

Passing data between units can be realized using a memory buffer
Or just a buffer of references (pointers) to particular data units

Producer – thread that passes data to other thread
Consumer – thread that receives data from other thread

Access to the buffer must be synchronized (exclusive access)

ConsumerProducer
Buffer

Using the buffer does not necessarily mean the data are copied.

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 28 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Outline

Introduction

Multithreading applications and operating system

Models of Multi-Thread Applications

Synchronization Mechanisms

POSIX Threads

C11 Threads

Debugging

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 29 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Synchronization Mechanisms

Synchronization of threads uses the same principles as synchroniza-
tion of processes

Because threads share the memory space with the process, the
main communication between the threads is through the memory
and (global) variables
The crucial is the control of access to the same memory
Exclusive access to the critical section

Basic synchronization primitives are
Mutexes/Lockers for exclusive access to critical section (mutexes
or spinlocks)
Condition variable synchronization of threads according to the
value of the shared variable.

A sleeping thread can be awakened by another signaling from other
thread.

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 30 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Mutex – A Locker of Critical Section

Mutex is shared variable accessible from particular threads
Basic operations that threads may perform on the mutex

Lock the mutex (acquired the mutex to the calling thread)
If the mutex cannot be acquired by the thread (because another
thread holds it), the thread is blocked and waits for mutex release.

Unlock the already acquired mutex.
If there is one or several threads trying to acquired the mutex (by
calling lock on the mutex), one of the thread is selected for mutex
acquisition.

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 31 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Example – Mutex and Critical Section
Lock/Unlock access to the critical section via drawingMtx mutex

1 void add_drawing_event(void)
2 {
3 Tcl_MutexLock(&drawingMtx);
4 Tcl_Event * ptr = (Tcl_Event*)Tcl_Alloc(sizeof(Tcl_Event));
5 ptr->proc = MyEventProc;
6 Tcl_ThreadQueueEvent(guiThread, ptr, TCL_QUEUE_TAIL);
7 Tcl_ThreadAlert(guiThread);
8 Tcl_MutexUnlock(&drawingMtx);
9 } Example of using thread support from the TCL library.

Example of using a concept of ScopedLock
1 void CCanvasContainer::draw(cairo_t *cr)
2 {
3 ScopedLock lk(mtx);
4 if (drawer == 0) {
5 drawer = new CCanvasDrawer(cr);
6 } else {
7 drawer->setCairo(cr);
8 }
9 manager.execute(drawer);

10 } The ScopedLock releases (unlocks) the mutex once the local variable
lk is destroyed at the end of the function call.

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 32 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Generalized Models of Mutex

Recursive – the mutex can be locked multiple times by the same
thread
Try – the lock operation immediately returns if the mutex cannot
be acquired
Timed – limit the time to acquired the mutex
Spinlock – the thread repeatedly checks if the lock is available for
the acquisition

Thread is not set to blocked mode if lock cannot be acquired.

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 33 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Spinlock
Under certain circumstances, it may be advantageous to do not
block the thread during acquisition of the mutex (lock), e.g.,

Performing a simple operation on the shared data/variable on the system with
true parallelism (using multi-core CPU)
Blocking the thread, suspending its execution and passing the allocated CPU
time to other thread may result in a significant overhead
Other threads quickly perform other operation on the data and thus, the shared
resource would be quickly accessible

During the locking, the thread actively tests if the lock is free
It wastes the CPU time that can be used for productive computation elsewhere.

Similarly to a semaphore such a test has to be performed by
TestAndSet instruction at the CPU level.
Adaptive mutex combines both approaches to use the spinlocks
to access resources locked by currently running thread and
block/sleep if such a thread is not running.

It does not make sense to use spinlocks on single-processor systems
with pseudo-parallelism.

