
Question 1.

Consider modelling a spam filter by means of a joint probability distribution P (Y,X1, . . . , Xn) such that

Y =

{
1 if the message is a spam,

0 otherwise. Xi =

{
1 if the message contains the i-th English word,

0 otherwise.

a) How many parameters do we need to store such distribution exactly? Do you have an estimate for n?

b) What problems may we encounter when trying to store the distribution exactly?

c) Do you have any ideas on how to improve the efficiency of the representation?

Answer:

a) The distribution is over n + 1 binary random variables, hence there are 2n+1 parameters. Since the values must sum
up to one, there are 2n+1 − 1 free parameters that we need to store.
A conservative estimate for the number of English words is 600, 000,1meaning that we will need 2600,001−1 parameters!
Just for reference, physicists estimate that there are 1080 ≈ 2266 atoms in the known universe.2

b) Firstly, storage—obviously.
Secondly, computational instability—all numbers would basically be zero.

c) We can exploit relationships among some words.
Consider the words car and drive. Probabilities of those two words both being in a message are clearly correlated.
However, the presence of the word frog likely won’t give us any information about the presence of the word pretzel.
We can make use of conditional independence to model such relationships. That is exactly what Bayesian networks
(and other probabilistic graphical models) do.
To get an idea about how much we can potentially save, imagine that presence of each word would be independent of
all other words given that the message was spam or not. More formally,

P (y, x1, . . . , xn) = P (y)

n∏
i=1

P (xi|y).

Then, we would need one parameter to store P (Y ) and two parameters for each P (Xi|Y ). Overall, we would only need
2n + 1 parameters!
Clearly, the factorization above (Naive Bayes3) is an oversimplification, but it demonstrates that exponential savings
are possible.

Question 2.

Consider the network (graph) below:

X1

X3

X5 X4

X2

X7

X6

X8

Decide the validity of the following statements:

1https://en.wikipedia.org/wiki/List_of_dictionaries_by_number_of_words (Oxford English Dictionary, 2nd edition)
2Helmenstine, Anne Marie. “How Many Atoms Exist in the Universe?” ThoughCo., August 8, 2019.
3https://en.wikipedia.org/wiki/Naive_Bayes_classifier
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a) X1 ⊥⊥ X7 | X3

b) X1, X5 ⊥⊥ X6 | X8

c) X4 ⊥⊥ X5 | X1

d) X1 ⊥⊥ X2 | X8

e) X2 ⊥⊥ X6

f) X1 ⊥⊥ X2, X5

Answer:

a) True. The only path X1, X3, X4, X7 is blocked by the observed X3 (causal chain).

b) False. All paths go through X7 (common effect) and they are active due to X8 being observed.

c) False. The only path X5, X3, X4 is active since X3 is unobserved (common cause).

d) False. The path goes through X4 (common effect) and it is active due to the descendant X8 being observed.

e) True. The path X6, X7, X4, X2 is blocked by the unobserved X7 (and its unobserved descendants).

f) False. The path X5, X3, X1 is active since X3 is unobserved.

Question 3.

Consider the network below and compute

a) the marginal probability P (X3 = 0) = P (¬x3),

b) the pairwise marginal probability P (X2 = 1, X3 = 0) = P (x2,¬x3),

c) the conditional probability distribution P (X1 | X2 = 1, X3 = 0) = P (X1|x2,¬x3).

X1 X2

X3

X4

P (x1)
0.4

P (x2|X1) X1

0.8 1
0.5 0

P (x3|X2) X2

0.2 1
0.3 0

P (x4|X2) X2

0.8 1
0.5 0

Answer:

Probability distribution induced by a BN is defined as

P (X1, . . . , Xn) =

n∏
i=1

P (Xi | Par(Xi)).

