
SMU: Lecture 1 

(Intro to RL and Recap of MDPs)

Monday, February 14, 2022


(Heavily inspired by the Stanford RL Course of Prof. Emma Brunskill, but all potential 
errors are mine.)
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Markov Decision Processes 

(You’ve heard of them already and it is quite likely that you know them very well but they 
are important for understanding where RL algorithms come from… that’s why we will 

review them anyways)
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Part 1: Markov Processes
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Random Process (Not yet MP)
• Let us have:


•  a set of states , called the state space,


• a random process  taking values from ,


• the state of the process at time  is the value (outcome) of .

S

X1, X2, X3, …, Xt, … S

t Xt
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Random Processes



Markov Process (Not yet MDP)
• Let us have:


•  a set of states , called the state space,


• a random process  taking values from ,


• the state of the process at time  is the value (outcome) of .


• Markov property:


•  
for all .

S

X1, X2, X3, …, Xt, … S

t Xt

P[Xt+1 = st+1 |Xt = st, Xt−1 = st−1, …, X1 = s1] = P[Xt+1 = st+1 |Xt = st]
s1, s2, …st+1 ∈ S

The probability of transition to the next state does 
not depend on how we got to the present state!
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Markov Property
• Markov property will be exploited in RL algorithms that we will meet in the 

next lectures. (So let us spend little bit of time with it.) 

• What if a process is not Markov? Then we can make it Markov by 
including more information in its state.

P[Xt+1 = st+1 |Xt = st, Xt−1 = st−1, …, X1 = x1] = P[Xt+1 = st+1 |Xt = st]

History
In other  words, what we are saying is  that the state transition probability does 
not depend on the history, just on the current state. Yet in other words: Future 
is independent of the past given the present.
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Markov Property



Notation

• We will use the notation





    whenever there will be no risk of confusion what we mean by .

P[Xt+1 = s′ |Xt = s] = P(s′ |s)

P( . | . )
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Note on Stationarity



State Transition Matrix
• State transition probabilities can be written in the form of a state 

transition matrix.

P[Xt+1 = s1]
P[Xt+1 = s2]

⋮
P[Xt+1 = sk]

=

P(s1 |s1) P(s2 |s1) … P(sk |s1)
P(s1 |s2) P(s2 |s2) … P(sk |s2)

⋮ ⋮ ⋱ ⋮
P(s1 |sk) P(s2 |sk) … P(sk |sk)

T
P[Xt = s1]
P[Xt = s2]

⋮
P[Xt = sk]
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Example of a Markov Process I (1/3)
• We have a six-sided die 🎲 


• The state space is .


• The “dynamics” are given as follows. If you are in a state  
then through the die and let the new state be: 🎲 + “current state” mod 7. 

S = {0,1,2,3,4,5,6}
i ∈ {0,1,…,6}
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Example of a Markov Process I (2/3)
• We have a six-sided die 🎲 


• The state space is .


• The “dynamics” are given as follows. If you are in a state  
then through the die and let the new state be: 🎲 + “current state” mod 7. 

• From this description, we can write down the transition probabilities:


S = {0,1,2,3,4,5,6}
i ∈ {0,1,…,6}

P(0 |0) = 0, P(1 |0) = 1
6 , P(2 |0) = 1

6 , …, P(6 |0) = 1
6

P(0 |1) = 1
6 , P(1 |1) = 0, P(2 |1) = 1

6 , …, P(6 |1) = 1
6

⋮ , ⋮ , ⋮ , ⋱ , ⋮
P(0 |6) = 1

6 , P(1 |6) = 0, P(2 |6) = 1
6 , …, P(6 |6) = 0
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Example of a Markov Process I (3/3)
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Example of a Markov Process (3/3)



Another Example 🐜 (1/2)

🐜

1 2 3 4 5

0.6 0.2 0.2 0.2 0.6

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

The ant moves left with probability 0.4, right with probability 0.4 and stays where it is with 
probability 0.2, except for the borders (s1 and s5) where it stays with probability 0.6.

