
Data types: Struct, Union, Enum, Bit
Fields. Preprocessor and Building

Programs

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 05

B3B36PRG – C Programming Language

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 1 / 53

Overview of the Lecture

Part 1 – Data types

Structures – struct

Unions

Type definition – typedef

Enumerations – enum

Bit-Fields K. N. King: chapters 16 and 20

Part 2 – Preprocessor and Building Programs

Organization of Source Files

Preprocessor

Building Programs K. N. King: chapters 10, 14, and 15

Part 3 – Assignment HW 05

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 2 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Part I

Data types – Struct, Union, Enum and Bit
Fields

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 3 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Structures, Unions, and Enumerations

Structure is a collection of values, possibly of different types
It is defined with the keyword struct
Structures represent records of data fields

Union is also a collection of values, but its members share the
same storage

Union can store one member at a time, but not all simultaneously.

Enumeration represents named integer values

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 4 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

struct
Structure struct is composed of a finite set of data field members
that can be of different type
Structure is defined by the programmer as a new data type
It allows storing a collection of the related data fields
Each structure has a separate name space for its members
Declaration of the struct variable is
#define USERNAME_LEN 8
struct {

int login_count;
char username[USERNAME_LEN + 1];
int last_login; // date as the number of seconds

// from 1.1.1970 (unix time)
} user_account; // variable of the struct defined type

The declaration follows other variable declaration where struct
{...} specifies the type and user_account the variable name
We access the members using the . operator, e.g.,

user_account.login_count = 0;
Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 6 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Initialization of the Structure Variables and Assignment
Operator

Structure variables can be initialized in the declaration
In C99, we can also use the designated initializers

struct {
int login_count;
char name[USENAME_LEN + 1];
int last_login;

} user1 = { 0, "admin", 1477134134 }, //get unix time ‘date +%s‘
// designated initializers in C99
user2 = { .name = "root", .login_count = 128 };

printf("User1 ’%s’ last login on: %d\n", user1.name, user1.last_login);
printf("User2 ’%s’ last login on: %d\n", user2.name, user2.last_login);

user2 = user1; // assignment operator structures
printf("User2 ’%s’ last login on: %d\n", user2.name, user2.last_login);

lec05/structure_init.c

The assignment operator = is defined for the structure variables of
the same type

No other operator like != or == is defined for the structures!

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 7 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Structure Tag

Declaring a structure tag allows to identify a particular struc-
ture and avoids repeating all the data fields in the structure variable

struct user_account {
int login_count;
char username[USERNAME_LEN + 1];
int last_login;

}; Notice VLA is not allowed in structure type.

After creating the user_account tag, variables can be declared

struct user_account user1, user2;

The defined tag is not a type name, therefore it has to be used
with the struct keyword
The new type can be defined using the typedef keyword as

typedef struct { ... } new_type_name;

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 8 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example of Defining Structure

Without definition of the new type (using (typedef) adding the
keyword struct before the structure tag is mandatory

struct record {
int number;
double value;

};

typedef struct {
int n;
double v;

} item;

record r; /* THIS IS NOT ALLOWED! */
/* Type record is not known */

struct record r; /* Keyword struct is required */
item i; /* type item defined using typedef */

Introducing new type by typedef, the defined struct type can be
used without the struct keyword

lec05/struct.c

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 9 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Structure Tag and Structure Type
Using struct record we defined a new structure tag record
struct record {

int number;
double value;

};
The tag identifier record is defined in the name space of the
structure tags It is not mixed with other type names

Using the typedef, we introduced new type named record
typedef struct record record;

We defined a new global identifier record as the type name for
the struct record

Structure tag and definition of the type can be combined
typedef struct record {

int number;
double value;

} record;

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 10 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example struct – Assignment

The assignment operator = can be used for two variables of the
same struct type

struct record {
int number;
double value;

};

typedef struct {
int n;
double v;

} item;

struct record rec1 = { 10, 7.12 };
struct record rec2 = { 5, 13.1 };
item i;
print_record(rec1); /* number(10), value(7.120000) */
print_record(rec2); /* number(5), value(13.100000) */
rec1 = rec2;
i = rec1; /* THIS IS NOT ALLOWED! */
print_record(rec1); /* number(5), value(13.100000) */

lec05/struct.c

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 11 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example struct – Direct Copy of the Memory

