Medical Imaging Bloch equations, magnetic resonance imaging (Outline of Lecture 2)

A. Bloch equations Torque on a dipole in an external field

$$ec{ au}=ec{m}_{ extsf{mg}} imesec{B}_{0}$$

where $\vec{m}_{mg} = I\vec{A}$ for a planar circular current.

Motion equation for rigid bodies, rotational part

$$\dot{ec{L}}=ec{ au}$$
 where $ec{L}$ – angular momentum

Here: charged particles moving on circular trajectories: $\vec{m}_{mg} = \frac{q}{2m}\vec{L}$. Hence we obtain the motion equation

$$\dot{\vec{m}}_{\rm mg} = \gamma \vec{m}_{\rm mg} \times \bar{B}$$

Solution for a homogeneous and static external magnetic field \vec{B}_0 : Dipol precession with Larmor frequency $\vec{\omega} = \gamma \vec{B}_0$.

Macroscopic effect of many dipoles \Rightarrow dipole density $\vec{M}(\vec{r})$

$$\dot{\vec{M}}(\vec{r},t) = \gamma \vec{M}(\vec{r},t) \times \vec{B}(\vec{r},t)$$

where \vec{B} is the local magnetic field "seen" by dipoles at \vec{r} . $\vec{B} = \vec{B}_{\rm ext} + \vec{B}_{\rm ind}$

"Replace" unknown induced field \vec{B}_{ind} by phenomenological terms accounting for relaxation (1) $\vec{B}_{ext} = B_0 \vec{e}_z + (\vec{g} \cdot \vec{r}) \vec{e}_z + \vec{B}_{RF}$

- (2) Decay time T_1 for M_z relaxation (spin-lattice interaction). Protons loose energy to the surrounding "lattice". Different tissues have different values of T_1 (tissue contrast!).
- (3) Decay time T_2 for $M_T = (M_x, M_y)$ relaxation (spin-spin interaction) involves the loss of "phase coherence" between protons precessing in the transverse plane. Again, different tissues have different values of T_2 . For all tissues $T_2 \ll T_1$.

(1) m p 4/9

2. Bloch equations, Spin echo imaging

Bloch equations:

$$\dot{M}_x(\vec{r},t) = \gamma \left[\vec{M}(\vec{r},t) \times \vec{B}_{\text{ext}}(\vec{r},t) \right]_x - \frac{M_x(\vec{r},t)}{T_2}$$
$$\dot{M}_y(\vec{r},t) = \gamma \left[\vec{M}(\vec{r},t) \times \vec{B}_{\text{ext}}(\vec{r},t) \right]_y - \frac{M_y(\vec{r},t)}{T_2}$$
$$\dot{M}_z(\vec{r},t) = \gamma \left[\vec{M}(\vec{r},t) \times \vec{B}_{\text{ext}}(\vec{r},t) \right]_z - \frac{M_z(\vec{r},t) - M_0}{T_1}$$

B. Radiofrequency pulses

Applying a transversal rotating magnetic field with Larmor frequency i.e.

$$\vec{B}_{\text{ext}} = \vec{B}_0 + \vec{B}_{\text{RF}} = B_0 \vec{e}_z + B_{\text{RF}} \cos(\omega t) \vec{e}_x + B_{\text{RF}} \sin(\omega t) \vec{e}_x.$$

As a result, magnetization \vec{M} rotates around \vec{B}_{RF} (rotating reference frame) by an angle α .

$$\alpha = \gamma \|B_{\mathsf{RF}}\|\tau.$$

A $\pi/2$ -pulse rotates the magnetization by $\pi/2$.

A π -pulse rotates the magnetization by π .

C. Measuring T_1 and T_2

If a α RF pulse is applied, then at a time t after this pulse

$$M_{z}(t) = M_{0} \cos \alpha + M_{0}(1 - \cos \alpha)(1 - e^{-t/T_{1}})$$
$$M_{x,y}(t) = M_{0} \sin \alpha e^{-t/T_{2}}$$

where M_0 denotes the equilibrium magnetization.

(1) Measuring T_1 : apply a π -pulse, and a $\pi/2$ -pulse after a variable delay τ . Measured signal $S(\tau)$

$$S(\tau) = M_0 (1 - 2e^{-\tau/T_1})$$

(2) Measuring T_2 : apply a $\pi/2$ -pulse followed by a delay τ , then apply a π -pulse followed by the same delay τ , then measure. Measured signal $S(\tau)$

$$S(\tau) = M_0 e^{-2\tau/T_2}$$

 $\pi/2$ -pulse defocussing after time τ

 π -pulse

refocusing after $\boldsymbol{\tau}$

D. Slice selective RF pulses

Apply:

- Gradient field $(\vec{g} \cdot \vec{r})\vec{e}_z = g_0 z \vec{e}_z$
- Rotating excitation field \vec{B}_{RF} with constant frequency spectrum in some interval $\omega = \gamma (B_0 + g_0 \bar{z}) \pm \Delta$ i.e. sinc-function!

for the time $T = \pi/2\gamma \|\vec{B}_{\mathsf{RF}}\|$ (i.e. $\pi/2$ -pulse).

Result:

- Spins in the slice around \bar{z} precess in the x-y plane
- They dephase (T_2) due to spin-spin interactions and local inhomogeneities.

Applying a π -pulse \Rightarrow refocusing.

E. x-y Gradients

Application of x-y gradient field after RF pulses, $B_{\text{ext}} = (B_0 + \vec{g}(t) \cdot \vec{r})\vec{e}_z$.

Simplification: omit decay terms. Denote $M_T = M_x + iM_y$. Bloch equation for transversal magnetization becomes

$$\dot{M}_T = -i\gamma \left[B_0 + \vec{g}(t) \cdot \vec{r} \right] M_T$$

Integration by separation of variables gives

$$M_T(\vec{r},t) = M_T(\vec{r},0) \exp\left[-i\gamma \left(B_0 t + \vec{r} \cdot \int_0^t \vec{g}(t') dt'\right)\right]$$

Total transverse magnetization is

$$M_T(t) = \iint_{\text{slice}} dx dy \, M_T(x, y, t) = e^{-i\gamma B_0 t} \iint_{\text{xy}} dx dy \, M_T(x, y, 0) \exp\left[-i\left(k_x(t)x + k_y(t)y\right)\right]$$

The gradient $\vec{g}(t)$ has to be arranged so as to measure the Fourier transformed of $M_T(x, y, 0)$ for all k_x , k_y .

The intensity of an axial acquired image is

Gx _____

AD _____

$$I(x,y) = \rho(\vec{x,y}) \left[1 - \exp^{-T_R/T_1(x,y)} \right] \exp^{-T_E/T_2(x,y)}$$

→ Tr

► Te

Gives images with high contrast and SNR, but takes several minutes to acquire. Other sequences are used if fast acquisition is necessary.