A sample episode starting from s3: 

   
3,3,2,1,2,2,3,4,…
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Another Example 🐜 (2/2)

🐜

1 2 3 4 5

0.6 0.2 0.2 0.2 0.6

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

P =

0.6 0.4 0 0 0
0.4 0.2 0.4 0 0
0 0.4 0.2 0.4 0
0 0 0.4 0.2 0.4
0 0 0 0.4 0.6
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Part 2: Markov Reward 
Processes
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Markov Reward Process

🐜 🍦

1 2 3 4 5

0.6 0.2 0.2 0.2 0.6

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

REWARD!

Markov reward process = Markov process + Reward
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Markov Reward Process
Markov reward process = Markov process + Reward

Formally, MRP is given by:


• A set of states .


• A transition model , which we also denote by .


• A reward function , which is the expected reward the 
agent receives in state .


• A discount factor .


S

P[Xt+1 = s′ |Xt = s] P(s′ |s)

R(s) = 𝔼[Rt |Xt = s]
s, (s ∈ S)

γ ∈ [0; 1]
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Markov Reward Process

🐜 🍦

1 2 3 4 5

0.6 0.2 0.2 0.2 0.6

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

REWARD!

Markov reward process = Markov process + Reward

For example:

R(s) =

0, s = 1
0, s = 2
0, s = 3
0, s = 4
10, s = 5 We expect that each time we visit s5, there will be ice cream 

 (i.e. we are not running out of it).21



Return from an Episode
• Horizon: 
• Number of time steps in an episode (which can also be infinite). We will 

first assume infinite horizons (they are easier because they will lead to 
stationary, i.e. time-independent, policies!).


• Return : 
• Given: An episode . 
• Compute: Return  = discounted sum of rewards from time .

• As a formula:  

 

Gt
s1, s2, s3, s4, …, sH

gt t

gt = R(st) + R(st+1) ⋅ γ + R(st+2) ⋅ γ2 + … = R(st) + ∑
i=1

R(st+i) ⋅ γi
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Return (Random Variable)
• What we had on the previous slide was return from one specific sampled 

episode.


• Next we define return of a Markov reward process as a random variable 
(it is important to understand the distinction between the two):


         Gt = R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … =
∞

∑
i=0

R(Xt+i) ⋅ γi

23



Note: Discount Factor
• Honestly, the discount factor and how it is used makes a lot of things mathematically 

convenient. (You will see in a moment or maybe you remember it from other courses.) 

• It also makes the return finite even for problems with infinite horizon. 

• But the discount also makes sense practically — the same reward today is better 
than tomorrow.


• Special cases:


• : only immediate reward counts.


• : future rewards matter as much as present rewards.

γ = 0

γ = 1

24



(State) Value Function
• Definition: 

 

It seems from this definition that  should depend on . But is that really 
the case? Think of the definition of  and of the Markov property (and 
stationarity of MRP)! Indeed,  can be anything and the value function of a 
state  will not change.


• Intuition: Value function  is the expected return when starting from 
state .

V(s) = 𝔼[Gt |Xt = s] = 𝔼[R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … |Xt = s]

V(s) t
Gt

t
s

V(s)
s
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Computing Value Function (1/3)

  
 

 
 

 

 
.

V(s) = 𝔼[Gt |Xt = s] = 𝔼[R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … |Xt = s]

= R(s) + γ𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt = s] =

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ 𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt+1 = s′ ]

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′ )
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Computing Value Function (2/3)
 for all , is nothing else then a system of 

linear equation, which we can write in the matrix form for finite  as:





Unfortunately, solving the system directly, e.g. as , is slow in practice. 
We will describe how to solve similar problems for MDPs (hance also for MRPs)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′ ) s ∈ S

S

V(s1)
V(s2)

⋮
V(sn)

=

R(s1)
R(s2)

⋮
R(sn)

+

P(s1 |s1) P(s2 |s1) … P(sn |s1)
P(s1 |s2) P(s2 |s2) … P(sn |s2)

⋮ ⋮ ⋱ ⋮
P(s1 |sn) P(s2 |sn) … P(sn |sn)

=P

V(s1)
V(s2)

⋮
V(sn)

V = (I − γP)−1R
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Computing Value Function (3/3)
• An alternative is to use an iterative algorithm (exploiting dynamic programming)* 

Set  for all  

For  

For : 

 

if converged** (with some tolerance) then return  

*This is nothing else than an iterative method for solving linear equations but it has a 
nicer interpretation of you think of it in terms of the MRP.


