Multithreading programming

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

Lecture 08
B3B36PRG — C Programming Language

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 1/ 60

Overview of the Lecture

m Part 1 — Multithreading Programming

Introduction

Multithreading applications and operating system
Models of Multi-Thread Applications
Synchronization Mechanisms

POSIX Threads

C11 Threads

Debugging
@y,
I

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 2/ 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads

Part |

Part 1 — Multithreading Programming

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming

Debugging

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

QOutline

Introduction

ft

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 4 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Terminology — Threads

m Thread is an independent execution of a sequence of instructions
m It is individually performed computational flow

Typically a small program that is focused on a particular part

m Thread is running within the process

m |t shares the same memory space as the process

m Threads running within the same memory space of the process
m Thread runtime environment — each thread has its separate

space for variables
m Thread identifier and space for synchronization variables
m Program counter (PC) or Instruction Pointer (IP) — address of the
performing instruction

Indicates where the thread is in its program sequence
m Memory space for local variables stack

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 5/ 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging
Where Threads Can be Used?

m Threads are lightweight variants of the processes that share the
memory space

m There are several cases where it is useful to use threads, the most
typical situations are

m More efficient usage of the available computational resources

B When a process waits for resources (e.g., reads from a periphery),
it is blocked, and control is passed to another process

m Thread also waits, but another thread within the same process can
utilize the dedicated time for the process execution

m Having multi-core processors, we can speedup the computation us-
ing more cores simultaneously by parallel algorithms

m Handling asynchronous events

m During blocked i/o operation, the processor can be utilized for
other computational

m One thread can be dedicated for the i/o operations, e.g., per
communication channel, another threads for computations

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 6 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Examples of Threads Usage

m Input/output operations
m Input operations can take significant portions of the run-time, which
may be mostly some sort of waiting, e.g., for a user input
m During the communication, the dedicated CPU time can be utilized
for computationally demanding operations
m Interactions with Graphical User Interface (GUI)
m Graphical interface requires immediate response for a pleasant user
interaction with our application
m User interaction generates events that affect the application
m Computationally demanding tasks should not decrease interactivity
of the application

Provide a nice user experience with our application

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 7 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

QOutline

Multithreading applications and operating system

ft

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 8/ 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Threads and Processes

Process Threads of a process
m Computational flow m Computational flow
= Has own memory space ® Running in the same memory
m Entity (object) of the OS. space of the process
m Synchronization using OS (IPC). = User or OS entity
m CPU allocated by OS scheduler ~ m Synchronization by exclusive

access to variables

m CPU allocated within the
dedicated time to the process

Time to create a process

+ Creation is faster than creating
a process

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 9/ 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Multi-thread and Multi-process Applications

m Multi-thread application
+ Application can enjoy higher degree of interactivity
+ Easier and faster communications between the threads using the
same memory space
— It does not directly support scaling the parallel computation to
distributed computational environment with different
computational systems (computers)

m Even on single-core single-processor systems, multi-thread
application may better utilize the CPU

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 10 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Threads in the Operating System

m Threads are running within the process, but regarding the
implementation, threads can be:
m User space of the process — threads are implemented by a user
specified library
m Threads do not need special support from the OS
B Threads are scheduled by the local scheduler provided by the
library
m Threads typically cannot utilize more processors (multi-core)
m OS entities that are scheduled by the system scheduler
m |t may utilized multi-core or multi-processors computational
resources

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming

Threads and OS

Threads in the User Space

Processes Operating System
S
Library Scheduler OS Scheduler
O BRI ° (processes)
@ JRRERREEREERNE ° I~
I\ O """""""""""""" o Y, O [
Library Scheduler)
@ JRRRRREEREEENE °
O """""""""" .// O
_ Qo o Y,
Library Scheduler)
@ JRRRRRIEEREERNE e
@ JRRERREEREEENE °
Qe hd J U J

Jan Faigl, 2018

Processors
Y

B3B36PRG — Lecture 08: Multithreading programming

12 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Operating System

Scheduler

Processes
Library
@ JERRREERRREEENE [
@ JRRMRRREERREEERES o— |

Library g
T o
&y @

Joo

Jan Faigl, 2018

Threads as Operating System Entities

Processors

B

B3B36PRG — Lecture 08: Multithreading programming 13 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

