Data types: Struct, Union, Enum, Bit
Fields. Preprocessor and Building
Programs

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

Lecture 05
B3B36PRG — C Programming Language

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 1/53



Overview of the Lecture

m Part 1 — Data types

Structures — struct

Unions

Type definition — typedef

Enumerations — enum

Bit-Fields K. N. King: chapters 16 and 20

m Part 2 — Preprocessor and Building Programs
Organization of Source Files

Preprocessor

Bwldmg Programs K. N. King: chapters 10, 14, and 15
m Part 3 — Assignment HW 05

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 2 /53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Part |

Data types — Struct, Union, Enum and Bit
Fields

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 3 /53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Structures, Unions, and Enumerations

m Structure is a collection of values, possibly of different types

m It is defined with the keyword struct
m Structures represent records of data fields

m Union is also a collection of values, but its members share the
same storage

Union can store one member at a time, but not all simultaneously.

m Enumeration represents named integer values

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 4 /53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

struct

m Structure struct is composed of a finite set of data field members
that can be of different type

Structure is defined by the programmer as a new data type

It allows storing a collection of the related data fields

Each structure has a separate name space for its members
Declaration of the struct variable is

#define USERNAME_LEN 8
struct {
int login_count;
char username [USERNAME_LEN + 1];
int last_login; // date as the number of seconds
// from 1.1.1970 (unix time)
} user_account; // variable of the struct defined type

m The declaration follows other variable declaration where struct

{...} specifies the type and user_account the variable name

We access the members using the . operator, e.g.,
user_account.login_count = 0;

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 6 /53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Initialization of the Structure Variables and Assignment
Operator

m Structure variables can be initialized in the declaration
m In C99, we can also use the designated initializers

struct {
int login_count;
char name[USENAME_LEN + 1];
int last_login;
} userl = { 0, "admin", 1477134134 }, //get unix time ‘date +Js¢
// designated initializers in C99
user2 = { .name = "root", .login_count = 128 };

printf("Userl ’%s’ last login on: %d\n", userl.name, userl.last_login);
printf ("User2 ’%s’ last login on: %d\n", user2.name, user2.last_login);

user2 = userl; // assignment operator structures
printf ("User2 ’%s’ last login on: %d\n", user2.name, user2.last_login);

lecO5/structure_init.c
m The assignment operator = is defined for the structure variables of
the same type

No other operator like '= or == is defined for the structures!

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 7 /53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Structure Tag

m Declaring a structure tag allows to identify a particular struc-
ture and avoids repeating all the data fields in the structure variable

struct user_account {
int login_count;
char username [USERNAME_LEN + 1];
int last_login;
}; Notice VLA is not allowed in structure type.

m After creating the user_account tag, variables can be declared
struct user_account userl, user2;
m The defined tag is not a type name, therefore it has to be used
with the struct keyword

m The new type can be defined using the typedef keyword as
typedef struct { ... } new_type_name;

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 8 /53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Example of Defining Structure

m Without definition of the new type (using (typedef) adding the
keyword struct before the structure tag is mandatory

struct record { typedef struct {
int number; int n;
double value; double v;

}; } item;

record r; /* THIS IS NOT ALLOWED! x/
/* Type record is not known */

struct record r; /* Keyword struct is required */
item 1ij; /* type item defined using typedef */

m Introducing new type by typedef, the defined struct type can be

used without the struct keyword
lecO5/struct.c

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 9 /53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit

Structure Tag and Structure Type

m Using struct record we defined a new structure tag record

struct record {
int number;
double value;

"m The tag identifier record is defined in the name space of the

structure tags It is not mixed with other type names

m Using the typedef, we introduced new type named record
typedef struct record record;
m We defined a new global identifier record as the type name for
the struct record
m Structure tag and definition of the type can be combined

typedef struct record {
int number;
double value;

} record;

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types

-Fields

10 / 53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Example struct — Assignment

m The assignment operator = can be used for two variables of the
same struct type

struct record { typedef struct {
int number; int n;
double value; double v;

