Question 1.

Consider the network below and compute

- a) the marginal probability $P(X_3 = 0) = P(\neg x_3)$,
- b) the conditional probability $P(X_2 = 1 | X_3 = 1) = P(x_2 | x_3)$.

Question 2.

Consider the same network as above.

Assume that the sequence $\{r_i\}_{i=1}^{20}$ was generated at random uniformly from the interval (0; 1). Use the sequence to

- a) approximate $P(x_3)$ using a suitable sampling method,
- b) approximate $P(x_1 | x_2, \neg x_3)$ using rejection sampling and likelihood weighting.

$\begin{array}{c} r_1 \\ 0.2551 \end{array}$	$r_2 \\ 0.5060$	$r_3 \\ 0.6991$	$\begin{array}{c} r_4 \\ 0.8909 \end{array}$	$r_5 \\ 0.9593$	$\begin{array}{c} r_6 \\ 0.5472 \end{array}$	$r_7 \\ 0.1386$	$r_8 \\ 0.1493$	$r_9 \\ 0.1975$	$r_{10} \\ 0.8407$
r_{11} 0.0827	$r_{12} \\ 0.9060$	$r_{13} \\ 0.7612$	$r_{14} \\ 0.1423$	$r_{15} \\ 0.5888$	$r_{16} \\ 0.6330$	$r_{17} \\ 0.5030$	$r_{18} \\ 0.8003$	$r_{19} \\ 0.0155$	$r_{20} \\ 0.6917$

Question 3.

Consider the Bayes net below:

a) Compute the marginal probability distribution $P(X_7)$ using variable elimination with the elimination order

 $X_1, X_8, X_9, X_5, X_6, X_2, X_3, X_4.$

b) Compute $P(x_8 \mid \neg x_4)$ however you see fit.