
Question 1.

Consider the network below and compute

a) the marginal probability P (X3 = 0) = P (¬x3),

b) the conditional probability P (X2 = 1 | X3 = 1) = P (x2 | x3).

X1 X2

X3

X4

P (x1)
0.4

P (x2|X1) X1

0.8 1
0.5 0

P (x3|X2) X2

0.2 1
0.3 0

P (x4|X2) X2

0.8 1
0.5 0

Answer:

We can save much work by selecting a “smart” marginalization order. Some nodes may get eliminated immediately since
they sum out to one (i.e., their value carries no information about the probability we are trying to compute). For the rest,
we can cache intermediate results in so-called “factors”.

a)

P (X3 = 0) =

1∑
x1=0

1∑
x2=0

1∑
x4=0

P (X1 = x1) · P (X2 = x2 | X1 = x1) · P (X3 = 0 | X2 = x2) · P (X4 = x4 | X2 = x2)

=

1∑
x2=0

P (X3 = 0 | X2 = x2)

GX1︷ ︸︸ ︷
1∑

x1=0

P (X1 = x1)P (X2 = x2 | X1 = x1)

1∑
x4=0

P (X4 = x4 | X2 = x2)︸ ︷︷ ︸
1

=

1∑
x2=0

P (X3 = 0 | X2 = x2) ·GX1
(x2) = GX1,X2

(X3 = 0) = 0.762

GX1
(X2 = 0) =

1∑
x1=0

P (X1 = x1)P (X2 = 0 | X1 = x1) = 0.6 · 0.5 + 0.4 · 0.2 = 0.38

GX1(X2 = 1) =

1∑
x1=0

P (X1 = x1)P (X2 = 1 | X1 = x1) = 0.6 · 0.5 + 0.4 · 0.8 = 0.62

GX1,X2
(X3 = 0) =

1∑
x2=0

P (X3 = 0 | X2 = x2) ·GX1
(x2) = 0.7 · 0.38 + 0.8 · 0.62 = 0.762

GX1,X2
(X3 = 1) =

1∑
x2=0

P (X3 = 1 | X2 = x2) ·GX1
(x2) = 0.3 · 0.38 + 0.2 · 0.62 = 0.238

After removing the node X4, we only needed 6 multiplications and 3 additions (8 multiplications and 4 additions if
the entire factor GX1,X2

was computed). As opposed to that, when computing the same value naively, we needed 24
multiplications and 7 additions.
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Note, that the factors do not have to sum up to one! For one, we have the factor GX4(x2) which sums up to two. Also,
if we eliminated X2 before X1, we would obtain

GX2
(X1 = 0) =

1∑
x2=0

P (X2 = x2 | X1 = 0) · P (X3 = 0 | X2 = x2) = 0.5 · 0.7 + 0.5 · 0.8 = 0.75

GX2(X1 = 1) =

1∑
x2=0

P (X2 = x2 | X1 = 1) · P (X3 = 0 | X2 = x2) = 0.2 · 0.7 + 0.8 · 0.8 = 0.78

b)

P (X2 = 1, X3 = 1) =

1∑
x1=0

1∑
x4=0

P (X1 = x1) · P (X2 = 1 | X1 = x1) · P (X3 = 1 | X2 = 1) · P (X4 = x4 | X2 = 1)

= P (X3 = 1 | X2 = 1)

GX1
(X2=1)︷ ︸︸ ︷

1∑
x1=0

P (X1 = x1)P (X2 = 1 | X1 = x1)

1∑
x4=0

P (X4 = x4 | X2 = 1)︸ ︷︷ ︸
1

= 0.2 · 0.62 = 0.124

P (X2 = 1 | X3 = 1) =
0.124

0.238
≈ 0.5210

Question 2.

Consider the same network as above.

Assume that the sequence {ri}20i=1 was generated at random uniformly from the interval (0; 1). Use the sequence to

a) approximate P (x3) using a suitable sampling method,

b) approximate P (x1 | x2,¬x3) using rejection sampling and likelihood weighting.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10
0.2551 0.5060 0.6991 0.8909 0.9593 0.5472 0.1386 0.1493 0.1975 0.8407
r11 r12 r13 r14 r15 r16 r17 r18 r19 r20

0.0827 0.9060 0.7612 0.1423 0.5888 0.6330 0.5030 0.8003 0.0155 0.6917

Answer:

First, let us notice that when estimating either of the probabilities below, we can marginalize over X4. Thus, we will not be
sampling values for X4.