User Threads vs Operating System Threads

User Threads Operating System Threads
+ Do not need support of the OS 4 Threads can be scheduled in
+ Creation does need (expensive) competition with all threads in
system call the system
- Execution priority of threads is ~ + Threads can run simultaneously
managed within the assigned (on multi-core or multi-processor
process time system — true parallelism)
- Threads cannot run - Thread creation is a bit more
simultaneously complex (system call)

(pseudo-parallelism)

A high number of threads scheduled by the OS may increase overhead.
However, modern OS are using O(1) schedulers — scheduling a process
is an independent on the number of processes. Scheduling algorithms
based on complex heuristics.

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 14 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Combining User and OS Threads

Processes Operating System Processors
Library Scheduler Scheduler
Qs Blocked
) o— |

L Qs Blocked)

B

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 15 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

QOutline

Models of Multi-Thread Applications

ft

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 16 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

When to use Threads

m Threads are advantageous whenever the application meets any of
the following criteria:

m |t consists of several independent tasks

m It can be blocked for a certain amount of time

m |t contains a computationally demanding part (while it is also desir-
able to keep interactivity)

m It has to promptly respond to asynchronous events

m |t contains tasks with lower and higher priorities than the rest of the
application

m The main computation part can be speed by a parallel algorithm
using multi-core processors

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 17 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Typical Multi-Thread Applications

m Servers — serve multiple clients simultaneously. It may require access
to shared resources and many i/o operations.

m Computational application — having multi-core or multi-processor
system, the application runtime can be decreased by using more
processors simultaneously

m Real-time applications — we can utilize specific schedulers to meet
real-time requirements. Multi-thread application can be more effi-
cient than complex asynchronous programming; a thread waits for
the event vs. explicit interrupt and context switching

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 18 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Models of Multithreading Applications

m Models address creation and division of the work to particular
threads

m Boss/Worker — the main thread control division of the work to
other threads

m Peer — threads run in parallel without specified manager (boss)

m Pipeline — data processing by a sequence of operations

It assumes a long stream of input data and particular threads works
in parallel on different parts of the stream

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 19 / 60

Multithreading Models

Boss/Worker Model

Program Resources
(M Y
Workers
Task ©

Input O ¢7 Resource
Boss Task
Task Resource

0 <A

U (

(

. J

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 20 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Boss/Worker Model — Roles

m The main threads is responsible for managing the requests. It
works in a cycle:

1. Receive a new request
2. Create a thread for serving the particular request
Or passing the request to the existing thread

3. Wait for a new request
m The output/results of the assigned request can be controlled by

m Particular thread (worker) solving the request
m The main thread using synchronization mechanisms (e.g., event

queue)

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 21 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads

Example — Boss/Worker

1 // Boss 1 // Task solvers

2 while(1) { 2 taskX()

3 switch(getRequest()) { 3 {

4 case taskX 4 solve the task //
5 create_thread(taskX) ; synchronized usage of
6 break; shared resources
7 case taskY: 5 one;

8 create_thread(taskY); 8 }

9 break; s taskY()

10 } {

11} o

10 solve the task //
synchronized usage of

shared resources
11 done;

12}

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming

Debugging

22 / 60

Multithreading Models

Thread Pool

m The main thread creates threads upon new request is received

m The overhead with creation of new threads can be decreasing
using the Thread Pool with already created threads

m The created threads wait for new tasks

Thread pool
Workers
Queue of Requests Q
@
Q

m Properties of the thread pool needs to consider
m Number of pre-created threads
m Maximal number of the request in the queue of requests
m Definition of the behavior if the queue is full and none of the
threads is available E.g., block the incoming requests.