Having two structure variables of the same size, the content can
be directly copied using memory copy

E.g., using memcpy() from the <string.h>

struct record r = { 7, 21.4};
item i = { 1, 2.3 };
print_record(r); /* number(7), value(21.400000) */
print_item(&i); /* n(1), v(2.300000) */
if (sizeof(i) == sizeof(r)) {

printf("i and r are of the same size\n");
memcpy(&i, &r, sizeof(i));
print_item(&i); /* n(7), v(21.400000) */

}

Notice, in this example, the interpretation of the stored data in both
structures is identical. In general, it may not be always the case.

lec05/struct.c

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 12 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Size of Structure Variables

Data representation of the structure may be different from the
sum of sizes of the particular data fields (types of the members)

struct record {
int number;
double value;

};

typedef struct {
int n;
double v;

} item;
printf("Size of int: %lu size of double: %lu\n", sizeof

(int), sizeof(double));
printf("Size of record: %lu\n", sizeof(struct record));
printf("Size of item: %lu\n", sizeof(item));

Size of int: 4 size of double: 8
Size of record: 16
Size of item: 16

lec05/struct.c

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 13 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Size of Structure Variables 1/2

Compiler may align the data fields to the size of the word (address)
of the particularly used architecture

E.g., 8 bytes for 64-bits CPUs.

A compact memory representation can be explicitly prescribed for
the clang and gcc compilers by the __attribute__((packed))

struct record_packed {
int n;
double v;

} __attribute__((packed));

Or typedef struct __attribute__((packed)) {
int n;
double v;

} item_packed;
lec05/struct.c

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 14 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Size of Structure Variables 2/2

printf("Size of int: %lu size of double: %lu\n",
sizeof(int), sizeof(double));

printf("record_packed: %lu\n", sizeof(struct record_packed));

printf("item_packed: %lu\n", sizeof(item_packed));

Size of int: 4 size of double: 8
Size of record_packed: 12
Size of item_packed: 12

lec05/struct.c

The address alignment provides better performance for addressing
the particular members at the cost of higher memory requirements

http://www.catb.org/esr/structure-packing

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 15 / 53

http://www.catb.org/esr/structure-packing

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Accessing Members using Pointer to Structure

The operator –> can be used to access structure members using
a pointer

typedef struct {
int number;
double value;

} record_s;

record_s a;
record_s *p = &a;

printf("Number %d\n", p->number);

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 16 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Structure Variables as a Function Parameter

Structure variable can be pass to a function and also returned
We can pass/return the struct itself

void print_record(struct record rec) {
printf("record: number(%d), value(%lf)\n",
rec.number, rec.value);

}

or as a pointer to a structure
void print_item(item *v) {

printf("item: n(%d), v(%lf)\n", v->n, v->v);
}

Passing the structure by
value, a new variable is allocated on the stack and data are copied

Be aware of shallow copy of pointer data fields.
pointer only the address is passed to the function

lec05/struct.c

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 17 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Union – variables with Shared Memory

Union is a set of members, possibly of different types
All the members share the same memory

Members are overlapping

The size of the union is according to the largest member
Union is similar to the struct and particular members can be
accessed using . or -> for pointers
The declaration, union tag, and type definition is also similar to
the struct

1 union Nums {
2 char c;
3 int i;
4 };
5 Nums nums; /* THIS IS NOT ALLOWED! Type Nums is not known! */
6 union Nums nums;

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 19 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example union 1/2
A union composed of variables of the types: char, int, and double

1 int main(int argc, char *argv[])
2 {
3 union Numbers {
4 char c;
5 int i;
6 double d;
7 };
8 printf("size of char %lu\n", sizeof(char));
9 printf("size of int %lu\n", sizeof(int));

10 printf("size of double %lu\n", sizeof(double));
11 printf("size of Numbers %lu\n", sizeof(union Numbers));
12
13 union Numbers numbers;
14

15 printf("Numbers c: %d i: %d d: %lf\n", numbers.c,
numbers.i, numbers.d);

Example output:
size of char 1
size of int 4
size of double 8
size of Numbers 8
Numbers c: 48 i: 740313136 d: 0.000000 lec05/union.c

