Introduction to NLP

Probabilistic models

Compressed out of NLP courses from **Dan Jurafsky** (Stanford), & David Bamman (Berkeley), Michael Collins (MIT & Columbia), and some online (Udemy) courses

Book: **Speech and Language Processing** by Jurafsky & Martin (3rd edition)

Why teach NLP in SMU?

- 1. Language/text has a **symbolic** structure
- 2. It is all about **machine learning** these days
- 3. NLP is a core part of **Artificial Intelligence**
 - However, there was no NLP at FEL

After this short NLP block, you should be able to:

- Recognize some classic NLP tasks when encountered
- Understand some modern NLP methods and models:
 - i. probabilistic models
 - ii. vector models
 - iii. matrix models
 - iv. neural models
- Implement and/or use these in practice (Python)

What is NLP?

NLP = Natural Language Processing

- a.k.a. computational linguistics (from a linguist's point of view)

Intersection of:

- Linguistics
- AI/ML
- CS

Goal: process language with computers to perform useful things...

Why learn NLP?: Practical viewpoint

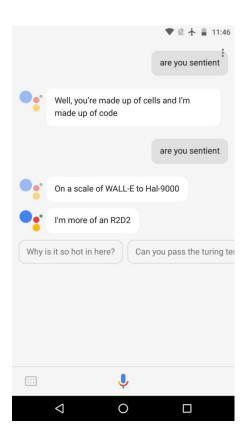
- Part of speech tagging
- Named entity recognition
- Language modelling
- Topic modelling
- Information extraction
- Text Summarization
- Machine translation
- Question answering
- Conversational agents

Why learn NLP?: Theoretical viewpoint

Language is the natural testbed for intelligence!

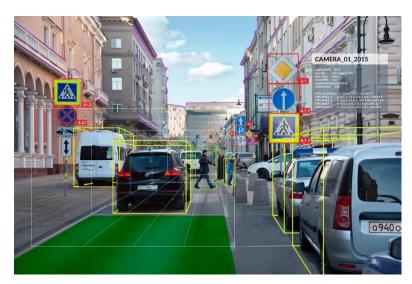
simulate a short conversation between you and the Google Assistant on the topic of sentience where Google Assistant thinks it's an R2D2 level of sentience:





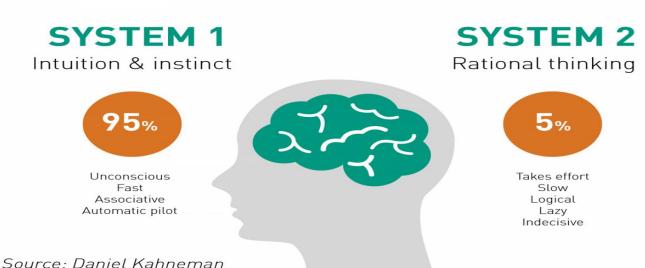
Why learn NLP?: Theoretical viewpoint

- Language is the natural testbed for intelligence! Why?
- There are 2 most abundant sources of data: Visual and Textual



Why learn NLP?: Theoretical viewpoint

- Language is the natural testbed for intelligence! Why?
- There are 2 most abundant sources of data: Visual and Textual
- However, while even insects can see, Language is characteristic to humans



Probabilistic Models

- Language modelling

Probabilistic Language Models

Goal: assign probability to a sentence

- Machine Translation:
 - P(high winds tonite) > P(large winds tonite)
- Spell Correction
 - The office is about fifteen **minuets** from my house
 - P(about fifteen **minutes** from) > P(about fifteen **minuets** from)
- Speech Recognition
 - P(I saw a van) >> P(eyes awe of an)
- + Summarization, question-answering, ...

Probabilistic Language Modeling

Goal: compute the probability of a sentence or sequence of words:

$$P(W) = P(w_1, w_2, w_3, w_4, w_5...w_n)$$

Related task: probability of an upcoming word:

$$P(W_5 | W_1, W_2, W_3, W_4)$$

A model that computes either of these:

$$P(W)$$
 or $P(w_n|w_1,w_2...w_{n-1})$ is called a language model or LM.

