Question 1.

Consider the Winnow algorithm.

- (a) What concept class was Winnow designed for? What is Winnow's mistake bound for that class?
- (b) Adapt the algorithm to learn general conjunctions. How will the mistake bound change?

Answer:

(a) Winnow was designed for monotone k-disjunctions, for which it dramatically improves the mistake bound.

$$MB = 2 + 2k \lg n$$

(b) Winnow only works for linearly separable concepts. Conjunctions are not linearly separable, however, monotone conjunctions are.

We can make conjunctions monotone by the following basis expansion: For each $x_i \in \{0,1\}^n$, create $x'_i = [x, \neg x] \in \{0,1\}^{2n}$. Run the algorithm on examples x'_i while again negating the labels as in question (c) about generalization algorithm to turn the conjunction into a disjunction that Winnow is designed for.

The mistake bound changes as follows:

$$2 + 2k \lg 2n = 2 + 2k(1 + \lg n) = 2 + 2k \lg n + 2k$$

i.e., only by an additive constant 2k.

Question 2.

Consider the halving algorithm with hypothesis class (initial hypothesis) \mathcal{H}_1 of all non-contradictory conjunctions on 3 propositional variables.

- (a) Determine $|\mathcal{H}_1|$.
- (b) Give an upper bound on $|\mathcal{H}_2|$ given that first prediction was incorrect.

Answer:

- (a) $3^3 = 27$ (Each of the 3 variables may be absent, positive, or negative in the conjunction.)
- (b) The halving algorithm decides by a majority vote so at least $\lceil \frac{27}{2} \rceil = 14$ hypotheses in \mathcal{H} were inconsistent with the observation; those get deleted and at most $\lfloor \frac{27}{2} \rfloor = 13$ remain.

Question 3.

Consider halving algorithm with the initial version space \mathcal{H} consisting

(a) of all conjunctions of exactly 3 different non-negative literals, i.e.,

 $\mathcal{H} = \{ p_i \land p_j \land p_k \mid 1 \le i < j < k \le n \}$

- (b) of all conjunctions that use some of the given variables (and the empty conjunction).
- (c) of all *n*-CNFs.

1. For each scenario, determine if the learner learns \mathcal{H} online (in the mistake-bound model) and justify your answer. Answer:

The halving algorithm makes at most $\lg |\mathcal{H}|$ mistakes when learning a hypothesis from \mathcal{H} .

- (a) $|\mathcal{H}| = \binom{n}{3} \leq n^3$, so $\lg |\mathcal{H}| \leq 3 \lg n \leq \operatorname{poly}(n)$. Hence, the learner learns \mathcal{H} online.
- (b) $|\mathcal{H}| = 2^{2n}$, so $\lg |\mathcal{H}| = 2n$ is polynomial in n and the algorithm learns \mathcal{H} online.
- (c) $|\mathcal{H}| = 2^{\sum_{i=1}^{n} {n \choose i} 2^{i}} = 2^{3^{n}-1}$, so $\lg |\mathcal{H}| = 3^{n} 1$. Hence, the algorithm does not learn \mathcal{H} online.
- 2. For each scenario where the learner learns in the mistake bound model, decide if they learn efficiently as well. Assume that checking the consistency of a single hypothesis with an observation takes a unit of time.

Answer:

- (a) $|\mathcal{H}| \leq \text{poly}(n)$, so yes.
- (b) $|\mathcal{H}|$ is super-polynomial in n, hence no.
- 3. For the **first** case, assume the first example is (0, 1, 1, 1, ..., 1) and it is a negative instance. What will be the learner's prediction for the second example, which is (0, 1, 0, 1, ...)? Justify your answer.

Answer:

On the first observation, all conjunctions not containing p_1 vote for a positive label. There are $\binom{n-1}{3}$ of those and they all will be deleted on the first hypothesis update. We are left with $\binom{n-1}{2}$ hypotheses that contain p_1 .

Since all hypotheses contain p_1 , they will all vote for a negative label on the second observation. Hence, the prediction will be 0 (a negative label).

Question 4.

Consider the following hypothesis classes. For each hypothesis class, determine its VC dimension and provide a brief proof.

- (a) $\mathcal{H} = \{h : \mathbb{R} \mapsto \{0; 1\}, h(x) = [x > t], t \in \mathbb{R}\}$
- (b) $\mathcal{H} = \{h : \mathbb{R} \mapsto \{0; 1\}, h(x) = [t_1 \le x < t_2], t_1 < t_2 \in \mathbb{R}\}$
- (c) \mathcal{H} is the set of all monotone conjunctions on n variables.

Answer:

(a) Consider a point x. For a positive label, we can set t such that t < x. For a negative label, we can set t such that t > x. Hence, $VC(\mathcal{H}) \ge 1$.

Consider two points x_1 and x_2 (without loss of generality $x_1 < x_2$). For labelling $y_1 = 1$ and $y_2 = 0$, we can't shatter the set. Hence, VC(\mathcal{H}) < 2.

Overall $VC(\mathcal{H}) = 1$.

- (b) Consider two points $x_1 < x_2$. Any possible labelling can be realized by setting $x_1 < t_1 < x_2 < t_2$, $t_1 < x_1 < x_2 < t_2$, $x_1 < t_1 < t_2 < x_2$ or $t_1 < x_1 < t_2 < x_2$. Hence, $VC(\mathcal{H}) \ge 2$. Consider three points $x_1 < x_2 < x_3$. We cannot label $y_1 = y_3 = 1$ while having $y_2 = 0$. Hence, $VC(\mathcal{H}) < 3$. Overall, $VC(\mathcal{H}) = 2$.
- (c) Let us start with the upper bound. There are 2^n monotone conjunctions on n variables. Hence, we have 2^n hypotheses and we cannot shatter more than n elements. Therefore, $VC(\mathcal{H}) \leq n$.

As for the lower bound, we need to construct a set of samples shattered by monotone conjunctions. Consider

With propositional variables $h_1, h_2, \ldots h_n$, any subset $\{x_i : i \in I \subseteq \{1, 2, \ldots n\}\}$ of the above sample set is isolated with the monotone conjunction $\bigwedge_{i \in \{1, 2, \ldots n\} \setminus I} h_i$.

For example, the monotone conjunction $h_2 \wedge h_3$ picks the elements $\{x_1, x_4, \ldots, x_n\}$. The empty conjunction (when $I = \{1, 2, \ldots, n\}$) is a tautology and thus picks all the samples. And when $I = \emptyset$, then we have the conjunction $\bigwedge_{i=1}^{n} h_i$, which does not select any samples.

Hence, the sample set is indeed shattered and we have $VC(\mathcal{H}) \ge n$.

Overall, it holds that $VC(\mathcal{H}) = n$.