**For instance, we can use .

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S
Vk(s) = R(s) + γ ⋅ ∑

s′ ∈S

P(s′ |s) ⋅ Vk−1(s′ )

Vk

∥Vk − Vk−1∥∞ ≤ ε

Bellman update
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Value Function (Example)

🐜 🍦

1 2 3 4

1 0.2 0.2 0.6

0.4

0.4

0.4

0.8

REWARD = 10!

V(s1) = R(s1)
⏟

=0

+ γ ⋅ P(s1 |s1)

=1

⋅ V(s1)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′ )

V(s2) = R(s2)
⏟

=0

+ γ ⋅ (P(s1 |s2)

=0.4

⋅ V(s1) + P(s2 |s2)

=0.2

⋅ V(s2) + P(s3 |s2)

=0.4

⋅ V(s3))

V(s3) = R(s3)
⏟

=0

+ γ ⋅ (P(s3 |s3)

=0.2

⋅ V(s3) + P(s4 |s3)

=0.8

⋅ V(s4))

V(s4) = R(s4)
⏟

=10

+ γ ⋅ (P(s3 |s4)

=0.4

⋅ V(s3) + P(s4 |s4)

=0.6

⋅ V(s4))

γ = 0.5



Value Function (Example)

🐜 🍦

1 2 3 4

1 0.2 0.2 0.6

0.4

0.4

0.4

0.8

REWARD = 10!

V(s1) = 0.5 ⋅ V(s1)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′ )

V(s2) = 0.5 ⋅ (0.4 ⋅ V(s1) + 0.2 ⋅ V(s2) + 0.4 ⋅ V(s3))

V(s3) = 0.5 ⋅ (0.2 ⋅ V(s3) + 0.8 ⋅ V(s4))

V(s4) = 10 + 0.5 ⋅ (0.4 ⋅ V(s3) + 0.6 ⋅ V(s4))

γ = 0.5



Value Function (Example)

🐜 🍦

1 2 3 4

1 0.2 0.2 0.6

0.4

0.4

0.4

0.8

REWARD = 10!

V(s1) = 0.5 ⋅ V(s1)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′ )

V(s2) = 0.5 ⋅ (0.4 ⋅ V(s1) + 0.2 ⋅ V(s2) + 0.4 ⋅ V(s3))

V(s3) = 0.5 ⋅ (0.2 ⋅ V(s3) + 0.8 ⋅ V(s4))

V(s4) = 10 + 0.5 ⋅ (0.4 ⋅ V(s3) + 0.6 ⋅ V(s4))

γ = 0.5

V(s1) = 0, V(s2) ≈ 1.62, V(s3) ≈ 7.27, V(s4) ≈ 16.36
By solving the set of equations directly:



Value Function (Iterative Solution)
Iteration 0:

V0 =

0
0
0
0



Value Function (Iterative Solution)
Iteration 1:

V1 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
0
0
0

=

0
0
0
10



Value Function (Iterative Solution)
Iteration 2:

V2 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
0
0
10

=

0
0

0.4
13



Value Function (Iterative Solution)
Iteration 3:

V3 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
0

0.4
13

=

0
0.08
5.24
13.98



Value Function (Iterative Solution)
Iteration 4:

V4 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
0.08
5.24
13.98

=

0
1.056
6.116
15.242



Value Function (Iterative Solution)
Iteration 5:

V5 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
1.056
6.116
15.242

=

0
1.3288
6.7084
15.7958



Value Function (Iterative Solution)
Iteration 6:

V6 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
1.3288
6.7084
15.7958

=

0
1.47456
6.98916
16.08042



Value Function (Iterative Solution)
Iteration 7:

V7 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
1.47456
6.98916
16.08042

=

0
1.545288
7.131084
16.221958



Value Function (Iterative Solution)
Iteration 8:

V8 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
1.545288
7.131084
16.221958

=

0
1.5807456
7.2018916
16.2928042



Value Function (Iterative Solution)
Iteration 8:

V8 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
1.545288
7.131084
16.221958

=

0
1.5807456
7.2018916
16.2928042

|V8 − V∞ | ≈

0
0.035
0.071
0.071



Part 3: Markov Decision 
Processes
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Markov Decision Process
• Markov decision process = Markov reward process + Actions 
• An MDP is given by: 

• A set of states .