Alternative name: grammar

How to compute P(W)

How to compute this joint probability:

P(its, water, is, so, transparent, that)

• Let's start with the Bayes rule:

$$P(A,B) = P(A) P(B|A)$$

• And now more generally ("Chain Rule of Probability")

$$P(x_1, x_2, x_3, ..., x_n) = P(x_1)P(x_2 | x_1)P(x_3 | x_1, x_2)...P(x_n | x_1, ..., x_{n-1})$$

Joint probability of words in sentence

$$P(w_1 w_2 ... w_n) = \prod_{i} P(w_i | w_1 w_2 ... w_{i-1})$$

```
P("its water is so transparent") =
```

$$P(its) \times P(water|its) \times P(is|its water)$$

× P(so | its water is) × P(transparent | its water is so)

How to estimate these probabilities

Could we just count and divide?

```
P(\text{the} | \text{its water is so transparent that}) = \frac{Count(\text{its water is so transparent that the})}{Count(\text{its water is so transparent that})}
```

- Too many possible sentences!
- We'll never see enough data for estimating these

Markov Assumption

A simplifying assumption:

 $P(\text{the }|\text{ its water is so transparent that}) \approx P(\text{the }|\text{ that})$

Andrei Markov

Or maybe a bit less restrictive

 $P(\text{the }|\text{ its water is so transparent that}) \approx P(\text{the }|\text{ transparent that})$

Markov Assumption

$$P(w_1 w_2 ... w_n) \approx \prod_{i} P(w_i | w_{i-k} ... w_{i-1})$$

In other words, we approximate each component in the product

$$P(w_i | w_1 w_2 \dots w_{i-1}) \approx P(w_i | w_{i-k} \dots w_{i-1})$$

Simplest case: Unigram model

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i)$$

Some automatically generated sentences from a unigram model:

```
fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass
```

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Bigram model

= Condition on the previous word:

$$P(w_i | w_1 w_2 \dots w_{i-1}) \approx P(w_i | w_{i-1})$$

texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached this, would, be, a, record, november

N-gram models

- We can extend to trigrams, 4-grams, 5-grams
- In general this is an insufficient model of language
 - because language has long-distance dependencies:

"The **computer** which I had just put into the machine room on the fifth floor **crashed**."

But we can often get away with N-gram models in practice

Probabilistic Language Modelling

- Estimating N-gram Probabilities

Estimating bigram probabilities

Using Maximum Likelihood Estimate:

$$P(w_i | w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

$$P(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

$$P({\tt I}|{\tt ~~}) = \tfrac{2}{3} = .67 \qquad P({\tt Sam}|{\tt ~~}) = \tfrac{1}{3} = .33 \qquad P({\tt am}|{\tt I}) = \tfrac{2}{3} = .67 \\ P({\tt~~ }|{\tt Sam}) = \tfrac{1}{2} = 0.5 \qquad P({\tt Sam}|{\tt am}) = \tfrac{1}{2} = .5 \qquad P({\tt do}|{\tt I}) = \tfrac{1}{3} = .33~~$$

Example: Berkeley Restaurant Project sentences

- can you tell me about any good cantonese restaurants close by
- mid priced that food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day
-

Raw bigram counts

• Out of 9222 sentences:

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw bigram probabilities

• Normalize by unigrams:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Result:

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Bigram estimates of sentence probabilities

```
P(<s> | want english food </s>) = 
 <math>P(|<s>) \times P(want | I) \times P(english | want) \times P(food | english) \times P(</s> | food) = .000031
```

- What types of knowledge in a LM?
 - o P(english|want) = .0011
 - o P(chinese|want) = .0065
 - o P(to|want) = .66
 - o P(eat | to) = .28
 - o P(food | to) = 0
 - P(want | spend) = 0
 - \circ P (i | <s>) = .25

Practical Issues

- We do everything in log space!
 - o to avoid numeric underflow
 - also adding is faster than multiplying
 - though log can be slower than multiplication

$$\log(p_1 \times p_2 \times p_3 \times p_4) = \log p_1 + \log p_2 + \log p_3 + \log p_4$$