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 20 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example union 2/2
The particular members of the union

1 numbers.c = ’a’;
2 printf("\nSet the numbers.c to ’a’\n");
3 printf("Numbers c: %d i: %d d: %lf\n", numbers.c, numbers.i,

numbers.d);
4
5 numbers.i = 5;
6 printf("\nSet the numbers.i to 5\n");
7 printf("Numbers c: %d i: %d d: %lf\n", numbers.c, numbers.i,

numbers.d);
8
9 numbers.d = 3.14;

10 printf("\nSet the numbers.d to 3.14\n");
11 printf("Numbers c: %d i: %d d: %lf\n", numbers.c, numbers.i,

numbers.d);

Example output:
Set the numbers.c to ’a’
Numbers c: 97 i: 1374389601 d: 3.140000

Set the numbers.i to 5
Numbers c: 5 i: 5 d: 3.139999

Set the numbers.d to 3.14
Numbers c: 31 i: 1374389535 d: 3.140000

lec05/union.c
Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 21 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Initialization of Unions

The union variable can be initialized in the declaration
1 union {
2 char c;
3 int i;
4 double d;
5 } numbers = { ’a’ };

Only the first member can be initialized

In C99, we can use the designated initializers
1 union {
2 char c;
3 int i;
4 double d;
5 } numbers = { .d = 10.3 };

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 22 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Type Definition – typedef
The typedef can also be used to define new data types, not only
structures and unions but also pointers or pointers to functions
Example of the data type for pointers to double or a new type
name for int:

1 typedef double* double_p;
2 typedef int integer;
3 double_p x, y;
4 integer i, j;

The usage is identical to the default data types
1 double *x, *y;
2 int i, j;

Definition of the new data types (using typedef) in header files
allows a systematic use of new data types in the whole program

See, e.g., <inttypes.h>

The main advantage of defining a new type is for complex data
types such as structures and pointers to functions

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 24 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Enumeration Tags and Type Names
Enum allows to define a subset of integer values and named them
We can define enumeration tag similarly to struct and union

enum suit { SPADES, CLUBS, HEARTS, DIAMONDS };
enum s1, s2;

A new enumeration type can be defined using the typedef keyword
typedef enum { SPADES, CLUBS, HEARTS, DIAMONDS } suit_t;
suit_t s1, s2;

The enumeration can be considered as an int value
However, we should avoid to directly set enum variable as an integer,
as e.g., value 10 does not correspond to any suit.

Enumeration can be used in a structure to declare “tag fields”
typedef struct {

enum { SPADES, CLUBS, HEARTS, DIAMONDS } suit;
enum { RED, BLACK} color;

} card;
By using enum we clarify meaning of the suit and color data fields.

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 26 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example – Enumerated Type as Subscript 1/3

Enumeration constants are integers, and they can be used as subscripts
We can also use them to initialize an array of structures

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 enum weekdays { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };
6
7 typedef struct {
8 char *name;
9 char *abbr; // abbreviation

10 } week_day_s;
11
12 const week_day_s days_en[] = {
13 [MONDAY] = { "Monday", "mon" },
14 [TUESDAY] = { "Tuesday", "tue" },
15 [WEDNESDAY] = { "Wednesday", "wed" },
16 [THURSDAY] = { "Thursday", "thr" },
17 [FRIDAY] = { "Friday", "fri" },
18 }; lec05/demo-struct.c

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 27 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example – Enumerated Type as Subscript 2/3

We can prepare an array of structures for particular language
The program prints the name of the week day and particular
abbreviation

19 const week_day_s days_cs[] = {
20 [MONDAY] = { "Pondeli", "po" },
21 [TUESDAY] = { "Utery", "ut" },
22 [WEDNESDAY] = { "Streda", "st" },
23 [THURSDAY] = { "Ctvrtek", "ct" },
24 [FRIDAY] = { "Patek", "pa" },
25 };
26
27 int main(int argc, char *argv[], char **envp)
28 {
29 int day_of_week = argc > 1 ? atoi(argv[1]) : 1;
30 if (day_of_week < 1 || day_of_week > 5) {
31 fprintf(stderr, "(EE) File: ’%s’ Line: %d -- Given day of

week out of range\n", __FILE__, __LINE__);
32 return 101;
33 }
34 day_of_week -= 1; // start from 0 lec05/demo-struct.c

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 28 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example – Enumerated Type as Subscript 3/3

Detection of the user “locale” is based on the set environment
variables

For simplicity we just detect Czech based on occurrence of ’cs’ sub-
string in LC_CTYPE environment variable.

