
Assignment 1

June 29, 2017

Task 1. Maximum Likelihood (difficulty 1). Given a set of noisy observations of a template J ,
estimate the mean template and noise variance.

• Input: a sequence of images of the object, array JJ .

Task 2. Bayesian Decision Theory (difficulty 2). Consider the Template Matching Example from
the lecture, compute optimal Bayesian decision for

a) Box loss:

W (k, k∗) =

{
0, if |k − k∗| < 10;

1, otherwise.

b) Grid loss: for a set of quadrants forming a partition of all positions (K1, . . . ,Kl), the
goal is to find i such that k ∈ Ki. What is the loss function?

Input:

• Observed image I;

• Template image J ;

• Detected vertical position ky;

• Noise level σ;

• The matrix K of size l×N , in which row j contains the mask of the set Kj of the grid
loss.

• The data consists of two images background.png, template.png, a matrix K ∈ N(l×2)

describing the partition (for grid loss) and a variable vpos indicating the vertical
position of the template.

• Compute and plot posterior probability of tank at position k for all k.

• Plot loss to be paid for making decision d for all positions d.

• Compute the optimal decision.

Task 3. Tracking (difficulty 4). The following information is available on the input:

• A sequence of images as in Task 1, array II

• Tank template J

• Noise level σ

• Detected vertical position ky

• Detected speed Ss

• Motion model: probability q to keep direction

• Ground truth positions kk for verification

Follow these steps to construct Kalman filter. Compute:

• Position p.d.f. of the object for every frame, pt. Visualize the result.
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• State: the state will be discrete, formed by position k ∈ 0 . . . N and velocity v ∈ {−S, S};
• Motion model: With probability q the new state is (k + v, v) and with probability 1− q

it is (k + v,−v);

• Prediction: Given a state p.d.f. for frame t (2×N numbers), compute predicted state
p.d.f. in frame t+ 1 using the motion model. Visualize the result. Assume that in time
t = 0, the velocity has probability 0.5 for each direction.

• Update: Infer the posterior state estimate from frame t+ 1 given the predicted state
estimate and the evidence pt.

• Plot recovered position p.d.f. over time as an image. Overlay ground truth true
trajectory. Overlay maximum a posterior estimate of the position k̂t and uncertainty
bounds given by ± standard deviation of the position.

Task 4. EM-Reconstruction (difficulty 4).
Legend You built a telescope to observe night sky. You decided to take many images with
not so long exposure time to integrate them later on using computer. Usually, simply
averaging many images produced a good result. But another day the targeting mechanism of
you telescope seem to have short-circuiting problems and each image taken seem to have a
random offset. This was a very suspicious breakdown and it was so unlucky to happen just
when you hoped to get a good view of a planet. You felt determined to reconstruct the
picture with a more clever algorithm.
Problem Formulation and Model The true unknown image is denoted by J and
I = (Ik)Nk=1 are the observed images. Each Ij is a noisy and shifted observation of J . The
shifts are denoted by d = (dk)Nk=1 where shift dj corresponds to image Ij . Furthermore it is
known that for all shifts it holds that dk ∈ {−D, · · · , D}2 where D is a known constant.

To model the problem we make the following assumptions:

• The noise of the image is Gaussian i.i.d. with known variance σ.

• The shifts d are independent and uniformly distributed, i.e. p(dk) = 1/(2D+1)2

• Given the shifts d (and J), the observations I are independent

p(I|d; J) =

N∏
k=1

p(Ik|dk; J) (1)

• given J and dk, the pixels in the image Ik are independent:

p(Ik|dk; J) =
∏
x∈Ω

pN (Ik(x)− J(x− dk), σ) (2)

where Ω is the set of all pixel and pN (y, σ) is the normal distribution with zero mean
and variance σ, i.e.:

pN (y, σ) = 1/
√

2πσ exp
(
−y2/2σ2

)
By applying the rules of conditional probability to (2) and combining with (1), one gets:

p(I, d; J) =

N∏
k=1

(∏
x∈Ω

pN (Ik(x)− J(x− dk), σ)

)
p(dk).

Since we are not interested in the shifts, we marginalize over them:

p(I; J) =
∑

d∈{−D,··· ,D}2
p(I, d; J)
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The maximum likelihood for J is now expressed as

arg max
J

∑
d∈{−D,··· ,D}2

p(I, d; J)

The input contains:

• II – array of images, shape H×W×3×N
• D – maximum absolute displacement

• sigma – the noise variance

Your task is to:

• Describe the estimation step

• Describe the maximization step

• Implement the EM Algorithm in order to reconstruct the image.

Task 5. Tracking* (bonus task, difficulty 4). In the setting of Task 3:

• Repeat the estimation process backwards in time starting from the last frame (can be
easily done by reverting the sequence).

• You will obtain somewhat different posterior estimate of the trajectory.

• Can you combine the two directions and derive the Bayesian estimate for position at
time t given all preceding and all subsequent frames?

• Can you recover a better template from the estimated trajectory?

• Try to formulate the problem of template estimation and trajectory recovery as a joint
semi-supervised problem.
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