Once we obtain samples from the distribution, we estimate the probability using the Monte Carlo method.

For all sampling methods below, we require a topological ordering of the nodes, i.e., the random variables. We will use

X1 < X2 < X3 < X4.

a) For this task, we can use the forward sampling algorithm.

X1 X2 X3

s1 P (x1) > r1 → 1 P (x2|x1) > r2 → 1 P (x3|x2) < r3 → 0
s2 P (x1) < r4 → 0 P (x2|¬x1) < r5 → 0 P (x3|¬x2) < r3 → 0
s3 1 1 1
s4 0 1 0
s5 0 1 0
s6 0 0 0

2



Hence, we estimate P (X3 = 1) =
|{si : siX3

= 1}|
6 = 1

6 .

b) (1) Let us use rejection sampling first. Rejection sampling iteratively employs the forward sampling algorithm, reject-
ing all samples inconsistent with the evidence.

X1 X2 X3

s1 1 1 0 X
s2 0 0 ? reject
s3 0 1 1 reject
s4 1 0 ? reject
s5 1 0 ? reject
s6 0 1 0 X
s7 0 0 ? reject
s8 0 1 0 X

Hence, we estimate P (X1 = 1 | X2 = 1, X3 = 0) = 1
3 .

(2) Now, let us try likelihood weighting, which does not reject any samples. Instead, it computes a weight (likelihood)
for each sample.

In likelihood weighting, evidence remains fixed. Since we also summed out X4, we only need to determine the
value of X1. Hence, for each random number ri, we obtain a sample si.

X1 X2 X3 w
s1 P (x1) > r1 → 1 1 0 P (x2 | x1)P (¬x3 | x2) = 0.8 · 0.8 = 0.64
s2 P (x1) < r2 → 0 1 0 P (x2 | ¬x1)P (¬x3 | x2) = 0.5 · 0.8 = 0.4
s3 0 1 0 0.4
s4 0 1 0 0.4
s5 0 1 0 0.4
s6 0 1 0 0.4
s7 1 1 0 0.64
s8 1 1 0 0.64
s9 1 1 0 0.64
s10 0 1 0 0.4
s11 1 1 0 0.64
s12 0 1 0 0.4
s13 0 1 0 0.4
s14 1 1 0 0.64
s15 0 1 0 0.4
s16 0 1 0 0.4
s17 0 1 0 0.4
s18 0 1 0 0.4
s19 1 1 0 0.64
s20 0 1 0 0.4

We estimate P (X1 = 1 | X2 = 1, X3 = 0) = 7·0.64
7·0.64+13·0.4 = 4.48

9.68 ≈ 0.4628.
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Question 3.

Consider the Bayes net below:

X1

X2

X3

X4

X5

X6

X7

X8

X9

P (x1)
0.6

P (x2|X1) X1

0.2 1
0.5 0

P (x3|X1) X1

0.7 1
0.1 0

P (x4|X2, X3) X2 X3

0.7 1 1
0.2 1 0
0.3 0 1
0.2 0 0

P (x5|X4) X4

0.5 1
0.8 0

P (x6|X4) X4

0.9 1
0.4 0

P (x7|X4) X4

0.5 1
0.8 0

P (x8|X5) X5

0.2 1
0.3 0

P (x9|X5, X6) X5 X6

0.1 1 1
0.3 1 0
0.2 0 1
0.9 0 0

a) Compute the marginal probability distribution P (X7) using variable elimination with the elimination order

X1, X8, X9, X5, X6, X2, X3, X4.

b) Compute P (x8 | ¬x4) however you see fit.

Answer:

a) When eliminating Xi, we first collect all factors containing Xi and compute their product ψ(i). Then, we compute
GXi

=
∑

xi
ψ(i), remove all the collected factors and add GXi

instead.

P (X7 = x7) =

1∑
x1=0

. . .