• A set of actions .


•
A transition model 


• A reward , i.e. the expected reward 
that the agent receives when performing action  in state .


• Discount factor .

S
A

P(Xt+1 = s′ |Xt = s, At = a) = P(s′ |s, a)

notation
R(s, a) = 𝔼[Rt |Xt = s, At = a]

a s
γ

43



Transition Model
• A bit of intuition about :


• Why is this random and not deterministic? Imagine that our ant is drunk 
and if it wants to go left, it actually goes right with some probability. Or 
imagine that the action is to throw a die in a game or pick a card from a 
deck…

P(Xt+1 = s′ |Xt = s, At = a)

🐜 🍦

1 2 3 4 5

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

REWARD!

🍻🍻🍻

🃒🃒 🎲🎲
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MRP vs MDP• Compare:

MRP 

Dynamics: 

 

Return: 

P[Xt+1 = s′ |Xt = s]

R(s) = 𝔼[Rt |Xt = s]

MDP 

Dynamics: 

 

Return: 

.

P[Xt+1 = s′ |At = a, Xt = s]

R(s, a) = 𝔼[Rt |Xt = s, At = a]

45



Policy
• Policy determines which action to take in each state . 


• It can be either deterministic or random — that is also why policy will not 
simply be a function from states to actions.


• We define policy: .


• Example (policy for our ant 🐜):


• 

•

s

π(a |s) = P(At = a |Xt = s)

A = {left, right}
π(left |1) = 0, π(right |1) = 1, π(left |2) = 0.5, π(right |1) = 0.5,…

46



MDP+Policy = MRP
• When we specify a policy for a given MDP, we are effectively turning the MDP into a 

corresponding MRP.


• Formally: 

• Given an MDP , we turn it into an MRP  where


 *


 

(A, S, P, R, γ) (S, Pπ, Rπ, γ)

Pπ(s′ |s) = ∑
a∈A

π(a |s) ⋅ P(s′ |s, a)

Rπ(s) = ∑
a∈A

π(a |s) ⋅ R(s, a)

* In the more verbose notation: .
Pπ[Xt+1 = s′ |Xt = s] = ∑
a∈A

π(a |s) ⋅ P[Xt+1 = s′ |At = a, Xt = s]
47



State Value Function of MDP (1/3)

Vπ(s) = Rπ(s) + γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ Vπ(s′ )
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State Value Function of MDP (2/3)

Vπ(s) = ∑
a∈A

π(a |s) ⋅ R(s, a) + γ ⋅ ∑
s′ ∈S

∑
a∈A

π(a |s) ⋅ P(s′ |s, a) ⋅ Vπ(s′ )

Pπ(s′ |s)Rπ(s)

= =

49



State Value Function of MDP (3/3)

Vπ(s) = ∑
a∈A

π(a, s) ⋅ [R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′ )]

50

(Bellman equation for MDP)



MDP Policy Evaluation - Iteration (1/3)
• Since we reduced MDP  + policy to the MRP , we 

can use the same iterative method for computing the value function .


Set  for all  

For  

For : 

 

if converged (with some tolerance) then return 

(A, S, P, R, γ) (S, Pπ, Rπ, γ)
Vπ(s)

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S
Vπ

k (s) = Rπ(s) + γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ Vπ
k−1(s′ )

Vπ
k
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MDP Policy Evaluation - Iteration (2/3)
• Since we reduced MDP  + policy to the MRP , we 

can use the same iterative method for computing the value function .