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 23 / 60

Multithreading Models

Peer Model
Program Resources
(M Y
Workers
Task ©

Input O ¢7 Resource
Z:> Task
Q<A

Task Resource

0 <A

U (

I

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming

24 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Peer Model Properties and Example

m |t does not contain the main thread
m The first thread creates all other threads and then
m |t becomes one of the other threads (equivalent)
m It suspends its execution and waits to other threads

m Each thread is responsible for its input and output

m Example:
1 // Boss 1 // Task solvers
2 { 2 task1()
3 create_thread(taskl); 3 {
4 create_thread(task2); 4 wait to be exectued
: : 5 solve the task // synchronized
7 étart all threads; usage of shared resources
8 wait to all threads; 6 done;
o } T}
8
o task2()
10 {
11 wait to be exectued
12 solve the task // synchronized
usage of shared resources
13 done;
14}

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 25 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Data Stream Processing — Pipeline

Program

Input Part 1 Part 2 Part 3 Output

Ol=AOl="@

— O

~
Resource Resource Resource
_/

0

_/
Resource Resource Resource
N J J J

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 26 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Pipeline Model — Properties and Example

m A long input stream of data with a

m sequence of operations (a part of processing) — each input data unit
must be processed by all parts of the processing operations

m At a particular time, different input data units are processed by
individual processing parts — the input units must be independent

main() stage2()

{
create_thread(stagel) ; while(input) {
create_thread(stage2) ; get next input from thread;

process input;
ce . L pass result to the next stage;
wait // for all pipeline; }
¥ }
itagel() stageN()
while(input) { ¢
get next program input;
process input;
pass result to next the stage;
¥ ¥
¥ }

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 27 / 60

while(input) {
get next input from thread;
process input;

pass result to output;

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Producer—Consumer Model

m Passing data between units can be realized using a memory buffer

Or just a buffer of references (pointers) to particular data units

m Producer — thread that passes data to other thread
m Consumer — thread that receives data from other thread

m Access to the buffer must be synchronized (exclusive access)

Buffer
Producer Consumer

@ @

Using the buffer does not necessarily mean the data are copied.

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 28 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

QOutline

Synchronization Mechanisms

ft

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 29 / 60

Introduction Threads and OS Multithreading Models

Synchronization POSIX Threads C11 Threads Debugging

Synchronization Mechanisms

m Synchronization of threads uses the same principles as synchroniza-
tion of processes
m Because threads share the memory space with the process, the

main communication between the threads is through the memory
and (global) variables

m The crucial is the control of access to the same memory
m Exclusive access to the critical section

m Basic synchronization primitives are

m Mutexes/Lockers for exclusive access to critical section (mutexes
or spinlocks)

m Condition variable synchronization of threads according to the
value of the shared variable.

A sleeping thread can be awakened by another signaling from other
thread.

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 30 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Mutex — A Locker of Critical Section

m Mutex is shared variable accessible from particular threads

m Basic operations that threads may perform on the mutex
m Lock the mutex (acquired the mutex to the calling thread)
m If the mutex cannot be acquired by the thread (because another
thread holds it), the thread is blocked and waits for mutex release.
m Unlock the already acquired mutex.
m If there is one or several threads trying to acquired the mutex (by
calling lock on the mutex), one of the thread is selected for mutex
acquisition.

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 31 /60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Example — Mutex and Critical Section

m Lock/Unlock access to the critical section via drawingMtx mutex
void add_drawing_event(void)

1
2 o

3 Tcl _MutexLock (&drawingMtx) ;

4 Tcl_Event * ptr = (Tcl_Event#*)Tcl_Alloc(sizeof (Tcl_Event));
5 ptr->proc = MyEventProc;

6 Tcl_ThreadQueueEvent (guiThread, ptr, TCL_QUEUE_TAIL);

7 Tcl_ThreadAlert(guiThread) ;

8 Tcl _MutexUnlock (&drawingMtx) ;

9

} Example of using thread support from the TCL library.
m Example of using a concept of ScopedLock

void CCanvasContainer::draw(cairo_t *cr)

1
2 o

3 ScopedLock 1k(mtx);

4 if (drawer == 0) {

5 drawer = new CCanvasDrawer(cr);
6 } else {

7 drawer->setCairo(cr);

8 }

9 manager .execute (drawer) ;

10 }

The ScopedLock releases (unlocks) the mutex once the local variable
1k is destroyed at the end of the function call.

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 32 /60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Generalized Models of Mutex

m Recursive — the mutex can be locked multiple times by the same
thread

m Try — the lock operation immediately returns if the mutex cannot
be acquired

m Timed — limit the time to acquired the mutex

m Spinlock — the thread repeatedly checks if the lock is available for
the acquisition

Thread is not set to blocked mode if lock cannot be acquired.

