A0B17MTB - Matlab

Part \#1

Miloslav Čapek
miloslav.capek@fel.cvut.cz
Viktor Adler, Pavel Valtr, Filip Kozák

Department of Electromagnetic Field
B2-634, Prague
\ldots
:.
.

You will learn ...

Command Window, Command History

Saving and loading variables

Exercises

Matrices in Matlab

- matrix is a basic data structure in Matlab
- there are following types depending on size :
- 1×1 (scalar)
- $\mathrm{M} \times 1$, or $1 \times \mathrm{N}$ (vector)
- $\mathrm{M} \times \mathrm{N}$ (matrix)
- array (multidimensional matrices) $\mathrm{M} \times \mathrm{N} \times \mathrm{P} \times \mathrm{Q} \times \mathrm{R} \times \ldots$

- can be complex
- can contain text as well (beware the length)

Matrix creation

- following techniques are available:
- element-by-element entering (suitable for small matrices only)
- colon notation „:" to define elements of a series
- generation by built-in functions
- generation of matrices in m-files
- import and export from/to external files (.mat, .txt, .xls)

Matrix construction element-by-element

- test following commands to construct matrices by element enumeration
- suitable for small matrices only

$$
\begin{aligned}
& \begin{array}{l}
\gg \text { ar }=-1 \\
\gg \text { a } 2=[-1] \quad \text { \% brackets are redundant } \quad a_{1}=a_{2}=-1
\end{array} \\
& \gg \text { ar }=[-1] \quad \% \text { brackets are redundant } \\
& \mathbf{v}_{1}=\left(\begin{array}{lll}
-1 & 0 & 1
\end{array}\right) \\
& \mathbf{v}_{2}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \\
& \gg \mathrm{v} 1=\left[\begin{array}{lll}
-1 & 0 & 1
\end{array}\right] \\
& \gg \mathrm{v} 2=[-1 ; 0 ; 1] \\
& \gg \mathrm{M} 1=\left[\begin{array}{llllll}
-1 & 0 & 1 ; & -2 & 0 & 2
\end{array}\right] \\
& \gg \mathrm{M} 2=\left[\begin{array}{lllll}
-1 & -2 ; & 0 & 1 & 2
\end{array}\right] \\
& \gg \text { Mf }=\left[\left[\begin{array}{ll}
-1 & -2
\end{array}\right] ;\left[\begin{array}{ll}
0 & 0
\end{array}\right]\right. \text { \% inner brackets are redundant } \\
& \mathbf{M}_{1}=\left(\begin{array}{lll}
-1 & 0 & 1 \\
-2 & 0 & 2
\end{array}\right), \quad \mathbf{M}_{2}=\left(\begin{array}{cc}
-1 & -2 \\
0 & 0 \\
1 & 2
\end{array}\right), \quad \mathbf{M}_{3}=\left(\begin{array}{cc}
-1 & -2 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Matrix construction element-by-element

- construct following matrices:
- matrix values are defined inside square brackets []
- semicolon ,,;" separates individual rows of a matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
-1 & 1 \\
1 & -2
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

Matrix construction

- semicolon placed at the end of a command suppresses display of the output in Command Window

$$
\begin{aligned}
& \gg a=1 \\
& \gg b=5 ;
\end{aligned}
$$

- when more than one command on the same line, coma is used to separate each command

$$
\begin{aligned}
& \gg a=1, b=5 \\
& \gg a=1 ; b=5 ;
\end{aligned}
$$

- note: it is possible to copy and paste code including ">>"

$$
\left.\begin{array}{|llll}
\hline \gg c & c & {[100}
\end{array}\right]
$$

- "row" vs. "column" vector

$$
\mathbf{c}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \quad \mathbf{d}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Workspace browser

- new variables
- deleting / modification of existing variables
- saving / loading
- size, elements of variables
- other information can be added
- fast data plotting option
- all operations can be carried out using Matlab functions that we learn later, e.g.
min, max, size, length

Workspace browser

- Workspace now contains variables A, B, a, b, c, d (from previous slides)
- all variables in the base workspace are displayed
- variable ans contains the last result
- can be used for calculation
- overwritten by each command input!

$$
\gg 2 * 2, \quad \text { ans }{ }^{\wedge} 2
$$

- try to edit variables A, a
- by a Matlab command directly
- by change of value in Workspace browser
- try to delete variables B, C

Basic math operators

- of several types:
- arithmetic
- matrix
- vector
- relational
- logical
- and other (to be mentioned later...)
- other operations using Matlab functions
- complex conjugate,
- sum, determinant, square root
- and hundreds of other functions ...

