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Recap: Reinforcement Learning

’J Agent Il
state reward action
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» Feedback in form of Rewards

» Learn to act so as to maximize sum of expected rewards.

» In kuimaze package, env.step(action) is the method.

'Scheme from [2]
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. . For MDPs, k T, R for all ible stat d actions.
From off-line (MDPS) to on-line (RL) or s, we know or all possible states and actions

Markov decision process — MDPs. Off-line search, we know:
» A set of states s € S (map)

v

A set of actions per state. a € A

A transition model T(s,a,s’) or P(s'|s, a) (robot)

v

» A reward function R(s) (map, robot)

Looking for the optimal policy 7(s). We can plan/search before the robot
enters the environment.

On-line problem:
» T and R not known.

» Agent/robot must act and learn from experience.
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(Transition) Model-based learning

The main idea: Do something and:
» Learn an approximate model from experiences.
» Solve as if the model were correct.
Learning MDP model:
» Try s, a, observe s’, count s, a,s’.
» Normalize to get and estimate of P(s'|s, a)?
» Discover each R(s, a,s’) when experience.
Solve the learned MDP.

2The same as T(s,a,s’). Probability gives perhaps a better insight how to normalize.
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Model-free learning
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Model-free learning

v

v

v

v

R, T not known.
Move around, observe

And learn on the way.

Goal: learn the state values V(s) or_

(better) Q(s, a).
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Image from [1]

Executing policies - training, then learning from the observations. We
want to do the policy evaluation but the necessary model is not known.



Recap: V— and @— values
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~ =1, Rewards —1,+10, —10, and no confusion - deterministic
robot/agent. Rewards associated with leaving the state. Q values close
next to terminal state includes the actual reward and the transition cost
steping in, or better, leaving the last living state.

Q(s, a) - expected sum of rewards having taken the action and acting
according to the (optimal) policy.



Model-free TD learning, updating after each transition

» Observe, experience environment through
learning episodes, collecting:

/ / / ! /! 1
(s,a,r,s',a,r;s"a" r" ...)
» using t for trial /iteration:
(sl,al,rl,SQ,ag,r2,53...) = St,dt, I'ty St+1, - - -

» Update by mimicking Bellman updates after
each transition (s, a, r,s’)
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Think about s-a-s'-a'-s" tree with associated rewards. Episode starts in a
start state and ends in a terminal state.



The tree continues from s’ through a’ and so on until it terminates

Recap: Bellman equations for V/(s) and Q(s, a)

The value of a state s: @

V(s) = R(s)+~ymax Z T(s,a,s)V(s) A
a ) .
s’ ’ ‘\ N
- maxz T(s,a,s) [R(s,a,s") +~ V(s), g e g-state
a
s’ 7/ N
- M Q(s.a) 0 T(s,a,8")
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. The tree continues from s’ through a’ and so on until it terminates
Recap: Bellman equations for V/(s) and Q(s, a) &

The value of a state s: @

V(s) = R(s)+~ymax Z T(s,a,s)V(s) A
a ) \ .
— maxz T(s,a,s) [R(s,a,s") +~ V(s), g Q Q(s,a)
s’ 7/ N
= m;’-.lx Q(S, 3) / (5’ a, S') R

The value of a g-state (s, a):

Q(s,a) = Z T (s, a, s’) [R(s, a, s’) + v V(s’)]

= Z T(s,a,s) [R(s, a,s')+~ max Q(s, a')]
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Recap: V/, Q-value iteration for MDPs

Value/Utility iteration (depth limited evaluation):
» Start: Vp(s) =0
> In each step update V' by looking one step ahead:
Vir1(s) max Yoo T(s,a,5)[R(s,a,s") +vVi(s)]
Q values more useful (think about updating )
» Start: Qu(s,a) =0
» In each step update @ by looking one step ahead:

Qit1(s,a) < >, T(s,a,5") [R(s, a,s’) + vy max Q(s', d)
a/
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Draw the (s)-(s,a)-(s")-(s',a’) tree. It will be also handy when discussing
exploration vs. exploitation - where to drive next.



. A step-by-step hand-computed example on a blackboard. There will be
Q'leammg also a related quizz during the labs.

There alternatives how to compute the trial. SARSA method takes
Q(s’, a’) directly, not the max. Hence we need 5-tuples s, a, r,s’, a’

Qxi1(s, a) ez s,a,s [R(s,a,s’)ermaka(s’,a’)
a/

Learn Q values as the robot/agent goes (temporal difference)
» Drive the robot and fetch: s, a,s’, R(s, a,s’)
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» We know old estimates Q(s, a) (and Q(s’,a’)), if not, initialize.
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Q-learning

Qxi1(s, a) ez s,a,s [R(s,a,s’)ermaka(s’,a’)
a/

Learn Q values as the robot/agent goes (temporal difference)
» Drive the robot and fetch: s, a,s’, R(s, a,s’)
» We know old estimates Q(s, a) (and Q(s’,a’)), if not, initialize.