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 33 /60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Spinlock

m Under certain circumstances, it may be advantageous to do not
block the thread during acquisition of the mutex (lock), e.g.,

m Performing a simple operation on the shared data/variable on the system with
true parallelism (using multi-core CPU)

m Blocking the thread, suspending its execution and passing the allocated CPU
time to other thread may result in a significant overhead

B Other threads quickly perform other operation on the data and thus, the shared
resource would be quickly accessible

m During the locking, the thread actively tests if the lock is free

It wastes the CPU time that can be used for productive computation elsewhere.

m Similarly to a semaphore such a test has to be performed by
TestAndSet instruction at the CPU level.

m Adaptive mutex combines both approaches to use the spinlocks
to access resources locked by currently running thread and
block/sleep if such a thread is not running.

It does not make sense to use spinlocks on single-processor systems
with pseudo-parallelism.

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 34 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Condition Variable

m Condition variable allows signaling thread from other thread

m The concept of condition variable allows the following synchro-
nization operations

m Wait — the variable has been changed/notified

m Timed waiting for signal from other thread

m Signaling other thread waiting for the condition variable
m Signaling all threads waiting for the condition variable

All threads are awakened, but the access to the condition variable is
protected by the mutex that must be acquired and only one thread
can lock the mutex.

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 35/ 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Example — Condition Variable

m Example of using condition variable with lock (mutex) to allow
exclusive access to the condition variable from different threads

Mutex mtx; // shared variable for both threads
CondVariable cond; // shared condition variable

// Thread 1 // Thread 2

Lock(mtx) ; Lock(mtx);

// Before code, wait for Thread 2 ... // Critical section
CondWait(cond, mtx); // wait for cond // Signal on cond

... // Critical section CondSignal(cond, mtx);
UnLock(mtx) ; UnLock(mtx) ;

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 36 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Parallelism and Functions

m In parallel environment, functions can be called multiple times

m Regarding the parallel execution, functions can be
m Reentrant — at a single moment, the same function can be executed
multiple times simultaneously
m Thread-Safe — the function can be called by multiple threads si-
multaneously
m To achieve these properties
m Reentrant function does not write to static data and does not work
with global data
m Thread-safe function strictly access to global data using synchro-
nization primitives

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Main Issues with Multithreading Applications

m The main issues/troubles with multiprocessing application are
related to synchronization

m Deadlock — a thread wait for a resource (mutex) that is currently
locked by other thread that is waiting for the resource (thread) al-
ready locked by the first thread

m Race condition — access of several threads to the shared resources
(memory/variables) and at least one of the threads does not use the
synchronization mechanisms (e.g., critical section)

A thread reads a value while another thread is writting the value. If
Reading/writting operations are not atomic, data are not valid.

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 38 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

QOutline

POSIX Threads

ft

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 39 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Thread Functions (pthread)

m POSIX threads library (<pthread.h> and -lpthread) is a set of
functions to support multithreading programming
m The basic types for threads, mutexes, and condition variables are
m pthread_t — type for representing a thread
m pthread_mutex_t — type for mutex
m pthread_cond_t — type for condition variable
m The thread is created by pthread_create() function call, which
immediately executes the new thread as a function passed as a
pointer to the function.

The thread calling the creation continues with the execution.

A thread may wait for other thread by pthread_join()
m Particular mutex and condition variables has to be initialized using
the |ibrary calls Note, initialized shared variables before threads are created.

m pthread_mutex_init() — initialize mutex variable
m pthread_cond_init() — initialize condition variable

Additional attributes can be set, see documentation.

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 40 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads

POSIX Threads — Example 1/10

m Create an application with three active threads for
m Handling user input — function input_thread()

Debugging

m User specifies a period output refresh of by pressing dedicated keys

m Refresh output — function output_thread()

m Refresh output only when the user interacts with the application or

the alarm is signaling the period has been passed
m Alarm with user defined period — function alarm_thread ()
m Refresh the output or do any other action

m For simplicity the program uses stdin and stdout with thread
activity reporting to stderr
m Synchronization mechanisms are demonstrated using

m pthread_mutex_t mtx — for exclusive access to data_t data
m pthread_cond_t cond — for signaling threads

The shared data consists of the current period of the alarm
(alarm_period), request to quit the application (quit), and num-
ber of alarm invocations (alarm_counter).