}; } item;

struct record recl = { 10, 7.12 };
{5, 13.1 };

struct record rec2
item 1i;
print_record(recl); /* number(10), value(7.120000) */
print_record(rec2); /* number(5), value(13.100000) */
recl = rec2;

i = recl; /* THIS IS NOT ALLOWED! */
print_record(recl); /* number(5), value(13.100000) */

lecO5/struct.c

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 11 / 53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Example struct — Direct Copy of the Memory

m Having two structure variables of the same size, the content can
be directly copied using memory copy
E.g., using memcpy () from the <string.h>
struct record r = { 7, 21.4};

item i = { 1, 2.3 };
print_record(r); /* number(7), value(21.400000) */

print_item(&i); /* n(1), v(2.300000) */

if (sizeof (i) == sizeof(r)) {
printf("i and r are of the same size\n");
memcpy (&i, &r, sizeof(i));
print_item(&i); /* n(7), v(21.400000) */

3

m Notice, in this example, the interpretation of the stored data in both

structures is identical. In general, it may not be always the case.
lecO5/struct.c

B3B36PRG — Lecture 05: Data types 12 / 53

Jan Faigl, 2018



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Size of Structure Variables

m Data representation of the structure may be different from the
sum of sizes of the particular data fields (types of the members)

struct record { typedef struct {
int number; int n;
double value; double v;

}; } item;

printf("Size of int: %lu size of double: %lu\n", sizeof
(int), sizeof(double));

printf("Size of record: %lu\n", sizeof(struct record));

printf("Size of item: %lu\n", sizeof(item));

Size of int: 4 size of double: 8
Size of record: 16

Size of item: 16
lecO5/struct.c

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 13 / 53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Size of Structure Variables 1/2

m Compiler may align the data fields to the size of the word (address)

of the particularly used architecture
E.g., 8 bytes for 64-bits CPUs.

m A compact memory representation can be explicitly prescribed for
the clang and gcc compilers by the __attribute__ ((packed))

struct record_packed {
int n;
double v;

} __attribute__((packed));

= Or typedef struct __attribute__((packed)) {
int n;
double v;
} item_packed;
lecO5/struct.c

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 14 / 53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Size of Structure Variables 2/2

printf("Size of int: %lu size of double: %lu\n",
sizeof (int), sizeof (double));

printf ("record_packed: %lu\n", sizeof (struct record_packed));
printf("item_packed: lu\n", sizeof(item_packed));

Size of int: 4 size of double: 8
Size of record_packed: 12
Size of item_packed: 12
lecO5/struct.c
m The address alignment provides better performance for addressing
the particular members at the cost of higher memory requirements

http://www.catb.org/esr/structure-packing

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 15 / 53


http://www.catb.org/esr/structure-packing

Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Accessing Members using Pointer to Structure

m The operator —> can be used to access structure members using
a pointer

typedef struct {
int number;
double value;
} record_s;

record_s a;
record_s *p = &a;

printf ("Number %d\n", p->number);

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 16 / 53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Structure Variables as a Function Parameter

m Structure variable can be pass to a function and also returned

m We can pass/return the struct itself
void print_record(struct record rec) {
printf("record: number(%d), value(%1lf)\n",
rec.number, rec.value);

}

m or as a pointer to a structure
void print_item(item *v) {
printf("item: n(%d), v(%1f)\n", v->n, v->v);
}

m Passing the structure by
m value, a new variable is allocated on the stack and data are copied

Be aware of shallow copy of pointer data fields.
m pointer only the address is passed to the function
lecO5/struct.c

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 17 / 53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Union — variables with Shared Memory

Union is a set of members, possibly of different types

All the members share the same memory
Members are overlapping

m The size of the union is according to the largest member

m Union is similar to the struct and particular members can be
accessed using . or -> for pointers

m The declaration, union tag, and type definition is also similar to
the struct

union Nums {
char c;
int i;
};
Nums nums; /* THIS IS NOT ALLOWED! Type Nums is not known! */
union Nums nums;

o0 WN

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 19 / 53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Example union 1/2
m A union composed of variables of the types: char, int, and double

printf("size of char %lu\n", sizeof(char));
printf("size of int %lu\n", sizeof(int ));

printf("size of double %lu\n", sizeof (double));
printf("size of Numbers %lu\n", sizeof(union Numbers));

1 int main(int argc, char *argv[])
2 {

3 union Numbers {

4 char c;

5 int i;

6 double d;

7

8

9

[
o

o=
N =

[
w

union Numbers numbers;

o
»

printf ("Numbers c: %d i: %d d: %1f\n", numbers.c,
numbers.i, numbers.d);

[
o

m Example output:
size of char 1
size of int 4
size of double 8
size of Numbers 8

Numbers c: 48 i: 740313136 d: 0.000000 .
lecO5/union.c

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 20 / 53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Example union 2/2
m The particular members of the union

1 numbers.c = ’a’;