To get rid of some variables, we need to “sum them out” (i.e., marginalize).

a)

P (X3 = 0) =

1∑
x1=0

1∑
x2=0

1∑
x4=0

P (X1 = x1) · P (X2 = x2 | X1 = x1) · P (X3 = 0 | X2 = x2) · P (X4 = x4 | X2 = x2)

= 0.6 · 0.5 · 0.7 · 0.5 + 0.6 · 0.5 · 0.7 · 0.5 + 0.6 · 0.5 · 0.8 · 0.2 + 0.6 · 0.5 · 0.8 · 0.8
+ 0.4 · 0.2 · 0.7 · 0.5 + 0.4 · 0.2 · 0.7 · 0.5 + 0.4 · 0.8 · 0.8 · 0.2 + 0.4 · 0.8 · 0.8 · 0.8
= 0.762
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b)

P (X2 = 1, X3 = 0) =

1∑
x1=0

1∑
x4=0

P (X1 = x1) · P (X2 = 1 | X1 = x1) · P (X3 = 0 | X2 = 1) · P (X4 = x4 | X2 = 1)

= 0.6 · 0.5 · 0.8 · 0.2 + 0.6 · 0.5 · 0.8 · 0.8 + 0.4 · 0.8 · 0.8 · 0.2 + 0.4 · 0.8 · 0.8 · 0.8
= 0.496

c)

P (X1 | X2 = 1, X3 = 0) =
P (X1, X2 = 1, X3 = 0)

P (X2 = 1, X3 = 0)

P (X1 = 1, X2 = 1, X3 = 0) =

1∑
x4=0

P (X1 = 1) · P (X2 = 1 | X1 = 1) · P (X3 = 0 | X2 = 1) · P (X4 = x4 | X2 = 1)

= 0.4 · 0.8 · 0.8 · 0.2 + 0.4 · 0.8 · 0.8 · 0.8
= 0.256

P (X1 = 0, X2 = 1, X3 = 0) =

1∑
x4=0

P (X1 = 0) · P (X2 = 1 | X1 = 0) · P (X3 = 0 | X2 = 1) · P (X4 = x4 | X2 = 1)

= 0.6 · 0.5 · 0.8 · 0.8 + 0.6 · 0.5 · 0.8 · 0.2
= 0.24

P (X1 = 1 | X2 = 1, X3 = 0) =
0.256

0.496
≈ 0.516

P (X1 = 0 | X2 = 1, X3 = 0) =
0.24

0.496
= 1− 0.256

0.496
≈ 0.484

Question 4.

Construct a Bayesian network (without CPTs) based on the following paragraph:

When a family leaves their house, they often turn on the outdoor light. However, they also turn on the light when
they are expecting a guest. The family has a dog, and they put it in the backyard when no one is home. They
also put the dog there if it has bowel troubles. If the dog is in the backyard, it can probably be heard barking,
although that could also be other dogs.

How many parameters do we need to represent such network?

How many parameters did we save compared to modelling the full joint distribution directly?

Answer:

The network could look like this:

F

L

S

Y

B
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where we have the following events (binary RVs):

• family in the house (F)

• outdoor light on (L)

• sick dog (S)

• dog in the backyard (Y)

• dog barking (B)

The network has 1(S) + 1(F ) + 2(L) + 4(Y ) + 2(B) = 10 parameters.

Modelling the full joint directly would require 25 − 1 = 31 parameters.

Thus, when using the BN above to represent the joint distribution, we only need one third of the originally required param-
eters!

Note:

The network above is also called causal Bayes (belief) net. The edges go from causes to their respective effects. However,
the graph structure could be very different.

For one, we could add more edges between nodes (while not introducing a cycle!), reducing the number of assumptions about
conditional independencies present in the joint probability distribution. For example, instead of storing just P (B|Y ), we
could store P (B|Y, L, F ), effectively adding the edges (L,B) and (F,B) to the graph.

Second, we could change the edge orientation. For instance, we are storing P (S), P (T ) and P (Y |S, T ). However, we can also
compute P (Y |S) and P (F |Y ) and store those CPTs instead, reversing the edge (F, Y ) to (Y, F ).
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