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming

41 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads — Example 2/10

m Including header files, defining data types, declaration of global

variables
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <stdbool.h>
4 #include <termios.h>
5 #include <unistd.h> // for STDIN_FILENO
6 #include <pthread.h>
7
8 #define PERIOD_STEP 10
9 #define PERIOD_MAX 2000
10 #define PERIOD_MIN 10
11
12 typedef struct {
13 int alarm_period;
14 int alam_counter;
15 bool quit;
16 } data_t;
17
18 pthread_mutex_t mtx;
19 pthread_cond_t cond;

Jan Faigl, 2018

B3B36PRG — Lecture 08: Multithreading programming

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads — Example 3/10

m Functions prototypes and initialize of variables and structures

21 void call_termios(int reset); // switch terminal to raw mode
22 void* input_thread(voidx);

23 void* output_thread(voidx);

24 void* alarm_thread(void*);

25

26 // - main function ----------mmmmm

27 int main(int argc, char *argv([])

28 {

29 data_t data = { .alarm_period = 100, .alam_counter = 0, .quit = false };
30

31 enum { INPUT, OUTPUT, ALARM, NUM_THREADS }; // named ints for the threads
32 const char *threads_names[] = { "Input", "Output", "Alarm" };

33

34 void* (*thr_functions[]) (void*) = { // array of thread functions

35 input_thread, output_thread, alarm_thread

36 };

37

38 pthread_t threads[NUM_THREADS]; // array for references to created threads
39 pthread_mutex_init(&mtx, NULL); // init mutex with default attr.

40 pthread_cond_init(&cond, NULL); // init cond with default attr.

41

42 call_termios(0); // switch terminal to raw mode

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 43 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads — Example 4/10

m Create threads and wait for terminations of all threads

44 for (int i = 0; i < NUM_THREADS; ++i) {

45 int r = pthread_create(&threads[i], NULL, thr_functions[i], &data);

46 printf("Create thread ’%s’ %s\r\n", threads_names[i], (r == 0 ? "OK"

"FAIL"))

47 }

48

49 int *ex;

50 for (int i = 0; i < NUM_THREADS; ++i) {

51 printf("Call join to the thread %s\r\n", threads_names[i]);

52 int r = pthread_join(threads[i], (voidx)&ex);

53 printf("Joining the thread %s has been %s - exit value %i\r\n",
threads_names[i], (r == 0 ? "OK" : "FAIL"), *ex);

54 }

55

56 call_termios(1); // restore terminal settings

57 return EXIT_SUCCESS;

58 }

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 44 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads — Example 5/10 (Terminal Raw Mode)

m Switch terminal to raw mode

60 void call_termios(int reset)

61 {

62 static struct termios tio, tio0ld; // use static to preserve the initial
settings

63 tcgetattr (STDIN_FILENO, &tio);

64 if (reset) {

65 tcsetattr (STDIN_FILENO, TCSANOW, &tio0ld);

66 } else {

67 tio0ld = tio; //backup

68 cfmakeraw(&tio);

69 tcsetattr (STDIN_FILENO, TCSANOW, &tio);

70 }

71}

The caller is responsible for appropriate calling the function, e.g., to
preserve the original settings, the function must be called with the
argument 0 only once.

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 45 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads — Example 6/10 (Input Thread 1/2)

73 void* input_thread(voidx* d)

74 o

75 data_t *data = (data_tx*)d;

76 static int r = 0;

77 int c;

78 while ((¢ = getchar()) !'= ’q’) {

79 pthread_mutex_lock(&mtx) ;

80 int period = data->alarm_period; // save the current period
81 // handle the pressed key detailed in the next slide

82 if (data->alarm_period != period) { // the period has been changed
83 pthread_cond_signal(&cond); // signal the output thread to refresh
84 }

85 data->alarm_period = period;

86 pthread_mutex_unlock(&mtx) ;

87 }

88 r=1;