2 printf("\nSet the numbers.c to ’a’\n");

3 printf("Numbers c: %d i: %d d: %1f\n", numbers.c, numbers.i,
. numbers.d) ;

5 numbers.i = 5;

6 printf("\nSet the numbers.i to 5\n");

7 printf ("Numbers c: %d i: %d d: %1f\n", numbers.c, numbers.i,

numbers.d) ;

0

o numbers.d = 3.14;

10 printf("\nSet the numbers.d to 3.14\n");

11 printf ("Numbers c: %d i: %d d: %1f\n", numbers.c, numbers.i,
numbers.d) ;

m Example output:

Set the numbers.c to ’a’
Numbers c: 97 i: 1374389601 d: 3.140000

Set the numbers.i to 5
Numbers c: 5 i: 5 d: 3.139999

Set the numbers.d to 3.14
Numbers c: 31 i: 1374389535 d: 3.140000

lecO5/union.c
Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 21 /53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Initialization of Unions

The union variable can be initialized in the declaration

union {
char c;
int 1i;
double d;
} numbers = { ’a’ };

g b WN =

Only the first member can be initialized

In C99, we can use the designated initializers

union {
char c;
int 1i;
double d;
} numbers = { .d = 10.3 };

g b WN =

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 22 /53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Type Definition — typedef

m The typedef can also be used to define new data types, not only
structures and unions but also pointers or pointers to functions
m Example of the data type for pointers to double or a new type

name for int:
1 typedef doublex double_p;

2 typedef int integer;
3 double_p x, y;
4 1integer i, j;
m The usage is identical to the default data types
1 double *x, *y;
2 int i, j;
m Definition of the new data types (using typedef) in header files

allows a systematic use of new data types in the whole program
See, e.g., <inttypes.h>

m The main advantage of defining a new type is for complex data
types such as structures and pointers to functions

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 24 / 53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Enumeration Tags and Type Names

m Enum allows to define a subset of integer values and named them

m We can define enumeration tag similarly to struct and union
enum suit { SPADES, CLUBS, HEARTS, DIAMONDS };
enum sl1, s2;

m A new enumeration type can be defined using the typedef keyword

typedef enum { SPADES, CLUBS, HEARTS, DIAMONDS } suit_t;
suit_t s1, s2;
m The enumeration can be considered as an int value

However, we should avoid to directly set enum variable as an integer,
as e.g., value 10 does not correspond to any suit.

m Enumeration can be used in a structure to declare “tag fields”
typedef struct {
enum { SPADES, CLUBS, HEARTS, DIAMONDS } suit;
enum { RED, BLACK} color;

} card; . : , :
By using enum we clarify meaning of the suit and color data fields.

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 26 / 53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Example — Enumerated Type as Subscript 1/3

m Enumeration constants are integers, and they can be used as subscripts

m We can also use them to initialize an array of structures

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

enum weekdays { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };

0w ~N O AW N R

typedef struct {

char *name;

char *abbr; // abbreviation
} week_day_s;

©

o
= o

-
N

const week_day_s days_en[] = {
[MONDAY] = { "Monday", "mon" },
[TUESDAY] = { "Tuesday", "tue" },
[WEDNESDAY] = { "Wednesday", "wed" },
[THURSDAY] = { "Thursday", "thr" },
[FRIDAY] = { "Friday", "fri" },
}; lec05/demo-struct.c

e
0 N O o~ W

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 27 / 53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Example — Enumerated Type as Subscript 2/3

19
20
21
22
23
24

25
26

27
28
29
30
31

32
33
34

m We can prepare an array of structures for particular language

m The program prints the name of the week day and particular

abbreviation

const week_day_s days_cs[] = {
[MONDAY] = { "Pondeli", "po" },
[TUESDAY] = { "Utery", "ut" },
[WEDNESDAY] = { "Streda", "st" },
[THURSDAY] = { "Ctvrtek", "ct" },
[FRIDAY] = { "Patek", "pa" },