35 _Bool cz = 0;
36 while (*envp != NULL) {
37 if (strstr(*envp, "LC_CTYPE") && strstr(*envp, "cs")) {
38 cz = 1;
39 break;
40 }
41 envp++;
42 }
43 const week_day_s *days = cz ? days_cs : days_en;
44

45 printf("%d %s %s\n",
46 day_of_week,
47 days[day_of_week].name,
48 days[day_of_week].abbr);
49 return 0;
50 } lec05/demo-struct.c

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 29 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Bitwise Operators

In low-level programming, such as programs for MCU (micro con-
troller units), we may need to store information as single bits or
collection of bits
To set or extract particular bit, we can use bitwise operators,
e.g., a 16-bit unsigned integer variable uint16_t i

Set the 4 bit of i
if (i & 0x0010) ...

Clear the 4 bit of i
i &= ∼0x0010;

We can give names to particular bits
35 #define RED 1
36 #define GREEN 2
37 #define BLUE 3
38

39 i |= RED; // sets the RED bit
40 i &= ~GREEN; // clears the GREEN bit
41 if (i & BLUE) ... // test BLUE bit

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 31 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Bit-Fields in Structures
In addition to bitwise operators, we can declare structures whose
members represent bit-fields
E.g., time stored in 16 bits
typedef struct {

uint16_t seconds: 5; // use 5 bits to store seconds
uint16_t minutes: 6; // use 6 bits to store minutes
uint16_t hours: 5; //use 5 bits to store hours

} file_time_t;

file_time_t time;
We can access the members as a regular structure variable

time.seconds = 10;
The only restriction is that the bit-fields do not have address in the
usual sense, and therefore, using address operator & is not allowed

scanf("%d", &time.hours); // NOT ALLOWED!

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 32 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Bit-Fields Memory Representation

The way how a compiler handle bit-fields depends on the notion of
the storage units
Storage units are implementation defined (e.g., 8 bits, 16 bits, etc.)
We can omit the name of the bit-field for padding, i.e., to ensure
other bit fields are properly positioned

typedef struct {
unsigned int seconds: 5;
unsigned int minutes: 6;
unsigned int hours: 5;

} file_time_int_s;

// size 4 bytes
printf("Size %lu\n", sizeof(

file_time_int_s));

typedef struct {
unsigned int seconds: 5;
unsigned int : 0;
unsigned int minutes: 6;
unsigned int hours: 5;

} file_time_int_skip_s;

// size 8 bytes because of
padding

printf("Size %lu\n", sizeof(
file_time_int_skip_s));

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 33 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Bit-Fields Example
typedef struct {

unsigned int seconds: 5;
unsigned int minutes: 6;
unsigned int hours: 5;

} file_time_int_s;

void print_time(const file_time_s *t)
{

printf("%02u:%02u:%02u\n", t->hours, t->minutes, t->
seconds);

}

int main(void)
{

file_time_s time = { // designated initializers
.hours = 23, .minutes = 7, .seconds = 10 };

print_time(&time);
time.minutes += 30;
print_time(&time);

// size 2 bytes (for 16 bit short
printf("Size of file_time_s %lu\n", sizeof(time));
return 0;

} lec05/bitfields.c
Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 34 / 53

Organization of Source Files Preprocessor Building Programs

Part II

Preprocessor and Building Programs

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 35 / 53

Organization of Source Files Preprocessor Building Programs

Variables – Scope and Visibility

Local variables
A variable declared in the body of a function is the local variable
Using the keyword static we can declared static local variables
Local variables are visible (and accessible) only within the function

External variables (global variables)
Variables declared outside the body of any function
They have static storage duration; the value is stored as the
program is running Like a local static variable
External variable has file scope, i.e., it is visible from its point of
the declaration to the end of the enclosing file

We can refer to the external variable from other files by using the
extern keyword
In a one file, we define the variable, e.g., as int var;
In other files, we declare the external variable as extern int var;

We can restrict the visibility of the global variable to be within
the single file only by the static keyword