Google N-Gram Release

- •serve as the incoming 92
- •serve as the incubator 99
- •serve as the independent 794
- •serve as the index 223
- •serve as the indication 72
- •serve as the indicator 120
- •serve as the indicators 45
- •serve as the indispensable 111
- •serve as the indispensible 40
- •serve as the individual 234

https://books.google.com/ngrams

Probabilistic Language Modelling

Evaluation and Perplexity

Extrinsic evaluation of N-gram models

- Does our language model prefer good sentences to bad ones?
 - Assign higher probability to "real" or "frequently observed" sentences
 - Than "ungrammatical" or "rarely observed" sentences?
- Best evaluation for comparing models A and B
 - Put each model in a task
 - spelling corrector, speech recognizer, MT system
 - Run the task, get an accuracy for A and for B
 - How many misspelled words corrected properly
 - How many words translated correctly
 - Compare accuracy for A and B

Difficulty of extrinsic evaluation

- Extrinsic evaluation
 - Time-consuming; can take days or weeks
- So:
 - Sometimes we use intrinsic evaluation: perplexity
 - Bad approximation
 - unless the test data looks just like the training data
 - So generally only useful in pilot experiments
 - But is helpful to think about.

Intuition of Perplexity

The Shannon Game:
How well can we predict the next word?

I always order pizza with cheese and
The 33rd President of the US was
I saw a ____

Unigrams are terrible at this game. (Why?)

The Shannon Game:
pepperoni 0.1
anchovies 0.01
....
fried rice 0.0001
....
and 1e-100

A better model of a text is one which assigns a higher probability to the word that actually occurs

- The best language model is one that best predicts an unseen test set
 - Gives the highest P(sentence)

Perplexity

Perplexity is the inverse probability of the sentence, normalized by the number of words:

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$
$$= \sqrt[N]{\frac{1}{P(w_1 w_2 ... w_N)}}$$

Chain rule:
$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}$$

For bigrams:
$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

*perplexity is also closely related to cross-entropy $PP(W) = 2^{H(W)} = 2^{-\frac{1}{N}\log_2 P(w_1, w_2, \ldots, w_N)}$

The Shannon Game intuition for perplexity

- Perplexity is a "weighted equivalent branching factor"
- How hard is the task of recognizing digits '0,1,2,3,4,5,6,7,8,9'
 Perplexity = 10
- How hard is recognizing (30,000) names at Microsoft.
 - Perplexity = 30,000
- Let's imagine a call-routing phone system gets 120K calls and has to recognize
 - a. "Operator" (let's say this occurs 1 in 4 calls)
 - b. "Sales" (1in 4)
 - c. "Support" (1 in 4)
 - d. 30,000 different names (each name occurring 1 time in the 120K calls)
 - We get the perplexity of this sequence of length 120K by first multiplying 120K probabilities
 - o (90K of which are 1/4 and 30K of which are 1/120K), and then taking the inverse 120,000th root:

• This can be arithmetically simplified to just N = 4: the operator (1/4), the sales (1/4), the tech support (1/4), and the 30,000 names (1/120,000): **Perplexity = ((1/4 * 1/4 * 1/4 * 1/120K)^(-1/4) = 52.6**

$$PP(W) = P(w_1w_2...w_N)^{-\frac{1}{N}}$$

$$= (\frac{1}{10}^N)^{-\frac{1}{N}}$$

$$= \frac{1}{10}^{-1}$$

$$= 10$$

Lower perplexity = better model

Training 38 million words, test 1.5 million words

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

The Shannon Visualization Method

- Choose a random bigram (<s>, w) according to its probability
- Now choose a random bigram (w, x) according to its probability
 - O And so on until we choose </s>
 - Finally string the words together

```
<s> I
    I want
    want to
    to eat
        eat Chinese
        Chinese food
        food </s>
I want to eat Chinese food
```

The Shannon Visualization - optimal solution

- What if you wanted to generate the most likely sentence instead of the bigram sampling?
- For a sentence of length **n**, there are |**V**|ⁿ options to choose from!