1

int main(int argc, char *argv[], char x*envp)
{
int day_of_week = argc > 1 7 atoi(argv[1]) : 1;
if (day_of_week < 1 || day_of_week > 5) {
fprintf (stderr, "(EE) File: ’Ys’ Line: %d -- Given day of
week out of range\n", __FILE__, __LINE__);
return 101;
}

day_of_week -= 1; // start from O lec05/demo-struct.c

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 28 / 53



Structures — struct Unions

Type definition — typedef

Enumerations — enum

Example — Enumerated Type as Subscript 3/3

m Detection of the user “locale” is based on the set environment

Bit-Fields

variables For simplicity we just detect Czech based on occurrence of 'cs’ sub-
string in LC_CTYPE environment variable.
35 _Bool cz = 0;
36 while (*envp != NULL) {
37 if (strstr(*xenvp, "LC_CTYPE") && strstr(*envp, "cs")) {
38 cz = 1;
39 break;
40 }
41 envpt+;
42 }
43 const week_day_s *days = cz 7 days_cs : days_en;
44
45 printf("%d %s %s\n",
46 day_of_week,
47 days[day_of_week] .name,
48 days[day_of _week] .abbr) ;
49 return O;
50 ) lecO5/demo-struct.c

Jan Faigl, 2018

B3B36PRG — Lecture 05: Data types

29 / 53



Structures — struct Unions Type definition — typedef Enumerations — enum

Bitwise Operators

m In low-level programming, such as programs for MCU (micro con-

35
36

37
38

Bit-Fields

troller units), we may need to store information as single bits or

collection of bits

To set or extract particular bit, we can use bitwise operators,

e.g., a 16-bit unsigned integer variable uint16_t i
m Set the 4 bit of i
if (i & 0x0010)
m Clear the 4 bit of i
i &= ~0x0010;

We can give names to particular bits

#define RED 1
#define GREEN 2
#define BLUE 3

30 i |= RED; // sets the RED bit
40 i &= “GREEN; // clears the GREEN bit
a1 if (i & BLUE) ... // test BLUE bit
Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types

31 /53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Bit-Fields in Structures

m In addition to bitwise operators, we can declare structures whose
members represent bit-fields
m E.g., time stored in 16 bits
typedef struct {
uintlé_t seconds: 5; // use 5 bits to store seconds
uintl6 t minutes: 6; // use 6 bits to store minutes
uintl6 t hours: 5; //use 5 bits to store hours
} file_time_t;

file_time_t time;
m We can access the members as a regular structure variable
time.seconds = 10;
m The only restriction is that the bit-fields do not have address in the
usual sense, and therefore, using address operator & is not allowed

scanf ("%d", &time.hours); // NOT ALLOWED!

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 32 /53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Bit-Fields Memory Representation

m The way how a compiler handle bit-fields depends on the notion of
the storage units

m Storage units are implementation defined (e.g., 8 bits, 16 bits, etc.)

m We can omit the name of the bit-field for padding, i.e., to ensure
other bit fields are properly positioned

typedef struct { typedef struct {
unsigned int seconds: 5; unsigned int seconds: 5;
unsigned int minutes: 6; unsigned int : O;
unsigned int hours: 5; unsigned int minutes: 6;
} file_time_int_s; unsigned int hours: 5;

// size 4 bytes } file_time_int_skip_s;

printf ("Size %lu\n", sizeof( // size 8 bytes because of
file_time_int_s)); padding
printf("Size %lu\n", sizeof(
file_time_int_skip_s));

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 33 /53



Structures — struct Unions Type definition — typedef Enumerations — enum Bit-Fields

Bit-Fields Example
typedef struct {
unsigned int seconds: 5;
unsigned int minutes: 6;
unsigned int hours: 5;
} file_time_int_s;

void print_time(const file_time_s *t)

printf ("%02u:%02u:%02u\n", t->hours, t->minutes, t->
seconds) ;

}

int main(void)
{
file_time_s time = { // designated initializers
.hours = 23, .minutes = 7, .seconds = 10 };
print_time(&time);
time.minutes += 30;
print_time(&time) ;

// size 2 bytes (for 16 bit short
printf("Size of file_time_s %lu\n", sizeof(time));
return O;

} lecO5/bitfields.c

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 34 /53



Organization of Source Files Preprocessor Building Programs

Part |

Preprocessor and Building Programs

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 35 /53



Organization of Source Files Preprocessor Building Programs

Variables — Scope and Visibility

m Local variables

m A variable declared in the body of a function is the local variable
m Using the keyword static we can declared static local variables
m Local variables are visible (and accessible) only within the function

m External variables (global variables)

m Variables declared outside the body of any function
m They have static storage duration; the value is stored as the
program is running Like a local static variable
m External variable has file scope, i.e., it is visible from its point of
the declaration to the end of the enclosing file
m We can refer to the external variable from other files by using the
extern keyword
m In a one file, we define the variable, e.g., as int var;
m In other files, we declare the external variable as extern int var;
m We can restrict the visibility of the global variable to be within
the single file only by the static keyword

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 37 /53



Organization of Source Files Preprocessor

Organizing C Program

m Particular source files can be organized in many ways

m A possible ordering of particular parts can be as follows:
1.