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 34 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Condition Variable

Condition variable allows signaling thread from other thread
The concept of condition variable allows the following synchro-
nization operations

Wait – the variable has been changed/notified
Timed waiting for signal from other thread
Signaling other thread waiting for the condition variable
Signaling all threads waiting for the condition variable

All threads are awakened, but the access to the condition variable is
protected by the mutex that must be acquired and only one thread
can lock the mutex.

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 35 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Example – Condition Variable

Example of using condition variable with lock (mutex) to allow
exclusive access to the condition variable from different threads

Mutex mtx; // shared variable for both threads
CondVariable cond; // shared condition variable

// Thread 1
Lock(mtx);
// Before code, wait for Thread 2
CondWait(cond, mtx); // wait for cond
... // Critical section
UnLock(mtx);

// Thread 2
Lock(mtx);
... // Critical section
// Signal on cond
CondSignal(cond, mtx);
UnLock(mtx);

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 36 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Parallelism and Functions

In parallel environment, functions can be called multiple times
Regarding the parallel execution, functions can be

Reentrant – at a single moment, the same function can be executed
multiple times simultaneously
Thread-Safe – the function can be called by multiple threads si-
multaneously

To achieve these properties
Reentrant function does not write to static data and does not work
with global data
Thread-safe function strictly access to global data using synchro-
nization primitives

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 37 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Main Issues with Multithreading Applications

The main issues/troubles with multiprocessing application are
related to synchronization

Deadlock – a thread wait for a resource (mutex) that is currently
locked by other thread that is waiting for the resource (thread) al-
ready locked by the first thread
Race condition – access of several threads to the shared resources
(memory/variables) and at least one of the threads does not use the
synchronization mechanisms (e.g., critical section)

A thread reads a value while another thread is writting the value. If
Reading/writting operations are not atomic, data are not valid.

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 38 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Outline

Introduction

Multithreading applications and operating system

Models of Multi-Thread Applications

Synchronization Mechanisms

POSIX Threads

C11 Threads

Debugging

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 39 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Thread Functions (pthread)
POSIX threads library (<pthread.h> and -lpthread) is a set of
functions to support multithreading programming
The basic types for threads, mutexes, and condition variables are

pthread_t – type for representing a thread
pthread_mutex_t – type for mutex
pthread_cond_t – type for condition variable

The thread is created by pthread_create() function call, which
immediately executes the new thread as a function passed as a
pointer to the function.

The thread calling the creation continues with the execution.

A thread may wait for other thread by pthread_join()
Particular mutex and condition variables has to be initialized using
the library calls Note, initialized shared variables before threads are created.

pthread_mutex_init() – initialize mutex variable
pthread_cond_init() – initialize condition variable

Additional attributes can be set, see documentation.

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 40 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads – Example 1/10

Create an application with three active threads for
Handling user input – function input_thread()

User specifies a period output refresh of by pressing dedicated keys
Refresh output – function output_thread()

Refresh output only when the user interacts with the application or
the alarm is signaling the period has been passed

Alarm with user defined period – function alarm_thread()
Refresh the output or do any other action

For simplicity the program uses stdin and stdout with thread
activity reporting to stderr
Synchronization mechanisms are demonstrated using

pthread_mutex_t mtx – for exclusive access to data_t data
pthread_cond_t cond – for signaling threads

The shared data consists of the current period of the alarm
(alarm_period), request to quit the application (quit), and num-
ber of alarm invocations (alarm_counter).

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 41 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads – Example 2/10
Including header files, defining data types, declaration of global
variables

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <stdbool.h>
4 #include <termios.h>
5 #include <unistd.h> // for STDIN_FILENO
6 #include <pthread.h>
7
8 #define PERIOD_STEP 10
9 #define PERIOD_MAX 2000

10 #define PERIOD_MIN 10
11
12 typedef struct {
13 int alarm_period;
14 int alam_counter;
15 bool quit;
16 } data_t;
17
18 pthread_mutex_t mtx;
19 pthread_cond_t cond;

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 42 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads – Example 3/10
Functions prototypes and initialize of variables and structures