1∑
x6=0

1∑
x8=0

1∑
x9=0

P (X1 = x1) · P (X2 = x2 | X1 = x1) · P (X3 = x3 | X1 = x1)·

P (X4 = x4 | X2 = x2, X3 = x3) · P (X5 = x5 | X4 = x4) · P (X6 = x6 | X4 = x4)·
P (X7 = x7 | X4 = x4) · P (X8 = x8 | X5 = x5) · P (X9 = x9 | X5 = x5, X6 = x6)

(1) Eliminate X1:

GX1(x2, x3) =

1∑
x1=0

P (X1 = x1) · P (X2 = x2 | X1 = x1) · P (X3 = x3 | X1 = x1)

X2 X3 GX1

0 0 0.6 · 0.8 · 0.3 + 0.4 · 0.5 · 0.9 = 0.324
0 1 0.4 · 0.5 · 0.1 + 0.6 · 0.8 · 0.7 = 0.356
1 0 0.4 · 0.5 · 0.9 + 0.6 · 0.2 · 0.3 = 0.216
1 1 0.4 · 0.5 · 0.1 + 0.6 · 0.2 · 0.7 = 0.104

(2) Eliminate X8:

GX8(x5) =

1∑
x8=0

P (X8 = x8 | X5 = x5) = 1

4



(3) Eliminate X9:

GX9
(x5, x6) =

1∑
x9=0

P (X9 = x9 | X5 = x5, X6 = x6) = 1

Now, the overall sum is given as

P (X7 = x7) =

1∑
x2=0

1∑
x3=0

1∑
x4=0

1∑
x5=0

1∑
x6=0

P (X4 = x4 | X2 = x2, X3 = x3) · P (X5 = x5 | X4 = x4)·

P (X6 = x6 | X4 = x4) · P (X7 = x7 | X4 = x4) ·GX9(x5, x6)︸ ︷︷ ︸
1

·GX8(x5)︸ ︷︷ ︸
1

·GX1(x2, x3)

(4) Eliminate X5:

GX5
(x4) = GX9,X5

(x4, x6) =

1∑
x5=0

P (X5 = x5 | X4 = x4) ·GX9
(x4, x6) = 1

(5) Eliminate X6:

GX6(x4) = GX9,X5,X6(x4) =

1∑
x6=0

P (X6 = x6 | X4 = x4) ·GX5(x4) = 1

(6) Eliminate X2:

GX1,X2(x3, x4) =

1∑
x2=0

P (X4 = x4 | X2 = x2, X3 = x3) ·GX1(x2, x3)

X3 X4 GX1,X2

0 0 0.8 · 0.324 + 0.8 · 0.216 = 0.432
0 1 0.2 · 0.324 + 0.2 · 0.216 = 0.108
1 0 0.7 · 0.356 + 0.3 · 0.104 = 0.2804
1 1 0.3 · 0.356 + 0.7 · 0.104 = 0.1796

Now, the overall sum is given as

P (X7 = x7) =

1∑
x4=0

P (X7 = x7 | X4 = x4)

1∑
x3=0

GX1,X2
(x3, x4)

(7) Eliminate X3:

GX1,X2,X3
(x4) =

1∑
x3=0

GX1,X2
(x3, x4)

X4 GX1,X2,X3

0 0.432 + 0.2804 = 0.7124
1 0.108 + 0.1796 = 0.2876

(8) Eliminate X4:

H(x7) =

1∑
x4=0

P (X7 = x7 | X4 = x4) ·GX1,X2,X3
(x4)

X7 H
0 0.2 · 0.7124 + 0.5 · 0.2876 = 0.28628
1 0.8 · 0.7124 + 0.5 · 0.2876 = 0.71372

Finally, we have P (X7 = x7) = H(x7).
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b) First, let us simplify the network using the conditional independence. It holds

X8 ⊥⊥ {X1, X2, X3, X6, X7} | X4.

All paths between X1, X2, X3 and X8 are blocked by X4 (causal chain).

All paths between X7 and X8 are blocked by X4 (common cause).

Path 〈X8, X5, X4, X6〉 is blocked by observed X4 (common cause).

Path 〈X8, X5, X9, X6〉 is blocked by unobserved X9 (common effect).

Hence, we can simplify the network to

X4

X5 X8

X9

P (x5|X4) X4

0.5 1
0.8 0

P (x8|X5) X5

0.2 1
0.3 0

P (x9|X5, X6) X5 X6

0.1 1 1
0.3 1 0
0.2 0 1
0.9 0 0

P (X8 = 1 | X4 = 0) =

1∑
x5=0

1∑
x9=0

P (X5 = x5 | X4 = 0) · P (X8 = 1 | X5 = x5) · P (X9 = x9 | X5 = x5)

=

1∑
x5=0

P (X5 = x5 | X4 = 0) · P (X8 = 1 | X5 = x5)

1∑
x9=0

P (X9 = x9 | X5 = x5)︸ ︷︷ ︸
1

= 0.2 · 0.3 + 0.8 · 0.2 = 0.22
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