Operator Precedence in Matlab

- according to the following table
- see Matlab \rightarrow Language Fundamentals \rightarrow Operators and Elementary Operations \rightarrow Arithmetic

| | 1 | parentheses | () | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Basic math operators

- type in following commands
- zero can be omitted with a decimal number beginning with zero (not recommended!)

```
>> a3 = -2/4
>> a4 = -0.5
>> a5 = -. 5
```

- what is the difference between a3, a 4 , a 5 ?
- beware the precedence of operators (we see in the next slides):

```
>> 3*5*6
>> a1 = 15
>> a2 = 10;
>> a2/a3
>> a2/a3*a4
>> a2/(a3*a4)
```

- explain the difference between $a 2 / a 3 * a 4$ and $a 2 /(a 3 * a 4)$
- verify the rules of operator precedence from the previous slide

Lengthy commands in Matlab

- it is suitable to structure command blocks for clarity:
- next line: SHIFT+ENTER

```
>> A = [1 1 1 1]; B = [2 2 2]; % SHIFT+ENTER
C = [2 3 2];
```

- three dots notation
- for continuation of the same command on the next line
- compare results:

```
>> A = [llll
2 3]
```

```
>> A = [ll}1
2 3]
```


Basic math functions

- math functions in Matlab are generally divided in three groups:
- scalar
- function operates over individual elements of a matrix
- e.g.: sin, sqrt, log, factorial
- vector
- Function operates over individual rows/columns of a matrix
- e.g.: sum, max
- matrix
- function operates over whole matrix
- e.g.: det, trace

Basic math functions \#1

- using Matlab help, calculate following expression: $a \sin ^{2}(\alpha)+a \cos ^{2}(\alpha)-a$
- use numerical values you choose
- verify following logarithmic identity:

$$
\log _{10}(a)+\log _{10}(b)-\log _{10}(a b)=0
$$

- find sum of all elements in individual rows of the following matrix

$$
\mathbf{T}=\left(\begin{array}{cccc}
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
6 & 7 & 8 & 9 \\
0.2 & 0.3 & 0.4 & 0.5
\end{array}\right)
$$

Basic math functions \#2

- assume following vectors \mathbf{u}, \mathbf{v} :

$$
\mathbf{u}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)
$$

- calculate

$$
\begin{array}{ll}
\mathbf{u} \mathbf{}^{\mathrm{T}}, & \mathbf{v u}^{\mathrm{T}} \\
\mathbf{v}^{\mathrm{T}} \mathbf{u}, & \mathbf{u}^{\mathrm{T}} \mathbf{v} \\
\mathbf{u} \cdot \mathbf{v}, & \mathbf{u} \times \mathbf{v}
\end{array}
$$

- following functions are needed:
- transpose (.') of a matrix
- dot scalar product

A
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$
wikipedia.org

- cross product
- what is the result of the above mentioned operations?