> A new trial/sample estimate
trial = R(s,a,s") + ymax Q(s', &)
a
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A step-by-step hand-computed example on a blackboard. There will be
also a related quizz during the labs.

There alternatives how to compute the trial. SARSA method takes
Q(s’, a’) directly, not the max. Hence we need 5-tuples s, a, r,s’, a’

Q-learning

Qxi1(s, a) ez s,a,s [R(s,a,s’)ermaka(s’,a’)
a/

Learn Q values as the robot/agent goes (temporal difference)
» Drive the robot and fetch: s, a,s’, R(s, a,s’)
» We know old estimates Q(s, a) (and Q(s’,a’)), if not, initialize.

A new trial/sample estimate
trial = R(s,a,s’) + max Q(s',d)

v

v

« update
Q(s,a) < Q(s,a) + a(trial — Q(s, a))
Q(s,a) + (1 — a)Q(s, a) + atrial
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. . Q-function for a discrete, finite problem? But what about continous
From Q'Ieamlng to Q—Iearmng agent space ot discrete but a very large one?

Use the (s)-(s,a)-(s')-(s",a’) tree to discuss the next-action selection.

Drive the robot and fetch: s, a,s’, R(s, a, s’)
» We know old estimates Q(s, a) (and Q(s’,a’)), if not, initialize.

A new trial/sample estimate: trial = R(s, a,s’) + ymax Q(s', a’)
a/

\4

v

\4

a update: Q(s,a) «+ Q(s,a) + a(trial — Q(s, a))
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» We know old estimates Q(s, a) (and Q(s’,a’)), if not, initialize.

A new trial/sample estimate: trial = R(s, a,s’) + ymax Q(s', a’)
a/

\4

v

\4

a update: Q(s,a) «+ Q(s,a) + a(trial — Q(s, a))

Technicalities for the Q-learning agent

» How to represent Q-function?
» What is the value for terminal? Q(s, Exit) or Q(s, None)
» How to drive? Where to drive next? Does it change over the course?

12/26



Exploration vs Exploitation Discuss the on-line demo with two good goal states. v =1, = 0.5,
P P Living reward —1, R(1,2) = 10, R(3,0) = 20, R(1,1) = —10. Taking the
action, corresponding th max Q. If equal options, than in the 0,1,2,3

action order.

e e

» Drive the known road or try a new one?

13 /26



Exploration vs Exploitation Discuss the on-line demo with two good goal states. v =1, = 0.5,
P P Living reward —1, R(1,2) = 10, R(3,0) = 20, R(1,1) = —10. Taking the
action, corresponding th max Q. If equal options, than in the 0,1,2,3

action order.

e e

» Drive the known road or try a new one?
» Go to the university menza or try a nearby restaurant?



Exploration vs Exploitation Discuss the on-line demo with two good goal states. v =1, = 0.5,
P P Living reward —1, R(1,2) = 10, R(3,0) = 20, R(1,1) = —10. Taking the
action, corresponding th max Q. If equal options, than in the 0,1,2,3

action order.

e e

» Drive the known road or try a new one?
» Go to the university menza or try a nearby restaurant?
» Use the SW (operating system) | know or try new one?

13 /26



Exploration vs Exploitation

>

Drive the known road or try a new one?

\4

v

v

Go to bussiness or study a demanding program?

p——— e S

Go to the university menza or try a nearby restaurant?
Use the SW (operating system) | know or try new one?
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Exploration vs Exploitation

>

\4

v

v

Drive the known road or try a new one?

e e

Go to the university menza or try a nearby restaurant?

Use the SW (operating system) | know or try new one?

Go to bussiness or study a demanding program?
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Discuss the on-line demo with two good goal states. v =1, = 0.5,
Living reward —1, R(1,2) = 10, R(3,0) = 20, R(1,1) = —10. Taking the
action, corresponding th max Q. If equal options, than in the 0,1,2,3
action order.



We can think about lowering € as the learning progresses.
How to explore? g & proe

Random (e-greedy):
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We can think about lowering € as the learning progresses.
How to explore? g & proe

Random (e-greedy):

» Flip a coin every step.

» With probability €, act randomly.

» With probability 1 — ¢, use the policy.
Problems with randomness?

» Keeps exploring forever.

» Should we keep € fixed (over learning)?

> € same everywhere?

14 /26



How to evaluate result, when to stop learning?

