
Question 1.

Consider the Winnow algorithm.

(a) What concept class was Winnow designed for? What is Winnow’s mistake bound for that class?

(b) Adapt the algorithm to learn general conjunctions. How will the mistake bound change?

Answer:

(a) Winnow was designed for monotone k-disjunctions, for which it dramatically improves the mistake bound.

MB = 2 + 2k lg n

(b) Winnow only works for linearly separable concepts. Conjunctions are not linearly separable, however, monotone
conjunctions are.

We can make conjunctions monotone by the following basis expansion: For each xi ∈ {0, 1}n, create x′i = [x,¬x] ∈
{0, 1}2n. Run the algorithm on examples x′i while again negating the labels as in question (c) about generalization
algorithm to turn the conjunction into a disjunction that Winnow is designed for.

The mistake bound changes as follows:

2 + 2k lg 2n = 2 + 2k(1 + lg n) = 2 + 2k lg n + 2k

i.e., only by an additive constant 2k.

Question 2.

Consider the halving algorithm with hypothesis class (initial hypothesis) H1 of all non-contradictory conjunctions on 3
propositional variables.

(a) Determine |H1|.

(b) Give an upper bound on |H2| given that first prediction was incorrect.

Answer:

(a) 33 = 27 (Each of the 3 variables may be absent, positive, or negative in the conjunction.)

(b) The halving algorithm decides by a majority vote so at least d 272 e = 14 hypotheses in H were inconsistent with the
observation; those get deleted and at most b 272 c = 13 remain.

Question 3.

Consider halving algorithm with the initial version space H consisting

(a) of all conjunctions of exactly 3 different non-negative literals, i.e.,

H = { pi ∧ pj ∧ pk | 1 ≤ i < j < k ≤ n }

(b) of all conjunctions that use some of the given variables (and the empty conjunction).

(c) of all n-CNFs.

1



1. For each scenario, determine if the learner learns H online (in the mistake-bound model) and justify your answer.

Answer:

The halving algorithm makes at most lg |H| mistakes when learning a hypothesis from H.

(a) |H| =
(
n
3

)
≤ n3, so lg |H| ≤ 3 lg n ≤ poly(n). Hence, the learner learns H online.

(b) |H| = 22n, so lg |H| = 2n is polynomial in n and the algorithm learns H online.

(c) |H| = 2
∑n

i=1 (n
i)2

i

= 23
n−1, so lg |H| = 3n − 1. Hence, the algorithm does not learn H online.

2. For each scenario where the learner learns in the mistake bound model, decide if they learn efficiently as well. Assume
that checking the consistency of a single hypothesis with an observation takes a unit of time.

Answer:

(a) |H| ≤ poly(n), so yes.

(b) |H| is super-polynomial in n, hence no.

3. For the first case, assume the first example is (0, 1, 1, 1, . . . 1) and it is a negative instance. What will be the learner’s
prediction for the second example, which is (0, 1, 0, 1, . . .)? Justify your answer.

Answer:

On the first observation, all conjunctions not containing p1 vote for a positive label. There are
(
n−1
3

)
of those and they

all will be deleted on the first hypothesis update. We are left with
(
n−1
2

)
hypotheses that contain p1.

Since all hypotheses contain p1, they will all vote for a negative label on the second observation. Hence, the prediction
will be 0 (a negative label).

Question 4.

Consider the following hypothesis classes. For each hypothesis class, determine its VC dimension and provide a brief proof.

(a) H = {h : R 7→ {0; 1}, h(x) = Jx > tK, t ∈ R}

(b) H = {h : R 7→ {0; 1}, h(x) = Jt1 ≤ x < t2K, t1 < t2 ∈ R}

(c) H is the set of all monotone conjunctions on n variables.

Answer:

(a) Consider a point x. For a positive label, we can set t such that t < x. For a negative label, we can set t such that
t > x. Hence, VC(H) ≥ 1.

Consider two points x1 and x2 (without loss of generality x1 < x2). For labelling y1 = 1 and y2 = 0, we can’t shatter
the set. Hence, VC(H) < 2.

Overall VC(H) = 1.

(b) Consider two points x1 < x2. Any possible labelling can be realized by setting x1 < t1 < x2 < t2, t1 < x1 < x2 < t2,
x1 < t1 < t2 < x2 or t1 < x1 < t2 < x2. Hence, VC(H) ≥ 2.

Consider three points x1 < x2 < x3. We cannot label y1 = y3 = 1 while having y2 = 0. Hence, VC(H) < 3.

Overall, VC(H) = 2.

(c) Let us start with the upper bound. There are 2n monotone conjunctions on n variables. Hence, we have 2n hypotheses
and we cannot shatter more than n elements. Therefore, VC(H) ≤ n.

As for the lower bound, we need to construct a set of samples shattered by monotone conjunctions. Consider

x1 = 0 1 1 . . . 1 1
x2 = 1 0 1 . . . 1 1
x3 = 1 1 0 . . . 1 1

...
xn = 1 1 1 . . . 1 0

(1)
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With propositional variables h1, h2, . . . hn, any subset { xi : i ∈ I ⊆ { 1, 2, . . . n } } of the above sample set is isolated
with the monotone conjunction

∧
i∈{ 1,2,...n }\I hi.

For example, the monotone conjunction h2 ∧ h3 picks the elements { x1, x4, . . . , xn }. The empty conjunction (when
I = { 1, 2, . . . n }) is a tautology and thus picks all the samples. And when I = ∅, then we have the conjunction

∧n
i=1 hi,

which does not select any samples.

Hence, the sample set is indeed shattered and we have VC(H) ≥ n.

Overall, it holds that VC(H) = n.
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