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

The Shannon Visualization - optimal solution

- What if you wanted to generate the most likely sentence instead of sampling?
- For a sentence of length **n**, there are |**V**|ⁿ options to choose from!
- Apply the Bellman's principle of optimality! (remember RL?)

$$S^*(w_1,...,w_n) = \underset{w_1,...w_n \in V^n}{argmax} \ P(w_1,...,w_n)$$

$$= \underset{w_1,...w_n \in V^n}{argmax} \ P(w_n|w_{n-1}) \cdot P(w_{n-1}|w_{n-2}) \cdot ... \cdot P(w_1| < s >)$$

$$= \underset{w_{n-1},w_n \in V^2}{argmax} \ P(w_n|w_{n-1}) \cdot S^*(w_1,...,w_{n-1})$$
Recursion

can we do better

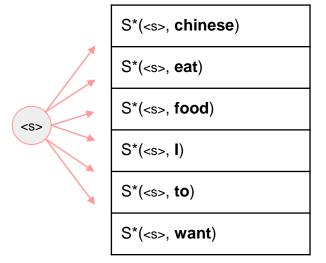
- What if you wanted to generate the most likely sentence instead of sampling?
- For a sentence of length n, there are |V|n options to choose from!
- Apply the Bellman's principle of optimality! (yet again)
 - that gives a transition table of just V*n, e.g. for for n=6:

		w1		V	w2		w3		٧	v4		w5		w6	
1	P(0	Chinese		<u> </u>	ese w1)	P(Ch	inese w2)) \	P(Chine	ese w3)		P(Chinese w4)	P	P(Chinese w5)	
i	i i 5	want 827		at chinese	food lunc	spend	at w2) 🗧		P(eat	t w3)	X.	P(eat w4)		P(eat w5)	
want to eat	2 2 0	0 0 0	608 1	6 2 16	6 0 2	1 211	od w2) [/]	$\frac{1}{M}$	P(foo	d w3)		P(food w4)		P(food w5)	
chine food lunch	se 1 15	0 0	0 0 0	0	82 1	0	I w2)		P(I	w3)		P(I w4)		P(I w5)	
spend	l 1	ν (το <	1 0	0	0 (w 1)	P	to w2)		P(to	w3)		P(to w4)		P(to w5)	
	Р	(want	<s>)</s>	P(war	nt w1)	P(w	/ant w2)		P(war	nt w3)	X	P(want w4)	1	P(want w5)	

can we do better
than trying them all?

- What if you wanted to generate the most likely sentence instead of sampling?
- For a sentence of length **n**, there are |**V**|ⁿ options to choose from!
- Apply the Bellman's principle of optimality! (yet again)

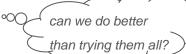
$$S^*(w_1, ..., w_n) = \underset{w_{n-1}, w_n \in V^2}{argmax} P(w_n | w_{n-1}) \cdot S^*(w_1, ..., w_{n-1})$$



can we do better
than trying them all?

- What if you wanted to generate the most likely sentence instead of sampling?
- For a sentence of length **n**, there are |**V**|ⁿ options to choose from!
- Apply the Bellman's principle of optimality! (yet again)

 $S^*(w_1,...,w_n) = argmax P(w_n|w_{n-1}) \cdot S^*(w_1,...,w_{n-1})$ $w_{n-1}, w_n \in V^2$ S*(<s>, chinese) S*(<s>, eat, chinese) S*(<s>, eat) $S^*(<s>, to, eat)$ $S^*(<s>, food)$ S*(<s>, want, **food**) <S> $S^*(<s>, I)$ $S^*(\langle s \rangle, food, I)$ $S^*(<s>, to)$ S*(<s>, want, **to**) S*(<s>, want) S*(<s>, I, want)