Set  for all  

For  

For : 

 

if converged (with some tolerance) then return 

(A, S, P, R, γ) (S, Pπ, Rπ, γ)
Vπ(s)

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S
Vπ

k (s) = ∑
a∈A

π(a |s) ⋅ R(s, a) + γ ⋅ ∑
s′ ∈S

∑
a∈A

π(a |s) ⋅ P(s′ |s, a) ⋅ Vπ
k−1(s′ )

Vk

Pπ(s′ |s)Rπ(s)
= =
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MDP Policy Evaluation - Iteration (3/3)
• Since we reduced MDP  + policy to the MRP , we 

can use the same iterative method for computing the value function .


Set  for all  

For  

For : 

 

if converged (with some tolerance) then return 

(A, S, P, R, γ) (S, Pπ, Rπ, γ)
Vπ(s)

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S

Vπ
k (s) = ∑

a∈A

π(a |s) ⋅ (R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ
k−1(s′ ))

Vk
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Part 4: MDP Control
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MDP Control: What is it?
• We want to find a policy  that will maximize the value function for all 

states (i.e. we want to learn to behave optimally in every state).

• Formally: 

 

• One can show that: 
• A unique optimal value function exists, but… the optimal policy does 

not have to be unique.

• For an infinite horizon problem, there exists a deterministic optimal 

policy (there may also be a non-deterministic optimal policy) and the 
policy is stationary (this is why it is convenient to work with infinite-
horizon MDPs).

π*

π*(s) = arg max
π

Vπ(s)
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MDP Control Problem

How to find    ???π*(s) = arg max
π

Vπ(s)

56



State-Action Value Q
• Definition: 

       . 

• Intuition: 

• The value of the return that we obtain if we first take the action  in the 
state  and then follow the policy  (including when we visit  again).


• Think of it as perturbing the policy  — we deviate from following the policy 
 only in the first step in .

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′ )

a
s π s

π
π s
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Policy Improvement Step
• Given: An MDP and a policy  that we want to improve (if possible).


• DO: 

• For all , compute  as defined on the previous slide, i.e. 
.


• Compute new policy for all : 

      

πi

s ∈ S Qπi(s, a)
Qπi(s, a) = R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ Vπi(s′ )

s ∈ S

πi+1(s) = arg max
a∈S

Qπi(s, a)

Here, we use the fact that our policy is deterministic 
for simpler notation (treating policy as a function). 
Using our previous notation we could write: 

       π(a |s) = {1  if a = arg maxa∈A Qπi(s, a)
0  otherwise 

58



Policy Iteration



Initialize  randomly. 
DO 

  .

  .


   
WHILE  

Policy iteration finds the globally optimal policy!

i = 0
π0

Vπi =  Compute the state-value function, evaluating πi

πi+1 =  Policy improvement of πi

i = i + 1
∥πi − πi−1∥1 > 0 /* if policy changed */

59



Value Iteration
• Value iteration is another way to find the optimal policy.


• Instead of searching for the 
optimal policy as before 
(i.e. ), 

we will be looking directly 
for the optimal value function: 

.

π*(s) = arg max
π

Vπ(s)

V*(s) = max
π

Vπ(s)
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Value Iteration (Bellman Equation)
• Recall we had:


   


• But now we do not have a policy, so we will have some  without specifying  (but 
any such  induces some policy ). 


• We can define Bellman backup operator  (the operator will be applied on 
functions!):


• Bellman Backup Operator for Value Function: 
• Notation:  denotes applying  (Bellman backup).


      


•  is a new value function, Bellman backup improves the old value function (if 
not yet optimal).

Vπ(s) = ∑
a∈A

π(a, s) ⋅ [R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′ )]
V π

V π
B( . )

B[V] B

B[V] = max
a∈A [R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′ )]
B[V]



Value Iteration 
Set 

Initialize  for all 

DO: 

 

WHILE  

• To extract an optimal policy, we can extract a deterministic (not necessarily 
unique) policy: 

.

k = 1
V0(s) = 0 s ∈ S

Vk(s) = max
a∈A [R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ Vk−1(s′ )]
∥Vk − Vk−1∥∞ ≥ ε

π(s) = arg max
a∈A [R(s, a) + ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′ )]
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Part 5: Proofs



Outline

1. Why value iteration converges to an optimal value function,


2. Why policy iteration converges to an optimal policy.



A Bit More on Bellman Backup Operators
• This slide is about terminology (which is also important, after all, we want 

to understand others!).