Basic math functions \#3

- use following code and round the resulting number to:

```
>> r 1 + 10*rand(1)
```

- (a) nearest integer
- (b) nearest integer greater than r
- (c) nearest integer lower than r
- (d) zero
- (e) zero with precision of 2 decimal digits
- find remainder after r is divided by 0.1
- modulus vs. remainder after division

Matrix division in Matlab

- matrix operation
- two cases are distinguished: left division („\"-mldivide) and right division („/" - mrdivide)
- A is invertible (regular), b is row (column) vector

$$
\mathbf{A x}=\mathbf{b}
$$

solution to linear
system of equations

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

```
>> x = A \ b
```

```
>> x = A \ b
```

```
>> X = b / A
```


Basic math functions \#4

- find the sum of diagonal elements (trace of a matrix) of the matrix \mathbf{T} with elements coming from normal distribution with mean equal to 10 and standard deviation equal to 4

```
>> T = 10 + 4*randn (7, 7);
```

- find determinant of matrix \mathbf{U}

$$
\mathbf{U}=\left(\begin{array}{ccc}
1 & 2 & \frac{17}{81} \\
0 & 2 & 0 \\
0 & -2 & -1
\end{array}\right)
$$

- solve the linear system of equations

$$
\begin{array}{rlrl}
x_{1}+2 x_{2}+3 x_{3} & =6 & \mathbf{A x} & =\mathbf{b} \\
4 x_{1}+5 x_{2}+6 x_{3} & =15 & \mathbf{x} & =\mathbf{A}^{-1} \mathbf{b} \\
7 x_{1}+8 x_{2}+x_{3} & =16 &
\end{array}
$$

Matlab commands

- Matlab is cAsE sEnSiTiVe
- almost entirely, with certain exceptions (properties of graphic objects, ...)
- pay attention to typos and variable names (see later)
- new versions of Matlab offer certain options

```
>>AA = [llll}
>> Aa
```

- beware of different syntax in Mathematica
- following syntax is incorrect both in Matlab and Mathematica:

```
>> Sin(pi/2) % function names start with lower case
>> cos[pi/3] % function input is in parentheses ()
```


Predefined values in Matlab

- Matlab contains several predefined values
- eps - precision of single/double numbers
- eps determines the shortest distance between two single/double numbers
- ans - most recent answer
- NaN - not a number (every expression containing NaN results is NaN)
- NaN can be used advantageously in some cases
- Inf - infinite number (variable Inf can be used in calculation:))
- pay attention to Inf propagation throughout your code (use allowed operations only)
- i, j - complex unit
- they are all basically functions (without input parameters)
- check results of the following expressions:

```
>> t1 = 10/0 % t1 = Inf
>> t2 = 0/0 % t2 = NaN
>> t3 = t1*5 % t3= Inf
>> t4 = t1 + t2 % t4 = NaN
```

- pi,intmin, intmax, realmin, realmax, ... (functions)

Workspace - output deletion \#1

- to clean (erase) the command window:

```
>> home % cursor (>>) is shifted to the top-left position
>> clc % Command Window is erased
```

- try and compare

Workspace - output deletion \#2

- to clean one (or more) variable, use clear

```
>> clear % whole Workspace is deleted
>> clear XX % variable XX is deleted
>> clear XX YY % variables XX and YY are deleted
>> clear z* % everything starting with 'z' is deleted
```

- clear clear has a number other options (graphics, I/O)
- try to delete selected variables in workspace

Workspace - output deletion \#3

- to delete all variables except for one (or several):

```
>> clearvars -except a3 % clears everything except a3
```

- further information in doc clear, doc clearvars

Command History window

- Command History window stores all commands from the Command Window
- Command History accessible though (\uparrow or \downarrow)
- it is possible to filter out past commands by
- e.g. $\gg A=[+\uparrow$
- It is possible to copy-and-paste entire Command History
- SHIFT / CTRL / CTRL+A \rightarrow CTRL+C

- later on, we will work with scripts and functions to store all the commands/code

Variables storing and loading

- existing variables in Matlab Workspace can be stored on disk

```
>> save % stores all variables in matlab.mat in current folder
>> save taskl % stores all variables in taskl.mat
>> save taskl a b c % stores variables „a" , „b" and „c" in taskl.mat
```

- CTRL+S in Command Window/Command History
- loading variables is analogical

```
>> load % loads matlab.mat in current folder
>> load taskl % loads all variables from taskl.mat
>> load taskl a b c % loads variables „a" , „b" and "c" from taskl.mat
```

- alternatively, drag \& drop the file from Current Folder in Command Window

Storing history and variables

- save today's Command History
- use *.txt file
- store all variables from Workspace in Data.mat
- try to store selected variables only
- clear Workspace and load above mentioned files
- both storing and loading can be carried out using mouse!!