NoGaRsewWN

Jan Faigl, 2018

#include directives

#define directives

Type definitions

Declarations of external variables

Prototypes for functions other than main() (if any)
Definition of the main() function (if any)
Definition of other functions

B3B36PRG — Lecture 05: Data types

Building Programs

38 / 53



Organization of Source Files Preprocessor Building Programs

Header Files

Jan Faigl,

Header files provide the way how to share defined macros, vari-
ables, and use functions defined in other modules (source files) and
libraries

#include directive has two forms

m #include <filename> — to include header files that are searched
from system directives

m #include "filename" — to include header files that are searched
from the current directory

The places to be searched for the header files can be altered, e.g.,
using the command line options such as -Ipath

It is not recommended to use brackets for including own header files

It is also not recommended to use absolute paths

Neither windows nor unix like absolute paths

2018 B3B36PRG — Lecture 05: Data types

39 /53



Organization of Source Files Preprocessor Building Programs

Example of Sharing Macros and Type Definition, Function
Prototypes and External Variables

m Let have three files graph.h, graph.c, and main.c
m We would like to share the macros and types, and also functions
and external variables defined in graph.c in main.c

m graph.h m graph.c
#define GRAPH_SIZE 1000 #include "graph.h"
typedef struct { graph_s graph_global = { NULL, GRAPH_SIZE };
} edget_s; graph_s* load_graph(const char *filename)
{

typedef struct {

edges_s *edges; ¥

int size; .
} graph_s; H main.c

#include "graph.h"
// make the graph_global extern

extern graph_s graph_global; int main(int argc, char *argv[])

{
// declare function prototype

: // we can use function from graph.c
graph_s* load_graph(const char *filename);

graph_s *graph = load_graph(...

// we can also use the global variable

// declared as extern in the graph.h

if (global_graph.size != GRAPH_SIZE) { ...

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 40 / 53



Organization of Source Files Preprocessor Building Programs

Protecting Header Files

m Header files can be included from other header files

m It may happen that the same type can be defined multiple times
due to including header files

m We can protect header files from multiple includes by using the
preprocessor macros

#ifndef GRAPH_H
#define GRAPH_H

// header file body here

// it is processed only if GRAPH_H is not defined

// therefore, after the first include,

// the macro GRAPH_H is defined

// and the body is not processed during therepeated includes

#endif

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 41 / 53



Organization of Source Files Preprocessor Building Programs
Macros

m Macro definitions — #define

m The macros can be parametrized, i.e., function-like macros

m Already defined macros can be undefined by the #undef command
m File inclusion — #include

m Conditional compilation — #if, #ifdef, #ifndef, #elif, #else,
#endif
m Miscellaneous directives

m #error — produces error message, e.g., combined with #if to test
sufficient size of MAX_INT
m #line — alter the way how lines are numbered (__LINE__ and

__FILE__ macros)
m #pragma — provides a way to request a special behaviour from the
compiler

C99 introduces _Pragma operator used for ‘destringing” the string
literals and pass them to #pragma operator.

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 43 / 53



Organization of Source Files Preprocessor Building Programs

Predefined Macros

m There are several predefined macros that provide information about the
compilation and compiler as integer constant or string literal

m __LINE__ — Line number of the file being compiled (processed)

m __FILE__ — Name of the file being compiled

m __DATE__ — Date of the compilation (in the form "Mmm dd yyyy")

m __TIME__ — Time of the compilation (in the form "hh:mm:ss")

m __STDC__ — 1 if the compiler conforms to the C standard (C89 or C99)
m C99 introduces further macros, e.g.,

m __STDC_VERSION__ — Version of C standard supported

m For C89 it is 199409L
m For C99 it is 199901L

m It also introduces identifier __func__ which provides the name of the
actual function

It is actually not a macro, but behaves similarly

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 44 / 53



Organization of Source Files Preprocessor Building Programs

Defining Macros Outside a Program

We can control the compilation using the preprocessor macros

The macros can be defined outside a program, e.g., during the
compilation by passing particular arguments to the compiler

For gcc and clang it is the -D argument, e.g.,

m gcc -DDEBUG=1 main.c — define macro DEBUG and set it to 1
m gcc -DNDEBUG main.c — define NDEBUG to disable assert ()
macro