21 void call_termios(int reset); // switch terminal to raw mode
22 void* input_thread(void*);
23 void* output_thread(void*);
24 void* alarm_thread(void*);
25
26 // - main function –––––––––––––––––––––––––––––-
27 int main(int argc, char *argv[])
28 {
29 data_t data = { .alarm_period = 100, .alam_counter = 0, .quit = false };
30
31 enum { INPUT, OUTPUT, ALARM, NUM_THREADS }; // named ints for the threads
32 const char *threads_names[] = { "Input", "Output", "Alarm" };
33
34 void* (*thr_functions[])(void*) = { // array of thread functions
35 input_thread, output_thread, alarm_thread
36 };
37
38 pthread_t threads[NUM_THREADS]; // array for references to created threads
39 pthread_mutex_init(&mtx, NULL); // init mutex with default attr.
40 pthread_cond_init(&cond, NULL); // init cond with default attr.
41
42 call_termios(0); // switch terminal to raw mode

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 43 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads – Example 4/10

Create threads and wait for terminations of all threads

44 for (int i = 0; i < NUM_THREADS; ++i) {
45 int r = pthread_create(&threads[i], NULL, thr_functions[i], &data);
46 printf("Create thread ’%s’ %s\r\n", threads_names[i], (r == 0 ? "OK"

: "FAIL"));
47 }
48
49 int *ex;
50 for (int i = 0; i < NUM_THREADS; ++i) {
51 printf("Call join to the thread %s\r\n", threads_names[i]);
52 int r = pthread_join(threads[i], (void*)&ex);
53 printf("Joining the thread %s has been %s - exit value %i\r\n",

threads_names[i], (r == 0 ? "OK" : "FAIL"), *ex);
54 }
55
56 call_termios(1); // restore terminal settings
57 return EXIT_SUCCESS;
58 }

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 44 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads – Example 5/10 (Terminal Raw Mode)

Switch terminal to raw mode

60 void call_termios(int reset)
61 {
62 static struct termios tio, tioOld; // use static to preserve the initial

settings
63 tcgetattr(STDIN_FILENO, &tio);
64 if (reset) {
65 tcsetattr(STDIN_FILENO, TCSANOW, &tioOld);
66 } else {
67 tioOld = tio; //backup
68 cfmakeraw(&tio);
69 tcsetattr(STDIN_FILENO, TCSANOW, &tio);
70 }
71 }

The caller is responsible for appropriate calling the function, e.g., to
preserve the original settings, the function must be called with the
argument 0 only once.

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 45 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads – Example 6/10 (Input Thread 1/2)
73 void* input_thread(void* d)
74 {
75 data_t *data = (data_t*)d;
76 static int r = 0;
77 int c;
78 while ((c = getchar()) != ’q’) {
79 pthread_mutex_lock(&mtx);
80 int period = data->alarm_period; // save the current period
81 // handle the pressed key detailed in the next slide

....
82 if (data->alarm_period != period) { // the period has been changed
83 pthread_cond_signal(&cond); // signal the output thread to refresh
84 }
85 data->alarm_period = period;
86 pthread_mutex_unlock(&mtx);
87 }
88 r = 1;
89 pthread_mutex_lock(&mtx);
90 data->quit = true;
91 pthread_cond_broadcast(&cond);
92 pthread_mutex_unlock(&mtx);
93 fprintf(stderr, "Exit input thread %lu\r\n", pthread_self());
94 return &r;
95 }

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 46 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads – Example 7/10 (Input Thread 2/2)

input_thread() – handle the user request to change period
68 switch(c) {
69 case ’r’:
70 period -= PERIOD_STEP;
71 if (period < PERIOD_MIN) {
72 period = PERIOD_MIN;
73 }
74 break;
75 case ’p’:
76 period += PERIOD_STEP;
77 if (period > PERIOD_MAX) {
78 period = PERIOD_MAX;
79 }
80 break;
81 }

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 47 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads – Example 8/10 (Output Thread)