.mat file structure

- . mat files of the 7.3 version have the HDF5 format
- $\mathrm{HDF}=$ Hierarchical Data Format
- enable to store variables exceeding 2GB (64-bit system)
- scientific format for data storing
- advantages of accessing HDF directly for certain applications:
- speed
- it is possible to define structure of the file and the stored data
- Matlab High-Level functions and HDF Low-Level functions are available
- for more detailed information see:
- MATLAB \rightarrow Data and File Management \rightarrow Data Import and Export \rightarrow Scientific Data

Variable names \#1

- max. 63 characters starting with a letter (\gg namelengthmax) - underscore is allowed in the variable name ,"," (not at the beginning!) - characters not allowed are colon ,,:", hyphen ,,-" and others
- lowercase letters in the names of scalars and variables (a =17.59;)
- matrix names usually start with a capital letter ($\mathrm{A}=$ [. .])
- clear huge matrices after they are used (clear . . ., memory')
- iteration variables, variables used in for cycles usually named m, n, k etc.
- it is advisable to avoid i, j (complex unit)
- chose the names to correspond to the purpose of the variable
- avoid, if possible, standalone letter ' l^{\prime} (to be confused with 1) and predefined variables in Matlab environment

Variable names \#2

- exceeding the maximum variable's name length :

```
>> a01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789 = 10
Warning: 'a01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789'
exceeds the MATLAB maximum name length of 63 characters and will be truncated to
'a01234567890123456789012345678901234567890123456789012345678901'.
a01234567890123456789012345678901234567890123456789012345678901 =
```

 10

Variable names \#3

- samples of valid variable names

```
a, A, b, c, x1, x2, M_12, test1, matrix_A, fx, fX
```

- samples of invalid variable names

```
lvar % starts with a number (not possible in Matlabu)
matrix A % contains space
coef.a % possible only if coef is of type 'struct'
Test-1 % algebraic expression: ans = Test - 1
f(y) % makes sense when using symbolic expressions
```

- samples of valid numbers in Matlab
- pay attention to miss inserted spaces after exponent and imaginary unit
3, -66, +0.0015, .015, 1.6025e-10, 3i, 3.17e5i, -3.51j

Discussed functions

```
sin, cos
sqrt
max
sum
log, log10
factorial
det, trace
transpose
dot, cross
inv
round, ceil, floor, fix
rem
rand, randn
save, load
clear, clearvars
home, clc
ans, eps
```

trigonometric functions
square root
largest element of column of a matrix; largest element of a vector sum of elements of column of a matrix; sum of elements of a vector natural logarithm, logarithm with base 10
factorial
determinant of a (square) matrix, trace of a (square) matrix
transpose
scalar product, vector product
invers of a matrix
rounding
remainder after division
random number generation
storing, loading of variables
deleting variables and functions, deleting variables only
command prompt shift, clears output
returns last answer, numerical accuracy of Matlab

Exercise \#1

- forces were localized at point \mathbf{P} in $(x-y)$ plane:

$$
\begin{array}{ll}
\mathbf{F}_{1}=\left(\begin{array}{ll}
2 & 2
\end{array}\right) & \mathbf{F}_{3}=\left(\begin{array}{ll}
2 & 0
\end{array}\right) \\
\mathbf{F}_{2}=\left(\begin{array}{ll}
1 & -3
\end{array}\right) & \mathbf{F}_{4}=\left(\begin{array}{ll}
0 & -1.5
\end{array}\right)
\end{array}
$$

- what is the direction of the resultant force \mathbf{F} ?
- normalize the resulting vector

$$
\mathbf{n}_{\mathrm{F}}=\frac{\mathbf{F}}{|\mathbf{F}|}=\frac{\mathbf{F}}{\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}}
$$