See man assert

m The macros can be also undefined, e.g., by the -U argument

Having the option to define the macros by compiler options, we can
control the compilation process according to the particular environ-
ment and desired target platform

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 45 / 53



Organization of Source Files Preprocessor Building Programs

Compiling and Linking

m Programs composed of several modules (source files) can be build
by an individual compilation of particular files, e.g., using -c option
of the compiler

m Then, all object files can be linked to a single binary executable file

m Using the -1/ib, we can add a particular /ib library
m E.g., let have source files modulel.c, module2.c, and main.c that
also depends on the math library (-1m)
m The program can be build as follows
clang -c modulel.c -o modulel.o
clang -c module2.c -o module2.o
clang -c main.c -0 main.o

clang main.o module2.o modulel.o -1m -o main

Be aware that the order of the files is important for resolving dependen-
cies! It is incremental, i.e., only the function needed in first modules
are linked from the other modules.
Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 47 / 53



Organization of Source Files Preprocessor Building Programs

Makefile

Some building system may be suitable for project with several files

One of the most common tools is the GNU make or the make
Notice, there are many building systems that may provide different features,
e.g., designed for the fast evaluation of the dependencies like ninja

For make, the building rules are written in the Makefile files

http://wuw.gnu.org/software/make/make.html
The rules define targets, dependencies, and action to build the
targets based on the dependencies

target : dependencies colon

action tabulator

Target can be symbolic name or file name
main.o : main.c
clang -c main.c -o main.o

The receipt to build the program can be simple, e.g., using

explicitly the file names and compiler options

The main advantage of the Makefiles is flexibility arising from unified variables,
internal make variables, and templates as most of the sources can be compiled
in pretty much similar way.
Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 48 / 53


http://www.gnu.org/software/make/make.html

Organization of Source Files Preprocessor Building Programs

Example Makefile

m Pattern rule for compiling source files .c to object files .o

m Wildcards are used to compile all source files in the directory

Can be suitable for small project. In general, explicit listings of the
files is more appropriate.

CC:=ccache $(CC)
CFLAGS+=-02

0BJS=$ (patsubst %.c,%.0,$(wildcard *.c))
TARGET=program
bin: $(TARGET)

$(0BJS): %.o: %.c
$(CC) -c $< $(CFLAGS) $(CPPFLAGS) -o $@

$(TARGET) : $(0BJS)
$(CC) $(0BJS) $(LDFLAGS) -o $@

clean: ccache

$(RM) $(0BJS) $(TARGET) CC=clang make vs CC=gcc make

m The order of the files is important during the linking!

Jan Faigl, 2018

B3B36PRG — Lecture 05: Data types 49 / 53



Part Il
Part 3 — Assignment HW 05

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 50 / 53



HW 05 — Assignment

Topic: Matrix Operations
Mandatory: 2 points; Optional: 2 points; Bonus : 5

m Motivation: Variable Length Array (VLA) and 2D arrays

m Goal: Familiar yourself with VLA and pointers

- Assignment: Eventually with dynamic allocation and structures

https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw05
m Read matrix expression — matrices and operators (+, -, and *) from
standard input (dimensions of the matrices are provided)
m Compute the result of the matrix expression or report an error

Dynamic allocation is not needed!
Functions for implementing +, *, and - operators are highly recommended!

m Optional assignment — compute the matrix expression with respect
to the priority of * operator over + and - operators
Dynamic allocation is not need, but it can be helpful.
m Bonus assignment — Read declaration of matrices prior the matrix
expression

Dynamic allocation can be helpful, structures are not needed but can be helpful.

m Deadline: 31.03.2018, 23:59:59 PDT, Bonus part 12.05.2018

PDT — Pacific Daylight Time
Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 51 /53


https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw05

Topics Discussed

Summary of the Lecture

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 52 /53



Topics Discussed

Topics Discussed

m Data types

m Structure variables
m Unions

m Enumeration

m Type definition

m Bit-Fields

m Building Programs

m Variables and their scope and visibility

m Organizing source codes and using header files
m Preprocessor macros

m Makefiles

m Next: Input/output operations and standard library

Jan Faigl, 2018 B3B36PRG — Lecture 05: Data types 53 /53



	1
	Structures – struct
	Unions
	Type definition – typedef
	Enumerations – enum
	Bit-Fields

	2
	Organization of Source Files
	Preprocessor
	Building Programs

	3
	Summary
	Topics Discussed