• Bellman Backup : 

  

• Bellman Backup  for policy evaluation: 

    

B

B[V] = max
a∈A [R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′ )]
Bπ

Bπ[V(s)] = Rπ(s) + γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ V(s′ )



Why Value Iteration and Value Evaluation Converge

• Definition (Contractive Operator): An operator  in a space with norm  is a 
contractive operator if there exists  such that, for all , it holds: 

.


• By Banach’s Fixed-Point Theorem, we have that any such contractive operator 
has exactly one fixed point.


• So all we need to do to show that VI and VE converge, is to show that the 
respective Bellman backup operators  and  are contraction operators.

T[ . ] ∥.∥
0 ≤ α < 1 V, V′ 

∥T[V] − T[V′ ]∥ ≤ α ⋅ ∥V − V′ ∥

B[ . ] Bπ[ . ]



 is a contractive operatorB[ . ]
Infinity norm: .

 







.

∥V − V′ ∥ = max
s∈S

|V(s) − V′ (s) |

∥B(V) − B(V′ )∥∞ = max
s∈S

max
a∈A (R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′ )) − max
a′ ∈A (R(s, a′ ) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a′ ) ⋅ V′ (s′ ))

≤ max
s∈S

max
a∈A (R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′ ) − R(s, a) − γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ V′ (s′ ))
= max

s∈S
max
a∈A (γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′ ) − γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ V′ (s′ )) = max
s∈S

max
a∈A (γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ (V(s′ ) − V′ (s′ )))

≤ max
s∈S

max
a∈A (γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′ ) − V′ (s′ ) ) ≤ max
s∈S

max
a∈A (γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ max
s′ ′ ∈S

V(s′ ′ ) − V′ (s′ ′ ) )
≤ γ ⋅ max

s′ ′ ∈S
|V(s′ ′ ) − V′ (s′ ′ ) | = γ ⋅ ∥V − V′ ∥∞



So Value Iteration Converges…
• …but does it converge to the right thing (i.e. to the optimal )?

Notation:  

Proof (that it does): 

 Claim 1: .

 Claim 2: .

 Set  .

 Then .

  So for , value iteration converges to  from any initialization .

V*
B(n)[V] = B[B[…B[V]

n−times

…]]]

B[V*] = V*
∥B(n)[V] − B(n)[V′ ]∥∞ ≤ γn ⋅ ∥V − V′ ∥∞

V′ = V*
∥B(n)[V] − V*∥∞ = ∥B(n)[V] − B(n)[V*]∥∞ ≤ γn ⋅ ∥V − V′ ∥∞

γ < 1 V* V



Now the Same for Value Evaluation…. (  is a 
contractive operator)

Bπ[ . ]










.

∥Bπ(V) − Bπ(V′ )∥∞ = max
s∈S

Rπ(s) + γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ V(s′ ) − Rπ(s) − γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ V′ (s′ )

= max
s∈S

γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ V(s′ ) − γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ V′ (s′ ) = γ ⋅ max
s∈S ∑

s′ ∈S

Pπ(s′ |s) ⋅ V(s′ ) − ∑
s′ ∈S

Pπ(s′ |s) ⋅ V′ (s′ )

= γ ⋅ max
s∈S ∑

s′ ∈S

Pπ(s′ |s) ⋅ V(s′ ) − ∑
s′ ∈S

Pπ(s′ |s) ⋅ V′ (s′ ) = γ ⋅ max
s∈S ∑

s′ ∈S

Pπ(s′ |s) ⋅ (V(s′ ) − V′ (s′ ))

≤ γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ max
s∈S

V(s′ ) − V′ (s′ ) = γ ⋅ max
s∈S

V(s′ ) − V′ (s′ ) ≤ γ ⋅ ∥V − V′ ∥∞

The rest of the proof is completely analogical to the proof for value iteration…



Recall: Policy Iteration



Initialize  randomly. 
DO 

  .

