
Extrema of piecewise linear functions 

One possible approach to the solution is outlined here. 

 

Representation 

First, a function representation is needed. The representation 

must be such that it is easy to derive from it all local extrema 

of the function. Moreover, the representation should be 

general, that is, not only the input function but any function of 

the same type can be represented in the same way. The type of 

the function(s) is piecewise linear function, therefore it is 

natural to think about this kind of function as a sequence of 

segments in the plane which form the graph of the function. 

The endpoints of the segments are precisely those points of the 

functions in which the derivative is undefined. For example, 

the graph of the function depicted in the  Image 1 is made of 

four segments. As the right endpoint of each segment coincide 

with the left endpoint of the next segment, it is also possible to 

represent the graph by the sequence of the endpoints together 

with the slope of the first and last (infinite) segments. When 

we have this or other similar representation it is obviously 

trivial to extract from it, in one pass, all local extrema of the 

function. 

 

 

Image 1. Graph of the function  

defined by the term  

 ||x − 3| − 2·x| + |x − 7| + x − 9. 

 

 

Recursive nature of the problem 

We can observe that there are only  two  "elementary" piecewise linear functions: 

f1(x) = x,   f2(x) = constant. 

Any other more complex piecewise linear functions can be recursively constructed from these by repeated 

application of just three operations: 

A. Sum of two functions. 

B. Multiplying  a function by an elementary constant function. 

C. Absolute value of the function. 

All these operations are unary or binary. We can associate with any given piecewise linear function a binary tree 

which reflects the way in which the function is constructed form the elementary functions using operations A, B, C. 

The idea is illustrated in the image 2. The leaves correspond to the elementary functions. Each internal node 

corresponds to some more complex function which is produced by the operation A or B or C (denoted at the node) 

applied to the function(s) corresponding to the child/children of the node. The root corresponds to the whole given 

function. 

 

 

Image 2.  Tree associated with the function  f(x) = ||x − 3| − 2·x| + |x − 7| + x − 9. 

 

  



Building the solution 

The representation of any tree leaf is very simple, it is just one (infinite) segment. For each of the three operations 

A, B, C we need a method which builds a function representation corresponding to a particular node from the 

representation(s) corresponding to the child/children of the node. For example, method dealing with operation B is 

very simple: 

Let  [x1, y1], ..., [xk, yk], s0, sk be the representation of a function corresponding to one child of the node. 

Let c0 be the representation of the constant function corresponding to other child of the node.  

Then the representation of function corresponding to the given node is 

[c0·x1, c0·y1], ..., [c0·xk, c0·yk], c0·s0, c0·sk. 

(The values  [x1, y1], ..., [xk, yk] are the endpoints of the segments of the graph, the values  s0, sk  are the slopes of the 

leftmost and rightmost (infinite) segment of the function graph.)  

The methods dealing with the remaining two operations, A and C, should be only slightly more involved. 

 

The whole solution may run in a few phases: 

1. Parse the input term and build the tree associated with the function defined by the input term. 

2. Create representations (single infinite segments) for all leaves in the tree. 

3. Recursively create representations for all nodes in the tree. 

4. Use the root representation (which corresponds to the input function) to find the extrema of the input function. 

 

Notes 

1. The solution strategy presented here does not pretend to be the only one or the best one. You are encouraged to 

think of other ways of solution too. 

2. There might be different, equally suitable or better, function representations. 

3. The tree is not defined unambiguously, you can build it in a slightly different way. Also, you may consider 

slightly different set of operations (depending on the order of operands etc.), elementary functions etc. 

4. The tree associated with the function needs not to be physically built in the memory. It is also possible to merge 

parsing process with the tree traversal and computing the functions representations.  In such case it might be handy 

to use an appropriately configured stack (stack of function representations or graph representations etc.)  

 

 


