Medical ultrasound imaging Modern ultrasound imaging

André Sopczak

Institute of Experimental and Applied Physics, Czech Technical University in Prague http://cern.ch/sopczak andre.sopczak@cvut.cz based on lectures 2008-2023 by J.Kybic, using plots by J.Hornak¹, E.Dove, P.Stoyen

2024

¹http://www.cis.rit.edu/htbooks/mri/

Doppler ultrasound

US contrast agents

Harmonic imaging

3D US imaging

Christian Doppler 1803–1853

During his time in Prague as a professor he married and had five children, whilst he published over 50 articles on mathematics, physics and astronomy. In 1842 he published his most famous paper Über das farbige Licht der Doppelsterne ("Concerning the Colored Light of Double Stars"), which contained his first statement of the Doppler effect.

Doppler frequency shift

Stationary source, moving receiver

$$f_r = f_s + rac{v_r}{\lambda_s} = f_s + rac{v_r}{c}f_s = f_s + f_d$$
, since $\lambda_s = rac{c}{f_s}$

Doppler shift

$$f_d = \frac{v_r}{c} f_s$$

Stationary source, moving receiver

$$f_r = f_s + rac{v_r}{\lambda_s} = f_s + rac{v_r}{c}f_s = f_s + f_d$$
, since $\lambda_s = rac{c}{f_s}$

Doppler shift

$$f_d = \frac{v_r}{c} f_s$$

Example: For f = 5 MHz, $v_r = 1 \text{ cm/s}$, $f_d = 33 \text{ Hz}$.

Stationary receiver, moving source

Wavelength change

$$\delta \lambda = v_s T_s = \frac{v_s}{f_s}$$
$$\lambda_r = \lambda_s - \delta \lambda = \frac{c}{f_s} - \frac{v_s}{f_s}$$
$$f_r = \frac{c}{\lambda_r} = \frac{c}{c - v_s} f_s$$

Stationary receiver, moving source (2)

$$f_r = \frac{c}{\lambda_r} = \frac{c}{c - v_s} f_s = \frac{1}{1 - \frac{v_s}{c}} f_s$$

Stationary receiver, moving source (2)

$$f_r = \frac{c}{\lambda_r} = \frac{c}{c - v_s} f_s = \frac{1}{1 - \frac{v_s}{c}} f_s$$

From Taylor series, for $x \ll 1$

$$\frac{1}{1-x} = 1 + x + \frac{x^2}{2} + \dots \approx 1 + x$$

For $v \ll c$

$$f_r \approx \left(1 + \frac{v_s}{c}\right) f_s = f_s + f_d$$

Doppler shift

$$f_d = \frac{v_s}{c} f_s$$

Blood flow speed measurement

- Doppler effect: Frequence changes if the source moves with respect to the receiver.
- Reflection from red blood cells
- Red blood cells
 - Moving receiver
 - Moving source
- Doppler shift

$$f_r = f_t + f_d$$
 $f_d \approx$

2 - f

Moving scatterer

time and frequency domains

Angle dependency

We only measure the projection along the ray: $v\cos\theta$

 $f_0 = f_s$

Angle dependency (2)

▶ Insonation angle $90^{\circ} \longrightarrow$ weak or no signal.

 $\blacktriangleright \text{ Known angle} \longrightarrow \text{ angle correction.}$

Continuous wave Doppler

Quadrature detector

Input: g_a = cos(at), g_b = cos(bt)
Output: g = g_ag_b = ¹/₂ cos((a + b)t) + ¹/₂ cos((a - b)t)
Signal cos((a + b)t) can be filtered (low-pass filter)
Difference frequence signal s_r = cos((a - b)t)
"Imaginary" signal s_i shifted by 90°: sin((a - b)t)

Directional demodulation

To distinguish positive/negative flow direction, $\pm f_d$. Method 1: Phase-domain processing

Quadrature mixer with f_s

▶ Phase offset
$$∠s_r = ∠s_i = \pm 90^\circ$$

$$\begin{array}{c|c} & f_d > 0 & f_d < 0 \\ \hline s_r + T_{90}s_i & 0 & 2s_r \\ T_{90}s_r + s_i & 2s_r & 0 \end{array}$$

To distinguish positive/negative flow direction, $\pm f_d$. Method 2: Frequency shift

- Quadrature mixer with $f_s + f_o$
- $\blacktriangleright f_d = 0 \longrightarrow \text{mixer output } f_o$

$$f_d = \operatorname{freq}(s_r) - f_o$$

Pulsed wave Doppler (PW)

Sampled Doppler shift signal

PW Doppler shift signals

PRF:pulse repetition frequency, 2:transmitted signal, 3:received signal, 4:gated signal, 5:demodulated signal, 6:interpolated signal, 7:output