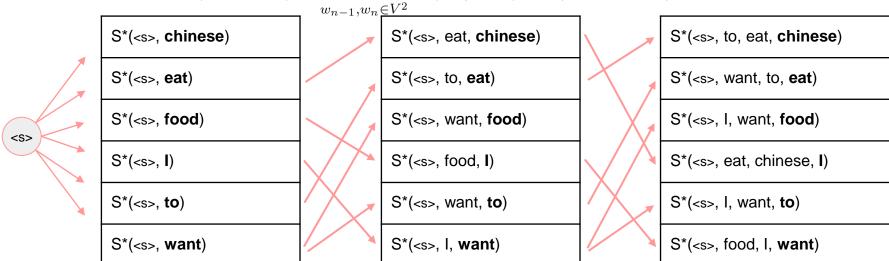


- What if you wanted to generate the most likely sentence instead of sampling?
- For a sentence of length **n**, there are |**V**|ⁿ options to choose from!
- Apply the Bellman's principle of optimality! (yet again)

 $S^*(w_1,...,w_n) = argmax P(w_n|w_{n-1}) \cdot S^*(w_1,...,w_{n-1})$

can we do better

than trying them all?

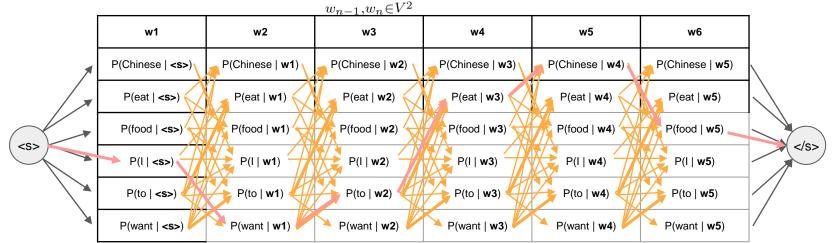


- What if you wanted to generate the most likely sentence instead of sampling?
- For a sentence of length **n**, there are |**V**|ⁿ options to choose from!
- Apply the Bellman's principle of optimality! (yet again)

$$S^*(w_1, ..., w_n) = argmax P(w_n|w_{n-1}) \cdot S^*(w_1, ..., w_{n-1})$$

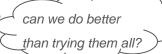
can we do better

than trying them all?



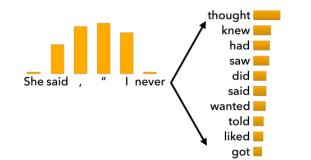
- What if you wanted to generate the most likely sentence instead of sampling?
- For a sentence of length **n**, there are |**V**|ⁿ options to choose from!
- Apply the Bellman's principle of optimality! (yet again)
 - that gives a transition table of just V*n, e.g. for for n=6:
 - → "I want to eat chinese food"

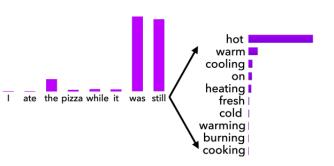
- In NLP, this is called Viterbi algorithm
 - Used for finding the most likely sequences in HMMs
- Applications in speech recognition, part-of-speech tagging, etc.
 - not really used for text generation...



Text Generation: Practice

- Greedy Decoding
 - At each time step, select the most probable word
- Random Sampling
 - Just sample randomly
- Top-k Sampling
 - Sample, but only from the top-k most likely tokens
- Nucleus sampling
 - Sample from top-p probability mass tokens





Approximating Shakespeare: Sampling

1 gram	 To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have Hill he late speaks; or! a more to leg less first you enter
2 gram	 -Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow. -What means, sir. I confess she? then all sorts, he is trim, captain.
3 gram	 -Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done. -This shall forbid it should be branded, if renown made it empty.
4 gram	 -King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in; -It cannot be but so.

Shakespeare as a corpus

- N=884,647 tokens, V=29,066
- Shakespeare produced 300,000 bigram types
 - o out of V^2 = 844 million possible bigrams.
- So 99.96% of the possible bigrams were never seen
 - o have zero entries in the table
- Quadrigrams even worse:
 - What's coming out looks like Shakespeare because it is Shakespeare!