97 void* output_thread(void* d)
98 {
99 data_t *data = (data_t*)d;

100 static int r = 0;
101 bool q = false;
102 pthread_mutex_lock(&mtx); //lock the whole loop
103 while (!q) {
104 pthread_cond_wait(&cond, &mtx); // wait4next event, release mtx
105 q = data->quit;
106 printf("\rAlarm time: %10i Alarm counter: %10i", data->

alarm_period, data->alam_counter);
107 fflush(stdout);
108 }
109 pthread_mutex_unlock(&mtx); //unlock here to avoid miss of signal
110 fprintf(stderr, "Exit output thread %lu\r\n", (unsigned long)

pthread_self());
111 return &r;
112 }

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 48 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads – Example 9/10 (Alarm Thread)
114 void* alarm_thread(void* d)
115 {
116 data_t *data = (data_t*)d;
117 static int r = 0;
118 pthread_mutex_lock(&mtx);
119 bool q = data->quit;
120 useconds_t period = data->alarm_period * 1000; // alarm_period is in ms
121 pthread_mutex_unlock(&mtx);
122
123 while (!q) {
124 usleep(period);
125 pthread_mutex_lock(&mtx);
126 q = data->quit;
127 data->alam_counter += 1;
128 period = data->alarm_period * 1000; // update the period is it has

been changed
129 pthread_cond_broadcast(&cond);
130 pthread_mutex_unlock(&mtx);
131 }
132 fprintf(stderr, "Exit alarm thread %lu\r\n", pthread_self());
133 return &r;
134 }

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 49 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads – Example 10/10
The example program lec08/threads.c can be compiled and run
clang -c threads.c -std=gnu99 -O2 -pedantic -Wall -o threads.o
clang threads.o -lpthread -o threads

The period can be changed by ’r’ and ’p’ keys.
The application is terminated after pressing ’q’
./threads
Create thread ’Input’ OK
Create thread ’Output’ OK
Create thread ’Alarm’ OK
Call join to the thread Input
Alarm time: 110 Alarm counter: 20Exit input thread

750871808
Alarm time: 110 Alarm counter: 20Exit output thread

750873088
Joining the thread Input has been OK - exit value 1
Call join to the thread Output
Joining the thread Output has been OK - exit value 0
Call join to the thread Alarm
Exit alarm thread 750874368
Joining the thread Alarm has been OK - exit value 0

lec08/threads.c
Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 50 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Outline

Introduction

Multithreading applications and operating system

Models of Multi-Thread Applications

Synchronization Mechanisms

POSIX Threads

C11 Threads

Debugging

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 51 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

C11 Threads

C11 provides a “wrapper” for the POSIX threads
E.g., see http://en.cppreference.com/w/c/thread

The library is <threads.h> and -lstdthreads
Basic types

thrd_t – type for representing a thread
mtx_t – type for mutex
cnd_t – type for condition variable

Creation of the thread is thrd_create() and the thread body
function has to return an int value
thrd_join() is used to wait for a thread termination
Mutex and condition variable are initialized (without attributes)

mtx_init() – initialize mutex variable
cnd_init() – initialize condition variable

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 52 / 60

http://en.cppreference.com/w/c/thread

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

C11 Threads Example

The previous example lec08/threads.c implemented with C11
threads is in lec08/threads-c11.c
clang -std=c11 threads-c11.c -lstdthreads -o threads-c11
./threads-c11

Basically, the function calls are similar with different names and
minor modifications

pthread_mutex_*() → mxt_*()
pthread_cond_*() → cnd_*()
pthread_*() → thrd_*()
Thread body functions return int value
There is not pthread_self() equivalent
thrd_t is implementation dependent
Threads, mutexes, and condition variable are created/initialized
without specification particular attributes

Simplified interface
The program is linked with the -lstdthreads library

lec08/threads-c11.c

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 53 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Outline

