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Ionization
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Electromagnetic radiation
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X-rays for CT

▶ Electro-magnetic waves: no charge, no rest mass
▶ Corresponding frequency range 1015 − 1018 Hz
▶ Energies used in medical imaging are in the “hard X-ray” range
▶ Large penetration depth in light matrices (e.g. tissue)
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X-rays interaction with matter

The most relevant processes
for attenuation in medical
X-ray imaging are:
▶ Compton scattering
▶ Photoelectric effect 5 / 64



Introduction to CT

Hardware

Mathematics and Physics of CT

Radon transform
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Computed Tomography (CT) scanner
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CT history

1917 mathematical theory (Radon)
1956 tomography reconstruction in radioastronomy (Bracewell)
1963 CT reconstruction theory (Cormack)
1971 CT principles demonstrated (Hounsfield)
1972 first working CT for humans (EMI, London, Hounsfield)
1973 PET, Positron Emission Tomography
1974 Ultrasound tomography
1975 whole body scanner (Hounsfield)
1982 Single Photon Emission Computed Tomography (SPECT)
1985 Helical CT
1998 Multislice CT, 0.5 s/frame
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Johann Radon
1887–1956

▶ born in Děč́ın (Czech Republic), lived in Göttingen, Brno, Hamburg, Greifswald,
Erlangen, Breslau, Innsbruck and Vienna

▶ mathematician; Radon transform (1917) — reconstruction of a function from its
integrals on certain manifolds (projections)
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Godfrey Hounsfield
1919–2004

▶ physicist and engineer (did not attend university)
▶ worked on radar and on first transistor computers
▶ created the first CT X-ray scanner
▶ Nobel prize in Medicine (1979, together with Cormack)
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Allan MacLeod Cormack
1924–1998

▶ born in South Africa, studied in Cambridge, lived in the US
▶ particle physicist
▶ theoretical foundation of CT scanning (independently of Hounsfield)
▶ Nobel prize in Medicine (1979, together with Hounsfield)

11 / 64



CT principles

1. Sequence of parallel sections (tomos)

2. Sequence of projections from multiple directions
3. Reconstruction of the object
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CT example scans

Head and kidneys
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CT example scans

CT angiography, pelvis 16 / 64



Clinical applications
▶ Lungs

▶ Head
▶ Abdomen
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Tomography modalities

▶ X-rays — CT
▶ gamma rays — PET, positron emission tomography
▶ gamma rays — SPECT, single-photon emission computerized tomography
▶ light — optical tomography
▶ RF waves — MRI, magnetic resonance imaging
▶ DC — electric impedance tomography
▶ ultrasound — ultrasound tomography
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Introduction to CT

Hardware

Mathematics and Physics of CT

Radon transform
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First scanner

25 / 64



Scanner geometry — generation 1
1971

▶ Single source and single
detector

▶ Finely collimated narrow
beam

▶ Alternating translation and
rotation

▶ Very slow (4 min / section),
low resolution

▶ Low cost, good scatter
rejection, easy calibration
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Scanner geometry — generation 2
1974

▶ Narrow fan beam (∼ 10◦),
multiple detectors (N)

▶ N projections acquired in
parallel

▶ Increased rotation increment
▶ Increased speed (20 s /

section)
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Scanner geometry — generation 3
1975

▶ Wide fan beam (30◦ ∼ 60◦) covering
complete field of view

▶ 100s of detectors
▶ Only rotation, no translation
▶ Pulsed or continuous acquisition
▶ Fast (5 s / section)
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Scanner geometry — generation 4
1977

▶ Rotating source, stationary
detector rings

▶ More expensive
▶ Avoids rotating contacts
▶ Fast
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Scanner geometry — generation 5
Electron beam CT (EBCT, 1983)

▶ No moving parts
▶ Directional X-ray

source
▶ Extremely fast

(beating heart)
▶ Lower signal to noise

ratio and spatial
resolution
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CT X-ray sources
Similar but bigger than radiography X-ray sources

▶ Challenges: Power leads, cooling, vibration, . . . 31 / 64
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CT X-ray sources - novel approach
Liquid anode tube: overcoming power density limitations of solid target X-ray tubes

Liquid metal-jet tube:
▶ Heat dissipation problem nearly obsolete
▶ Small focal sizes viable (10-15µm) at high power (∼ 500 W)

⇒ Allows for high magnification / system resolution
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Filtering and collimation (1)
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Filtering and collimation (2)
▶ Beam shaping (attenuate lateral part of the beam)

▶ Pre-patient and detector collimation — beam(slice) width 35 / 64



CT detector types

▶ Xenon ionization chamber detectors
▶ Faster but less sensitive

▶ Scintillation detectors
▶ More sensitive but slower (afterglow,

scintillator dependent)
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CT detector types
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Scintillation detector construction
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Scintillation detector construction

Multiple (e.g. 32, 64) slices −→ acceleration 39 / 64
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X-ray detectors: Photon counting detectors

▶ Unlimited dynamic range and exposure time
▶ Detected count obeys Poisson distribution
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Electric processing — corrections