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 37 / 53

Organization of Source Files Preprocessor Building Programs

Organizing C Program

Particular source files can be organized in many ways
A possible ordering of particular parts can be as follows:
1. #include directives
2. #define directives
3. Type definitions
4. Declarations of external variables
5. Prototypes for functions other than main() (if any)
6. Definition of the main() function (if any)
7. Definition of other functions

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 38 / 53

Organization of Source Files Preprocessor Building Programs

Header Files

Header files provide the way how to share defined macros, vari-
ables, and use functions defined in other modules (source files) and
libraries
#include directive has two forms

#include <filename> – to include header files that are searched
from system directives
#include "filename" – to include header files that are searched
from the current directory

The places to be searched for the header files can be altered, e.g.,
using the command line options such as -Ipath

It is not recommended to use brackets for including own header files
It is also not recommended to use absolute paths

Neither windows nor unix like absolute paths

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 39 / 53

Organization of Source Files Preprocessor Building Programs

Example of Sharing Macros and Type Definition, Function
Prototypes and External Variables

Let have three files graph.h, graph.c, and main.c
We would like to share the macros and types, and also functions
and external variables defined in graph.c in main.c

graph.h

#define GRAPH_SIZE 1000

typedef struct {
...

} edget_s;

typedef struct {
edges_s *edges;
int size;

} graph_s;

// make the graph_global extern
extern graph_s graph_global;

// declare function prototype
graph_s* load_graph(const char *filename);

graph.c

#include "graph.h"

graph_s graph_global = { NULL, GRAPH_SIZE };

graph_s* load_graph(const char *filename)
{

...
}

main.c
#include "graph.h"

int main(int argc, char *argv[])
{

// we can use function from graph.c
graph_s *graph = load_graph(...
// we can also use the global variable
// declared as extern in the graph.h
if (global_graph.size != GRAPH_SIZE) { ...

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 40 / 53

Organization of Source Files Preprocessor Building Programs

Protecting Header Files

Header files can be included from other header files
It may happen that the same type can be defined multiple times
due to including header files
We can protect header files from multiple includes by using the
preprocessor macros
#ifndef GRAPH_H
#define GRAPH_H
...
// header file body here
// it is processed only if GRAPH_H is not defined
// therefore, after the first include,
// the macro GRAPH_H is defined
// and the body is not processed during therepeated includes
...
#endif

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 41 / 53

Organization of Source Files Preprocessor Building Programs

Macros

Macro definitions – #define
The macros can be parametrized, i.e., function-like macros
Already defined macros can be undefined by the #undef command

File inclusion – #include

Conditional compilation – #if, #ifdef, #ifndef, #elif, #else,
#endif

Miscellaneous directives

#error – produces error message, e.g., combined with #if to test
sufficient size of MAX_INT
#line – alter the way how lines are numbered (__LINE__ and
__FILE__ macros)
#pragma – provides a way to request a special behaviour from the
compiler

C99 introduces _Pragma operator used for “destringing” the string
literals and pass them to #pragma operator.

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 43 / 53

Organization of Source Files Preprocessor Building Programs

Predefined Macros

There are several predefined macros that provide information about the
compilation and compiler as integer constant or string literal

__LINE__ – Line number of the file being compiled (processed)
__FILE__ – Name of the file being compiled
__DATE__ – Date of the compilation (in the form "Mmm dd yyyy")
__TIME__ – Time of the compilation (in the form "hh:mm:ss")
__STDC__ – 1 if the compiler conforms to the C standard (C89 or C99)

C99 introduces further macros, e.g.,
__STDC_VERSION__ – Version of C standard supported

For C89 it is 199409L
For C99 it is 199901L

It also introduces identifier __func__ which provides the name of the
actual function

It is actually not a macro, but behaves similarly

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 44 / 53

Organization of Source Files Preprocessor Building Programs

Defining Macros Outside a Program

We can control the compilation using the preprocessor macros
The macros can be defined outside a program, e.g., during the
compilation by passing particular arguments to the compiler
For gcc and clang it is the -D argument, e.g.,

gcc -DDEBUG=1 main.c – define macro DEBUG and set it to 1
gcc -DNDEBUG main.c – define NDEBUG to disable assert()
macro