0 1 2 3 4
0.04 0.06 -0.06 0.06 0.08
0 0.04 3-0.05 | -0.05 »¢ -0.04 | -0.06 % -0.05 | -0.07 3¢ -0.07 | -0.06 3 -0.08 0
0.04 0.04 -0.06 0.06 0.07
0.02 0.03 -0.05 0.07 0.08
1 0.00 3-0.03 | 0.21 3<-0.04 | -0.04 3 -0.05 | -0.05 »¢-0.05-|-0.08-¥ -0.08 1
0.72 0.03 -0.03 0.09 0,07
0.02 0552
2 0.03 X(-0.52 0.52 2
0.02 ol10
0.84 0.03 -0.52 ol10 0.09
3 0.02 YX-0.02 | -0.02 3<-0.05 | -0.05 3 -0.54 | -0.09 3-0.09-1-0.08 3 -0.09 3
-0,02 -0.03 -0.05 -0l09 -0l09
0.44 -0.03 -0.06 -0l10 -0l09
4 0.02Y-0.03 0.0 0.04-1-0.063¢-0.06-1-0.083¢-0.08 | -0.103¢-0.09 4
0.02 0.04 -0.06 0.08 0.10
0 1 2 3 4
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Run the found policy, discuss some traps, ...



Exploration function f(u, n)

> Regular trial/sample estimate: trial = R(s, a,s") + ymax Q(s’, a')
a
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Exploration function f(u, n)

> Regular trial/sample estimate: trial = R(s, a,s") + ymax Q(s’, a')
a

» If (s/,a’) not yet tried, than perhaps too pesimistic.
» trial = R(s,a,s’) + ymaxf(Q(s',a), N(s, a))
a/

where f(u, n)

f(uyn) = RTifn< N,

= u otherwise

where R™ is an optimistic estimate. N fixed.

16
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Going beyond tables - generalizing across states

0 0.84

2 3 4
0.92 0.96 1.00
2 3 4

17/26

Looking a V/(s), we need a table for each of the state! This guy is small,
but think bigger!



Going beyond tables - generalizing across states

0 1 2 3 4
0 0.84 0.80 0.76 0.72 .
1 0.88 0.84 0.80 0.76 0.72
2 0.92 0.88 0.84 0.80 0.76
3 0.96 0.92 0.88 0.84 0.80
4 1.00 0.96 0.92 0.88 0.84
0 1 2 3 4
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Looking a V/(s), we need a table for each of the state! This guy is small,
but think bigger!



V(s) not as table but as a function

0 0.84 0.92 0.96 0
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V(s) not as table but as a function

0 0.84 0.92 0.96 1.00

V(S) = wp + wis

Instead of the complete table, only 2 parameters to learn wy, wy

19/26



Li | f . What could be the f functions for the grid world?
Inear value runctions Obviously, when data are available, we can fit. How to do it on-line?

V(s) = wifi(s) + wafa(s) + wafz(s) + - - - + wpfn(s)

Q(s,a) = wifi(s,a) + wafa(s, a) + wafz(s,a) + - -+ + wypfy(s, a)
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. . How is it possible at all? On-line least squares!
Approximate Q-learning P b

Q(s,a) = wifi(s, a) + wafa(s, a) + wafz(s,a) + - - - + wufn(s, a)

» transition = s,a,r,s’

> diff = | r + ymax Q(s', &) | — Q(s, a)

» Update:
Q(s,a) «+ Q(s,a) + adiff
w; < w; + a[diff] fi(s, a)
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Optimization: Least Squares

Q(s,a) = wifi(s, a) + wafa(s,a) + wafz(s,a) + - - - + wafn(s, a)
» Prediction: Q(s, a)

» Observation: r + vy max Q(s', a)
a/
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See the fitdemo.m run, higher degree polynomials perfectly fits, but

Overfitting : :
poorly generalizes outside the range
0 2 3 4
0 0.84 0.92 0.96 1.00 0
0 2 3 4
1.15
11 1
1.05 o ) '7
1 EJE::“U%MU,
s
095 o
09 5!"
: L3}
0.85}a05 a!"aﬁ
ELLER
0.8 ..ﬁ“‘n
o,,_; -1 1 2 3 4 6
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Going beyond - Dyna-Q integration planning, acting,
learning

value/policy
| Policy/value functions |
acting )
. planning update
planning direct
RL direct RL simulated
update experience
experience
search
model experience learning |control
Model

model Environment
learning 3

3Schemes from [2]
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v

v

are done with Search and Planning

Search
Games
Markov Decision Problems

Reinforecement Learning
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We are done with Search and Planning

Search

v

Games

v

v

Markov Decision Problems

v

Reinforecement Learning

Next: Uncertainty, Learning, (Conditional) Probabilities, Bayesian
Decisions, Matlab, ...
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