89 pthread_mutex_lock(&mtx) ;

920 data->quit = true;

91 pthread_cond_broadcast (&cond) ;

92 pthread_mutex_unlock(&mtx) ;

93 fprintf (stderr, "Exit input thread %lu\r\n", pthread_self());
94 return &r;

95 }

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 46 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads — Example 7/10 (Input Thread 2/2)

m input_thread() — handle the user request to change period

68 switch(c) {

69 case ’r’:

70 period -= PERIOD_STEP;

71 if (period < PERIOD_MIN) {
72 period = PERIOD_MIN;

73 }

74 break;

75 case ’p’:

76 period += PERIOD_STEP;

77 if (period > PERIOD_MAX) {
78 period = PERIOD_MAX;

79 }

80 break;

81}

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 47 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

97
98
99
100
101
102
103
104

106

107
108
109
110

111
112

POSIX Threads — Example 8/10 (Output Thread)

void* output_thread(void* d)

{

data_t *data = (data_t*)d;
static int r = 0;
bool q = false;
pthread_mutex_lock(&mtx); //lock the whole loop
while (!q) {
pthread_cond_wait(&cond, &mtx); // waité4next event, release mtx
q = data->quit;
printf ("\rAlarm time: %10i Alarm counter: %10i", data->
alarm_period, data->alam_counter);
fflush(stdout);
}
pthread_mutex_unlock(&mtx); //unlock here to avoid miss of signal
fprintf (stderr, "Exit output thread %lul\r\n", (unsigned long)
pthread_self());
return &r;

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 48 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads — Example 9/10 (Alarm Thread)

114 void* alarm_thread(void* d)

115 {

116 data_t *data = (data_t*)d;

117 static int r = 0;

118 pthread_mutex_lock(&mtx) ;

119 bool q = data->quit;

120 useconds_t period = data->alarm_period * 1000; // alarm_period is in ms

121 pthread_mutex_unlock(&mtx) ;

122

123 while (!q) {

124 usleep(period) ;

125 pthread_mutex_lock(&mtx) ;

126 q = data->quit;

127 data->alam_counter += 1;

128 period = data->alarm_period * 1000; // update the period is it has
been changed

129 pthread_cond_broadcast (&cond) ;

130 pthread_mutex_unlock(&mtx) ;

131 }

132 fprintf (stderr, "Exit alarm thread %lu\r\n", pthread_self());

133 return &r;

134 }

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 49 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

POSIX Threads — Example 10/10

m The example program 1ec08/threads.c can be compiled and run

clang -c threads.c -std=gnu99 -02 -pedantic -Wall -o threads.o
clang threads.o -lpthread -o threads

m The period can be changed by 'r’" and 'p’ keys.

m The application is terminated after pressing 'q’
./threads
Create thread ’Input’ OK
Create thread ’Output’ OK
Create thread ’Alarm’ OK
Call join to the thread Input

Alarm time: 110 Alarm counter: 20Exit input thread
750871808

Alarm time: 110 Alarm counter: 20Exit output thread
750873088

Joining the thread Input has been OK - exit value 1
Call join to the thread Output

Joining the thread Output has been 0K - exit value 0
Call join to the thread Alarm

Exit alarm thread 750874368

Joining the thread Alarm has been 0K - exit value O

lec08/threads.c
Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 50 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

QOutline

C11 Threads

ft

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 51 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

C11 Threads

C11 provides a “wrapper” for the POSIX threads
E.g., see http://en.cppreference.com/w/c/thread

The library is <threads.h> and -1stdthreads
Basic types

m thrd_t — type for representing a thread

m mtx_t — type for mutex

m cnd_t — type for condition variable
Creation of the thread is thrd_create() and the thread body
function has to return an int value

thrd_join() is used to wait for a thread termination

Mutex and condition variable are initialized (without attributes)

m mtx_init () — initialize mutex variable
m cnd_init () — initialize condition variable