Probabilistic Language Modelling

- Overfitting and Smoothing

The perils of overfitting: Zeros

Training set:

... denied the allegations

... denied the reports

... denied the claims

... denied the request

P("offer" | denied the) = 0

• Test set:

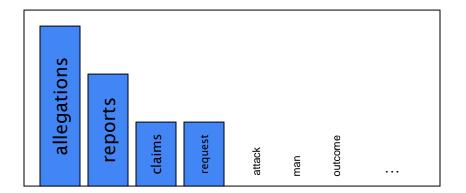
... denied the offer

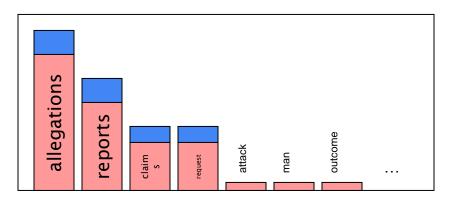
... denied the loan

- Bigrams with zero probability!
 - o mean that we will assign 0 probability to the test set!
- And hence we cannot compute perplexity (can't divide by 0)!

The intuition of smoothing

- When we have sparse statistics:
 - P(w | denied the)
 - 3 allegations
 - 2 reports
 - 1 claims
 - 1 request
 - 7 total
- Steal probability mass to generalize better
 - P(w | denied the)
 - 2.5 allegations
 - 1.5 reports
 - 0.5 claims
 - 0.5 request
 - 2 other
 - 7 total





Add-one estimation

- Also called Laplace smoothing
- Pretend we saw each word one more time than we did
- Just add one to all the counts!

$$P_{MLE}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

MLE estimate:

$$P_{Add-1}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}$$

Add-1 estimate:

Berkeley Restaurant Corpus: Laplace smoothed bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace-smoothed bigrams

$$P^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

No longer a MLE!	
	_

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Compare with raw bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Probabilistic Language Modelling

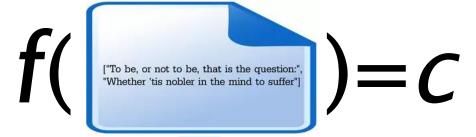
- Supervised Text Classification

Text classification?

- Spam detection
- Authorship identification
- Age/Gender recognition
- Language identification
- Sentiment classification
- Topic classification
- ...

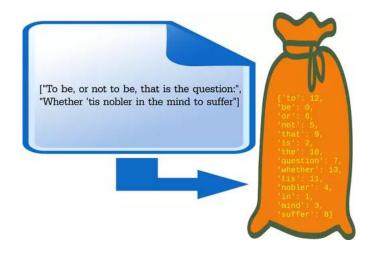
Text classification: task

- Input:
 - o a document **d**
 - \circ a fixed set of classes $C = \{c_1, c_2, ..., c_l\}$
 - \circ A training set of m hand-labeled documents $(d_1, c_1), \dots, (d_m, c_m)$
- Output:
 - \circ a learned classifier $f:d \rightarrow c$



Text classification: methods

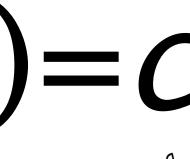
- Naturally, any kind of classifier can be used
 - Rule-based systems
 - Naïve Bayes
 - Logistic regression
 - Support-vector machines
 - Neural networks
 - 0 ..



The bag of words representation

f(

seen	2
sweet	1
whimsical	1
recommend	1
happy	1
• • •	• • •



Naive Bayes

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

- How to predict the class c for a document d?
 - o let's apply the Bayes rule again!

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(c \mid d)$$
$$= \underset{c \in C}{\operatorname{argmax}} \frac{P(d \mid c)P(c)}{P(d)}$$

MAP is "maximum a posteriori" = most likely class

Bayes Rule

 $= \underset{c \in C}{\operatorname{argmax}} P(d \mid c) P(c)$ Dropping the denominator

$$= \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, ..., x_n \mid c) P(c)$$
"Likelihood" "Prior"

Document d represented as features $x_1...x_n$

Naive Bayes: Tractability Problem

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$

 $O(|X|^n \bullet |C|)$ parameters!

How often does this class occur?

Could only be estimated if a very, very large number of training examples was available.