▶ Offset correction (zero signal at rest)
▶ Normalization correction (x-ray source intensity fluctuation)
▶ Sensitivity correction (inhomogeneous detectors and amplifiers)
▶ Geometric correction
▶ Beam hardening correction
▶ Cosine correction (for fan beam geometry)
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Attenuation along a line
Homogeneous material (Beer-Lambert’s law)

I = I0e−µ∆ξ

Piecewise homogeneous material

I = I0
n∏

i=1
e−µ∆ξ = I0e−∆ξ

∑n
i=1

µi

Continuously varying µ(x), x = i∆ξ

I = I0e− lim∆ξ→0 ∆ξ
∑n

i=1
µi

= I0e−
∫ D

0
µ(x)dx

Line integral for line L

= I0e−
∫

L
µ(x)dx
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Hounsfield units
HU, CT number

CT = 1000µ− µwater
µwater

▶ Values between −1000 (air) and approximately 1000 (bones)
▶ Densities in HU are reproducible between devices
▶ To differentiate soft tissue types, tumor types etc.
▶ Accurate calibration is needed
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Hounsfield units
HU, CT number
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Beam hardening

▶ Attenuation decreases with E

▶ −→ low E rays are attenuated more
▶ −→ mean E increases
▶ Measured attenuation p = log(I0/I) < theoretically linear µ∆ξ.
▶ Beam hardening correction
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Attenuation, interaction of radiation with matter

▶ “absorption edges” correspond binding energies of electrons from atom’s shells.
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Attenuation, materials

▶ high-Z candidate materials have been identified in recent years
▶ Extensive pre-clinical testing and method development required 52 / 64



Linear forward problem

For N straight lines Lj , measure the attenuation

pj = log I j
0
I j =

∫
Lj
µ(x)dx

Assumptions
▶ Infinitely thin rays
▶ Straight lines — no scattering, reflection or refraction
▶ Monochromatic radiation — no beam hardening

(Assumptions can be relaxed but more complicated dependency.) 53 / 64



Linear forward problem
For N straight lines Lj , measure the attenuation

pj = log I j
0
I j =

∫
Lj
µ(x)dx

Assumptions
▶ Infinitely thin rays
▶ Straight lines — no scattering, reflection or refraction
▶ Monochromatic radiation — no beam hardening

(Assumptions can be relaxed but more complicated dependency.)
Discretization

µ(x) =
M∑

i=1
ciψi(x)

−→ linear system of equations Lc = p
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Integration lines in polar coordinates

Describe integration lines by angle φ and offset r :
L(φ, r) =

{
(x , y) ∈ R2; x cosφ+ y sinφ = r

}
=

{
(r cosφ− t sinφ, r sinφ+ t cosφ); t ∈ R

}
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Integration lines in polar coordinates

Describe integration lines by angle φ and offset r :

L(φ, r) =
{
(x , y) ∈ R2; x cosφ+ y sinφ = r

}
=

{
(r cosφ− t sinφ, r sinφ+ t cosφ); t ∈ R

}
Implicit line equation, x = (x , y) [

cosφ, sinφ
]
x = 0

Parametric line equation [
cosφ − sinφ
sinφ cosφ

]
︸ ︷︷ ︸
rotation matrix R(φ)

[
r
t

]
= x
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Rotating system of coordinates[
ξ
η

]
= R(φ)

[
ξ′

η′

]
[
ξ′

η′

]
= RT (φ)

[
ξ
η

]
RT (φ) = R(−φ)

Projection

Pφ(ξ′) =
∫

L(φ,η′)
µ(x)dx =

∫
o(ξ, η′)dη′

Measurements

Pφ(ξ′) = log I0
I(φ, ξ′)

Change of variables

ξ′ = r , η′ = t, x = ξ, y = η
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Radon transform
Projection in polar coordinates:

Pφ(ξ′) = R
[
o(ξ, η)

]
Pφ(ξ′) =

∫
L

o(ξ, η)dl

along the line L defined by φ a ξ′:

ξ′ = ξ cosφ+ η sinφ

Equivalently

Pφ(ξ′) =
∫

o(ξ′ cosφ− η′ sinφ, ξ′ sinφ+ η′ cosφ)dη′
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Radon transform properties

Motivation: If a function f represents an unknown density, then the Radon transform
represents the projection data obtained as the output of a tomographic scan. Hence
the inverse of the Radon transform can be used to reconstruct the original density from
the projection data, and thus it forms the mathematical background for tomographic
reconstruction.

▶ Linearity:
R

[
αf + βg

]
= αR

[
f

]
+ βR

[
f

]
▶ Periodicity:

Pφ(ξ′) = Pφ±2π(ξ′) = Pφ±π(−ξ′)

. . . and many others
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Radon transform of a point

o(ξ, η) = δ(ξ − ξ0, η − η0)
Pφ(ξ′) = R

[
o(ξ, η)

]
= δ

(
ξ0 cosφ+ η0 sinφ− ξ′)

. . . is a sinusoid with amplitude
√
ξ2

0 + η2
0 and phase ∠(ξ0, η0).

ξ′ = ξ0 cosφ+ η0 sinφ

Radon transform result Pφ(ξ′) is called a sinogram

61 / 64



Radon transform
(sinogram)

of a disc
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Radon transform
(sinogram)

of a square
(inverted)
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Radon transform
(sinogram)

of an object with
inserts (inverted)
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