See man assert

The macros can be also undefined, e.g., by the -U argument

Having the option to define the macros by compiler options, we can
control the compilation process according to the particular environ-
ment and desired target platform

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 45 / 53

Organization of Source Files Preprocessor Building Programs

Compiling and Linking

Programs composed of several modules (source files) can be build
by an individual compilation of particular files, e.g., using -c option
of the compiler
Then, all object files can be linked to a single binary executable file
Using the -llib, we can add a particular lib library
E.g., let have source files module1.c, module2.c, and main.c that
also depends on the math library (-lm)

The program can be build as follows
clang -c module1.c -o module1.o
clang -c module2.c -o module2.o
clang -c main.c -o main.o

clang main.o module2.o module1.o -lm -o main

Be aware that the order of the files is important for resolving dependen-
cies! It is incremental, i.e., only the function needed in first modules
are linked from the other modules.

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 47 / 53

Organization of Source Files Preprocessor Building Programs

Makefile
Some building system may be suitable for project with several files
One of the most common tools is the GNU make or the make

Notice, there are many building systems that may provide different features,
e.g., designed for the fast evaluation of the dependencies like ninja

For make, the building rules are written in the Makefile files
http://www.gnu.org/software/make/make.html

The rules define targets, dependencies, and action to build the
targets based on the dependencies

target : dependencies colon

action tabulator
Target can be symbolic name or file name

main.o : main.c
clang -c main.c -o main.o

The receipt to build the program can be simple, e.g., using
explicitly the file names and compiler options

The main advantage of the Makefiles is flexibility arising from unified variables,
internal make variables, and templates as most of the sources can be compiled
in pretty much similar way.

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 48 / 53

http://www.gnu.org/software/make/make.html

Organization of Source Files Preprocessor Building Programs

Example Makefile
Pattern rule for compiling source files .c to object files .o
Wildcards are used to compile all source files in the directory

Can be suitable for small project. In general, explicit listings of the
files is more appropriate.

CC:=ccache $(CC)
CFLAGS+=-O2

OBJS=$(patsubst %.c,%.o,$(wildcard *.c))

TARGET=program

bin: $(TARGET)

$(OBJS): %.o: %.c
$(CC) -c $< $(CFLAGS) $(CPPFLAGS) -o $@

$(TARGET): $(OBJS)
$(CC) $(OBJS) $(LDFLAGS) -o $@

clean:
$(RM) $(OBJS) $(TARGET)

ccache

CC=clang make vs CC=gcc make

The order of the files is important during the linking!

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 49 / 53

Part III

Part 3 – Assignment HW 05

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 50 / 53

HW 05 – Assignment
Topic: Matrix Operations

Mandatory: 2 points; Optional: 2 points; Bonus : 5

Motivation: Variable Length Array (VLA) and 2D arrays
Goal: Familiar yourself with VLA and pointers

Eventually with dynamic allocation and structuresAssignment:
https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw05

Read matrix expression – matrices and operators (+, -, and *) from
standard input (dimensions of the matrices are provided)
Compute the result of the matrix expression or report an error

Dynamic allocation is not needed!
Functions for implementing +, *, and - operators are highly recommended!

Optional assignment – compute the matrix expression with respect
to the priority of * operator over + and - operators

Dynamic allocation is not need, but it can be helpful.

Bonus assignment – Read declaration of matrices prior the matrix
expression

Dynamic allocation can be helpful, structures are not needed but can be helpful.

Deadline: 31.03.2018, 23:59:59 PDT, Bonus part 12.05.2018
PDT – Pacific Daylight Time

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 51 / 53

https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw05

Topics Discussed

Summary of the Lecture

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 52 / 53

Topics Discussed

Topics Discussed

Data types
Structure variables
Unions
Enumeration
Type definition
Bit-Fields

Building Programs
Variables and their scope and visibility
Organizing source codes and using header files
Preprocessor macros
Makefiles

Next: Input/output operations and standard library

Jan Faigl, 2018 B3B36PRG – Lecture 05: Data types 53 / 53

	1
	Structures – struct
	Unions
	Type definition – typedef
	Enumerations – enum
	Bit-Fields

	2
	Organization of Source Files
	Preprocessor
	Building Programs

	3
	Summary
	Topics Discussed