PW Doppler spectrum

Amplitude

Speed uncertainty

 τ — pulse length, Q — quality factor, number of cycles in a pulse

Speed uncertainty

Angle dependency

small angle \longrightarrow higher number of cycles Q

Aliasing (PRF too low)

Nyquist
$$\longrightarrow f_d < f_p/2$$

Aliasing example

B-mode+Doppler+velocity spectrum — high PRF f_p

Aliasing example

Range-velocity tradeoff

$$f_d < f_p/2 \longrightarrow v_{\max} = \frac{f_p c}{4f_s}$$
$$z_{\max} = \frac{T_p c}{2} = \frac{c}{2f_p}$$
$$v_{\max} z_{\max} = \frac{c^2}{8f_s}$$

Range-velocity tradeoff

$$f_d < f_p/2 \longrightarrow v_{\max} = \frac{f_p c}{4f_s}$$
$$z_{\max} = \frac{T_p c}{2} = \frac{c}{2f_p}$$
$$v_{\max} z_{\max} = \frac{c^2}{8f_s}$$

Limitation is for $(v \cos \theta)_{\max}$.

Range-velocity tradeoff

Minimum velocity

Observe at least one period of f_d

 $T_d < NT_p$

with N transmissions per line

$$f_d > rac{f_p}{N}$$
 $v_{\min} = rac{f_p c}{2Nf_s}$

Minimum velocity

Observe at least one period of f_d

 $T_d < NT_p$

with N transmissions per line

$$f_d > rac{f_p}{N}$$
 $v_{\min} = rac{f_p c}{2Nf_s}$

- Usually 2 \sim 3 cycles required
- $N = 5 \sim 10$ or more
- Temporal averaging
- \blacktriangleright \longrightarrow slow f_p

Doppler US — examples

Doppler US — examples

Doppler US — examples

liver

Doppler ultrasound

US contrast agents

Harmonic imaging

3D US imaging

Contrast agents

- ▶ 1968, Gramiak, saline injection
- Microbubbles (2 \sim 5 μ m)
- Asymmetric compression/expansion
- Stabilization (synthetic polymers), up to 5 10 min.
- Injection
- Albunex, Optison, Echovist, Levovist...

Flash contrast imaging

US bubble destabilization.

normal

Flash contrast imaging

US bubble destabilization.

flash, bubbles broken

Flash contrast imaging

US bubble destabilization.

filling up

Myocardial perfusion evaluation.

Doppler ultrasound

US contrast agents

Harmonic imaging

3D US imaging

Nonlinear response

Assymetric bubble compression

Harmonic imaging

Transmit f_0 , receive $2f_0$

Harmonic imaging

- Transmit f_0 , receive $2f_0$
- Bandwith limitation

Harmonic imaging

- Transmit f_0 , receive $2f_0$
- Bandwith limitation
- Bubbles not needed, tissue nonlinearity

Pulse Inversion Harmonic Imaging

- Two pulses, second inverted
- Responses summed
- Filtration not needed

Pulse Inversion Harmonic Imaging

- ► Two pulses, second inverted
- Responses summed
- Filtration not needed

Pulse Inversion Harmonic Imaging

- Two pulses, second inverted
- Responses summed
- Filtration not needed
- Several pulses (Power Pulse Inversion)

Doppler ultrasound

US contrast agents

Harmonic imaging

3D US imaging

Biological effects

- Thermal effects
 - 1.5 °C indefinitely or 6 °C for 1 min
 - highest risk in bones (transcranial imaging)
- Cavitation growth/collapse of bubbles
 - for long pulse lengths or high pressure
 - may damage cells
 - unlikely to occur in vivo
- Radiation pressure makes tissues/fluids move

Biological effects

- Thermal effects
 - 1.5 °C indefinitely or 6 °C for 1 min
 - highest risk in bones (transcranial imaging)
- Cavitation growth/collapse of bubbles
 - for long pulse lengths or high pressure
 - may damage cells
 - unlikely to occur in vivo
- Radiation pressure makes tissues/fluids move
- Clinical studies found no harmful effects

Biological effects

Thermal effects

- 1.5 °C indefinitely or 6 °C for 1 min
- highest risk in bones (transcranial imaging)
- Cavitation growth/collapse of bubbles
 - for long pulse lengths or high pressure
 - may damage cells
 - unlikely to occur in vivo
- Radiation pressure makes tissues/fluids move
- Clinical studies found no harmful effects
- ... ultrasound power output is increasing.

Conclusions

- Non-invasive, affordable and portable imaging technique
- Excellent soft tissue imaging
- Lower image quality (wrt CT or MRI) due to speckle but improving
- Low penetration depth versus resolution
- Does not pass through air or gas
- Does not pass through bones, shadows
- Modern techniques 3D, contract agents, Doppler