Assignment 1

June 29, 2017

Task 1. Maximum Likelihood (difficulty 1). Given a set of noisy observations of a template J,
estimate the mean template and noise variance.

e Input: a sequence of images of the object, array JJ.

Task 2. Bayesian Decision Theory (difficulty 2). Consider the Template Matching Example from
the lecture, compute optimal Bayesian decision for

a) Box loss:
0, if |k — k*| < 10;
1

,  otherwise.

Wk, k*) = {

b) Grid loss: for a set of quadrants forming a partition of all positions (K7i,..., K;), the
goal is to find ¢ such that k € K;. What is the loss function?

Input:
e Observed image I;
e Template image J;
e Detected vertical position ky;
e Noise level o;

e The matrix K of size [x N, in which row j contains the mask of the set K; of the grid
loss.

e The data consists of two images background.png, template.png, a matrix K € N(>x2)
describing the partition (for grid loss) and a variable vpos indicating the vertical
position of the template.

e Compute and plot posterior probability of tank at position k for all k.
e Plot loss to be paid for making decision d for all positions d.

e Compute the optimal decision.

Task 3. Tracking (difficulty 4). The following information is available on the input:
e A sequence of images as in Task 1, array 17
e Tank template J
e Noise level o
e Detected vertical position ky
Detected speed Ss

e Motion model: probability ¢ to keep direction
e Ground truth positions kk for verification
Follow these steps to construct Kalman filter. Compute:

e Position p.d.f. of the object for every frame, p;. Visualize the result.



e State: the state will be discrete, formed by position k € 0... N and velocity v € {—S, S};

e Motion model: With probability g the new state is (k + v,v) and with probability 1 — ¢
it is (k + v, —v);

e Prediction: Given a state p.d.f. for frame ¢ (2x N numbers), compute predicted state
p.d.f. in frame ¢ 4+ 1 using the motion model. Visualize the result. Assume that in time
t = 0, the velocity has probability 0.5 for each direction.

e Update: Infer the posterior state estimate from frame ¢ 4+ 1 given the predicted state
estimate and the evidence p;.

e Plot recovered position p.d.f. over time as an image. Overlay ground truth true
trajectory. Overlay maximum a posterior estimate of the position k; and uncertainty
bounds given by + standard deviation of the position.

Task 4. EM-Reconstruction (difficulty 4).
Legend You built a telescope to observe night sky. You decided to take many images with
not so long exposure time to integrate them later on using computer. Usually, simply
averaging many images produced a good result. But another day the targeting mechanism of
you telescope seem to have short-circuiting problems and each image taken seem to have a
random offset. This was a very suspicious breakdown and it was so unlucky to happen just
when you hoped to get a good view of a planet. You felt determined to reconstruct the
picture with a more clever algorithm.
Problem Formulation and Model The true unknown image is denoted by J and
I = (I;)_, are the observed images Each I; is a noisy and shifted observation of J. The
shifts are denoted by d = (dj)_, where sh1ft d; corresponds to image I;. Furthermore it is
known that for all shifts it holds that dj € {— D ,D}? where D is a known constant.

To model the problem we make the following assumptions:
e The noise of the image is Gaussian i.i.d. with known variance o.
e The shifts d are independent and uniformly distributed, i.e. p(dy) = 1/(2D+1)?
e Given the shifts d (and J), the observations I are independent

N
p(I|d; J) = H (Ildis J) (1)

e given J and dj, the pixels in the image I are independent:

p(Ixldi; J) = [ pwIn(@) = J(z — ), o) (2)
€N

where Q is the set of all pixel and py(y, o) is the normal distribution with zero mean
and variance o, i.e.:

N (Y, 0) = 1/vamo exp (—v*/20%)

By applying the rules of conditional probability to (2) and combining with (1), one gets:

p(I,d;J) H (H N (I (z) = J(x — dy), )) p(dy).

e

Since we are not interested in the shifts, we marginalize over them:

p; )= > p(IdJ)

de{~D,,D}?



The maximum likelihood for .J is now expressed as

arg max I,d;J
gma dG{DZ; ,D}zp( )
The input contains:
e IT — array of images, shape HxW x3xN
e D — maximum absolute displacement
e sigma — the noise variance
Your task is to:
e Describe the estimation step
e Describe the maximization step

e Implement the EM Algorithm in order to reconstruct the image.

Task 5. Tracking* (bonus task, difficulty 4). In the setting of Task 3:

e Repeat the estimation process backwards in time starting from the last frame (can be
easily done by reverting the sequence).

e You will obtain somewhat different posterior estimate of the trajectory.

e Can you combine the two directions and derive the Bayesian estimate for position at
time ¢ given all preceding and all subsequent frames?

e Can you recover a better template from the estimated trajectory?

e Try to formulate the problem of template estimation and trajectory recovery as a joint
semi-supervised problem.