Exercise \#2

- type-in following commands:

```
>> clear, clc;
>> w1 = [ll 2 3], w2 = [-2 -3 -4].'
>> w3 = [-2; -3; -4]
>> w4 = w2 - w3, w5 = w2 - w1
```

- compare differences
- the error of calculating w5 resides in what?
- try also

```
>> w1*3, w1 - 3,
>>w1 + [\begin{array}{lll}{5}&{5}&{5}\end{array}],
>> w6 = 5*w1 - [3 5 6] - w2,
```

- calculate the norm (magnitude) of vector w1
- try more options

$$
\hat{\mathbf{w}}_{1}=\frac{\mathbf{w}_{1}}{\left|\mathbf{w}_{1}\right|}
$$

- how to modify the calculation in the case of a complex vector?

Exercise \#3

- calculate roots of the quadratic function $-2 x^{2}-5 x=3$
- rearrange the terms of the function first

$$
\begin{aligned}
& 2 x^{2}+5 x+3=0, \Rightarrow a=2, b=5, c=3 \\
& x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-5 \pm \sqrt{25-24}}{4} \\
& x_{1}=-1, \quad x_{2}=-\frac{3}{2}
\end{aligned}
$$

- Matlab provides particular function for calculation of roots of a function, try to search it out

Exercise \#4

300 s

- consider matrices (prepare matrices for later use)
- rotating by angle α in $x-z$ plane

$$
\mathbf{R}=\left(\begin{array}{ccc}
\cos (\alpha) & 0 & -\sin (\alpha) \\
0 & 1 & 0 \\
\sin (\alpha) & 0 & \cos (\alpha)
\end{array}\right)
$$

- mirroring across plane

$$
\begin{aligned}
& 1 x+2 y+0 z=0 \\
& \mathbf{P}=\mathbf{I}-2 \mathbf{n}_{0} \mathbf{n}_{0}^{\mathrm{T}}
\end{aligned}
$$

- use Householder's transform
$\begin{array}{ll}\mathbf{n}_{0}=\frac{\mathbf{v}_{1} \times \mathbf{v}_{2}}{\left|\mathbf{v}_{1} \times \mathbf{v}_{2}\right|} & \begin{array}{l}\mathbf{P}_{1}=[-2 ; 1 ; 0] \\ \mathbf{P}_{2}=[0 ; 0 ; 1]\end{array}\end{array}$

$\mathbf{v}_{k}=\left(\mathbf{P}_{k}-\mathbf{0}\right)\left(\begin{array}{l}\mathbf{x}_{0} \\ \mathbf{y}_{0} \\ \mathbf{z}_{0}\end{array}\right), k \in\{1,2\}$

Exercise \#5

- use rotation matrix \mathbf{R} to rotate vector $\mathbf{k}=[1 ; 0 ; 0]$ by angle $\alpha=\pi / 2$

$$
\mathbf{m}=\mathbf{R} \mathbf{k}=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)^{\mathrm{T}}
$$

- use reflection matrix \mathbf{P} across plane: $1 x+2 y+0 z=0$
- to mirror vectors:

$$
\begin{aligned}
& \mathbf{u}_{1}=\mathbf{n}_{0}, \quad \mathbf{u}_{2}=\left(\begin{array}{lll}
\frac{5}{2} & 0 & 3
\end{array}\right)^{\mathrm{T}} \\
& \mathbf{m}_{1}=\mathbf{P} \mathbf{u}_{1}=-\mathbf{n}_{0}, \quad \mathbf{m}_{2}=\mathbf{P} \mathbf{u}_{2}=\left(\begin{array}{lll}
\frac{3}{2} & -2 & 3
\end{array}\right)^{\mathrm{T}}
\end{aligned}
$$

- calculate the determinant of matrices \mathbf{R} and \mathbf{P}
- can you interpret the results?

Thank you!

ver. 9.1 (18/02/2018)
Miloslav Čapek, Pavel Valtr
miloslav.capek@fel.cvut.cz
pavel.valtr@fel.cvut.cz

Apart from educational purposes at CTU, this document may be reproduced, stored or transmitted only with the prior permission of the authors.