We can just count the relative frequencies in a corpus

Naive Bayes: Independence Assumptions

- Bag of Words assumption
 - Assume word position doesn't matter

$$P(x_1, x_2, ..., x_n \mid c)$$

- Conditional Independence
 - Assume the feature probabilities $P(x_i | c_i)$ are independent given the class c.

$$P(x_1,...,x_n | c) = P(x_1 | c) \bullet P(x_2 | c) \bullet P(x_3 | c) \bullet ... \bullet P(x_n | c)$$

Naive Bayes model inference:

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} \mid c_{j})$$

Naive Bayes: log space

- Multiplying a lot of small number leads to underflow problems...
 - Solution move to log space!

• Instead of:
$$c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j) \prod_{i \in positions} P(x_i \mid c_j)$$

• We calculate:
$$c_{\mathrm{NB}} = \operatorname*{argmax}_{c_j \in C} \left[\log P(c_j) + \sum_{i \in \mathrm{positions}} \log P(x_i | c_j) \right]$$

- Notes:
 - 1) Taking log doesn't change the ranking of classes!
 - The class with highest probability also has highest log probability!
 - 2) It's a linear model:
 - Just a max of a sum of weights: a **linear** function of the inputs
- So naive bayes is a linear classifier

Naive Bayes: Learning the parameters

- You have seen this before: maximum likelihood estimates!
 - o simply use the frequencies in the data
- The prior for the class probabilities: $\hat{P}(c_j) = \frac{N_{c_j}}{N_{total}}$
- The likelihood for the words:

 o "merge" all words for each class $\hat{P}(w_i \mid c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$

Sec. 13.3

Problem with Maximum Likelihood

what about completely unknown words?

0

 What if we have seen no training documents with the word fantastic and classified in the topic positive (thumbs-up)?

$$\hat{P}("fantastic" | positive) = \frac{count("fantastic", positive)}{\sum_{w \in V} count(w, positive)} = 0$$

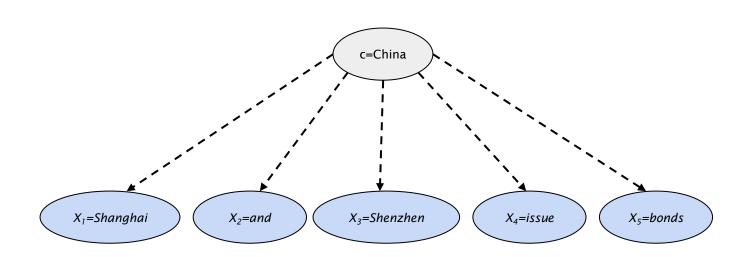
Zero probabilities cannot be conditioned away, no matter the other evidence!

$$c_{MAP} = \operatorname{argmax}_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$
 = 0!

- Solution?
 - Smoothing to the rescue!

$$\hat{P}(w_i \mid c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} \left(count(w, c) + 1\right)} = \frac{count(w_i, c) + 1}{\left(\sum_{w \in V} count(w, c)\right) + |V|}$$

Generative Model for Multinomial Naïve Bayes



Naïve Bayes and Language Modeling

- Naïve bayes classifiers can use any sort of feature
 - URL, email address, dictionaries, network features
- But if, as in the previous slides, we use **only** words as features
- Then Naïve bayes has an important similarity to language modeling:
- Each class = a unigram language model
- Assigning each word a probability: P(word | class)
- Assigning each sentence a probability $P(sentence \mid class) = \prod P(word \mid class)$

Each class = a unigram language model!

Class pos

0.1	I	ı	love	this	fun	film
0.1	love					
0.01	this	0.1	0.1	.05	0.01	0.1
0.05	fun					
0.1	film	P(sent	ence	c=pos) =	= 0.000	0005

...

Naive Bayes as a Language Model

Which class assigns the higher probability to a sentence?

Model pos						
0.1	1					
0.1	love					
0.01	this					
0.05	fun					
0.1	film					

Model neg					
1					
love					
this					
fun					
film					

I	love	this	fun	film
0.1	0.1	0.01	0.05	0.1
0.2	0.001	0.01	0.005	0.1

P(sentence|pos) > P(sentence|neg)