Introduction

Multithreading applications and operating system

Models of Multi-Thread Applications

Synchronization Mechanisms

POSIX Threads

C11 Threads

Debugging

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 54 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

How to Debug Multi-Thread Applications

The best tool to debug a multi-thread application is
to do not need to debug it

It can be achieved by discipline and a prudent approach to shared
variables
Otherwise a debugger with a minimal set of features can be utilized

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 55 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

How to Debug Multi-Thread Applications

The best tool to debug a multi-thread application is
to do not need to debug it

It can be achieved by discipline and a prudent approach to shared
variables
Otherwise a debugger with a minimal set of features can be utilized

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 55 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

How to Debug Multi-Thread Applications

The best tool to debug a multi-thread application is
to do not need to debug it

It can be achieved by discipline and a prudent approach to shared
variables
Otherwise a debugger with a minimal set of features can be utilized

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 55 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Debugging Support

Desired features of the debugger
List of running threads
Status of the synchronization primitives
Access to thread variables
Break points in particular threads

lldb – http://lldb.llvm.org; gdb – https://www.sourceware.org/gdb
cgdb, ddd, kgdb, Code::Blocks or Eclipse, Kdevelop, Netbeans, CLion

SlickEdit – https://www.slickedit.com; TotalView – http://www.roguewave.com/products-services/totalview

Logging can be more efficient to debug a program than manual
debugging with manually set breakpoints

Deadlock is mostly related to the order of locking
Logging and analyzing access to the lockers (mutex) can help to
find a wrong order of the thread synchronizing operations

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 56 / 60

http://lldb.llvm.org
https://www.sourceware.org/gdb
https://www.slickedit.com
http://www.roguewave.com/products-services/totalview

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Comments – Race Condition

Race condition is typically caused by a lack of synchronization
It is worth of remember that

Threads are asynchronous
Do not relay that a code execution is synchronous on a single processor
system.

When writing multi-threaded applications assume that the thread
can be interrupted or executed at any time

Parts of the code that require a particular execution order of the
threads needs synchronization.

Never assume that a thread waits after it is created.
It can be started very soon and usually much sooner than you can
expect.

Unless you specify the order of the thread execution, there is no
such order.

“Threads are running in the worst possible order”. Bill Gallmeister”

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 57 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Comments – Deadlock

Deadlocks are related to the mechanisms of synchronization
Deadlock is much easier to debug than the race condition
Deadlock is often the mutex deadlock caused by order of multiple
mutex locking
Mutex deadlock can not occur if, at any moment, each thread has
(or it is trying to acquire) at most a single mutex
It is not recommended to call functions with a locked mutex, espe-
cially if the function is attempting to lock another mutex
It is recommended to lock the mutex for the shortest possible time

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 58 / 60

Topics Discussed

Summary of the Lecture

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 59 / 60

Topics Discussed

Topics Discussed

Multithreading programming
Terminology, concepts, and motivations for multithreading
programming
Models of multi-threaded applications
Synchronization mechanisms
POSIX and C11 thread libraries

Example of an application

Comments on debugging and multi-thread issues with the race
condition and deadlock

Next Lecture09: Practical examples
Next Lecture10: ANSI C, C99, C11 – differences and extensions.
Introduction to C++

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 60 / 60

Topics Discussed

Topics Discussed

Multithreading programming
Terminology, concepts, and motivations for multithreading
programming
Models of multi-threaded applications
Synchronization mechanisms
POSIX and C11 thread libraries

Example of an application

Comments on debugging and multi-thread issues with the race
condition and deadlock

Next Lecture09: Practical examples
Next Lecture10: ANSI C, C99, C11 – differences and extensions.
Introduction to C++

Jan Faigl, 2018 B3B36PRG – Lecture 08: Multithreading programming 60 / 60

	1
	Introduction
	Multithreading applications and operating system
	Models of Multi-Thread Applications
	Synchronization Mechanisms
	POSIX Threads
	C11 Threads
	Debugging

	Summary
	Topics Discussed