  .


   
WHILE  

Policy iteration finds the globally optimal policy!

i = 0
π0

Vπi =  Compute the state-value function, evaluating πi

πi+1 =  Policy improvement of πi

i = i + 1
∥πi − πi−1∥1 > 0 /* if policy changed */
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Why It Works
Note that: 




We have  



          

          

                                                  
           

Vπi(s) ≤ max
a∈A [R(s, a) + γ∑

s′ ∈S

P(s′ |s, a) ⋅ Vπi(s′ )] = max
a∈A

Qπi(s, a)

Vπi(s) ≤ R(s, πi+1(s)) + γ∑
s′ ∈S

P(s′ |s, πi+1(s)) ⋅ Vπi(s′ )

≤ R(s, πi+1(s)) + γ∑
s′ ∈S

P(s′ |s, πi+1(s)) ⋅ max
a∈A

Qπi(s′ , a)

≤ R(s, πi+1(s)) + γ∑
s′ ∈S

P(s′ |s, πi+1(s)) ⋅ [R(s′ , πi+1(s′ )) + γ ∑
s′ ′ ∈S

P(s′ ′ |s′ , πi+1(s′ )) ⋅ Vπi(s′ ′ )]
⋮  (keep repeating...)

≤ Vπi+1(s)
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Next Lecture…

• A bit more about MDPs with finite horizons


• Starting reinforcement learning (right now we have the MDP, in RL we will 
not have it and yet we will try to learn to act optimally!)



A Bit More About Finite 
Horizon’s



Non-Stationarity
• One complication with finite horizons is that optimal policies may be non-

stationary, which means that the optimal action to take in a state  
may depend on the number of time steps remaining until the end of the 
episode.

s ∈ S



Value Iteration for Finite Horizon (1/2)
• Value iteration works also for finite horizons. Recall this slide from Prof. 

Emma Brunskill



Value Iteration for Finite Horizon (1/2)
• Value iteration works also for finite horizons. Recall this slide from Prof. 

Emma Brunskill



Reinforcement Learning (RL)
• RL: Learning to make sequences of decisions to maximize rewards.


• This lecture:  

• Motivation


• Review of Markov Decision Processes



Some Cool Applications
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OpenAI’s Hide and Seek

Paper: Bowen Baker, Ingmar Kanitscheider, Todor M. Markov, Yi Wu, Glenn Powell, 
Bob McGrew, Igor Mordatch: Emergent Tool Use From Multi-Agent Autocurricula. 
ICLR 2020

Video: https://www.youtube.com/embed/kopoLzvh5jY79

https://dblp.org/pid/165/1360.html
https://dblp.org/pid/217/2925.html
https://dblp.org/pid/44/3684.html
https://dblp.org/pid/215/4858.html
https://dblp.org/pid/48/9529.html
https://dblp.org/pid/21/17.html
https://dblp.org/db/conf/iclr/iclr2020.html#BakerKMWPMM20
https://www.youtube.com/embed/kopoLzvh5jY
https://www.youtube.com/watch?v=kopoLzvh5jY


DeepMind’s Atari Games

Paper: Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & 
Hassabis, D. (2015). Human-level control through deep reinforcement learning. nature, 518(7540), 
529-533.


Video: https://www.youtube.com/watch?v=TmPfTpjtdgg80

https://www.youtube.com/watch?v=TmPfTpjtdgg
https://www.youtube.com/watch?v=TmPfTpjtdgg


Robots Learning to Walk

Article: https://www.technologyreview.com/2021/04/08/1022176/boston-dynamics-cassie-
robot-walk-reinforcement-learning-ai/ 
Video: https://www.youtube.com/watch?v=goxCjGPQH7U&t=52s
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https://www.youtube.com/watch?v=goxCjGPQH7U
https://www.youtube.com/watch?v=goxCjGPQH7U&t=52s


Even Goldfish Can Do Some  
Interesting Learning and Generalize 🐡 

https://www.sciencedirect.com/science/article/pii/S016643282100599482