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 52 / 60

http://en.cppreference.com/w/c/thread

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

C11 Threads Example

m The previous example 1ec08/threads.c implemented with C11
threads is in 1ec08/threads-cl11l.c

clang -std=cll threads-cll.c -lstdthreads -o threads-cii
./threads-ci11

m Basically, the function calls are similar with different names and
minor modifications
m pthread mutex_*() — mxt_*()
pthread_cond_*() — cnd_*()
pthread_*() — thrd_x()
Thread body functions return int value
There is not pthread_self () equivalent
thrd_t is implementation dependent
Threads, mutexes, and condition variable are created/initialized
without specification particular attributes

Simplified interface

m The program is linked with the -1stdthreads library
lec08/threads-cll.c

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 53 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

QOutline

Debugging

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 54 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

How to Debug Multi-Thread Applications

m The best tool to debug a multi-thread application is

@Dy
=2
RS

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 55 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

How to Debug Multi-Thread Applications

m The best tool to debug a multi-thread application is
to do not need to debug it

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 55 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

How to Debug Multi-Thread Applications

m The best tool to debug a multi-thread application is
to do not need to debug it

m It can be achieved by discipline and a prudent approach to shared
variables

m Otherwise a debugger with a minimal set of features can be utilized

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 55 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Debugging Support

m Desired features of the debugger
m List of running threads
Status of the synchronization primitives
Access to thread variables
Break points in particular threads

11db — http://11db.1lvm.org; gdb — https://wuw.sourceware.org/gdb
cgdb, ddd, kgdb, Code: :Blocks or Eclipse, Kdevelop, Netbeans, CLion

SlickEdit — https://www.slickedit.com; TotalView — http://www.roguewave.com/products-services/totalview
m Logging can be more efficient to debug a program than manual
debugging with manually set breakpoints
m Deadlock is mostly related to the order of locking

m Logging and analyzing access to the lockers (mutex) can help to
find a wrong order of the thread synchronizing operations

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 56 / 60

http://lldb.llvm.org
https://www.sourceware.org/gdb
https://www.slickedit.com
http://www.roguewave.com/products-services/totalview

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Comments — Race Condition

m Race condition is typically caused by a lack of synchronization
m It is worth of remember that
m Threads are asynchronous

Do not relay that a code execution is synchronous on a single processor
system.
m When writing multi-threaded applications assume that the thread
can be interrupted or executed at any time
Parts of the code that require a particular execution order of the
threads needs synchronization.

m Never assume that a thread waits after it is created.

It can be started very soon and usually much sooner than you can
expect.

m Unless you specify the order of the thread execution, there is no
such order.

“Threads are running in the worst possible order”. Bill Gallmeister”
@Dy

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 57 / 60

Introduction Threads and OS Multithreading Models Synchronization POSIX Threads C11 Threads Debugging

Comments — Deadlock

m Deadlocks are related to the mechanisms of synchronization
m Deadlock is much easier to debug than the race condition

m Deadlock is often the mutex deadlock caused by order of multiple
mutex locking

m Mutex deadlock can not occur if, at any moment, each thread has
(or it is trying to acquire) at most a single mutex

m It is not recommended to call functions with a locked mutex, espe-
cially if the function is attempting to lock another mutex

m It is recommended to lock the mutex for the shortest possible time

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 58 / 60

Topics Discussed

Summary of the Lecture

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 59 / 60

Topics Discussed

Topics Discussed

m Multithreading programming
m Terminology, concepts, and motivations for multithreading
programming
m Models of multi-threaded applications
m Synchronization mechanisms
m POSIX and C11 thread libraries

Example of an application

m Comments on debugging and multi-thread issues with the race
condition and deadlock

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 60 / 60

Topics Discussed

Topics Discussed

Multithreading programming
m Terminology, concepts, and motivations for multithreading
programming
m Models of multi-threaded applications
m Synchronization mechanisms
m POSIX and C11 thread libraries

Example of an application

m Comments on debugging and multi-thread issues with the race
condition and deadlock

Next Lecture09: Practical examples

Next Lecturel0: ANSI C, C99, C11 — differences and extensions.
Introduction to C++

Jan Faigl, 2018 B3B36PRG — Lecture 08: Multithreading programming 60 / 60

	1
	Introduction
	Multithreading applications and operating system
	Models of Multi-Thread Applications
	Synchronization Mechanisms
	POSIX Threads
	C11 Threads
	Debugging

	Summary
	Topics Discussed

