
Minimum Spanning Tree (Scheme+Haskell - 7+7 Points)

May 25, 2022

Given a connected weighted graph G = (V ,E) with a weight function w : E → N assigning to each
edge e its weight w(e), its minimum spanning tree is a graph T = (V ,E ′) such that E ′ ⊆ E, T is a
tree (i.e., a connected graph without cycles) and

∑
e ∈E′w(e) is minimum possible among such trees.

Figure 1 shows an example of a connected weighted graph and its minimum spanning tree.

A

B C

D E F

1
2

4

5 3

4 5

7

6
A

B C

D E F

1
2

4

4 5

Figure 1: (Left) A connected weighted graph. (Right) Its minimum spanning tree of weight 16.

Your task is to implement an algorithm computing the minimum spanning tree, i.e., a function
returning for a given connected weighted graph (V ,E) the subset E ′ of edges in the minimum spanning
tree. There are various greedy algorithms computing the minimum spanning tree. You can use, for
instance, Jarník’s algorithm, whose pseudocode is below.

vertices = [list of graph vertices]
edges = [list of graph edges]

covered = [v0] # select an arbitrary vertex as the initial one
tree_edges = []

until covered == vertices:
find the minimum-weight edge e=(u,v) connecting a vertex u in covered

with a vertex v not in covered
add v to covered
add e to tree_edges

return tree_edges

1 Task 3 - Scheme
In Scheme, implement a function (minimum-spanning-tree gr) that accepts a connected weighted
graph gr and returns a list of edges forming the minimum spanning tree. The graph and weighted
edges are represented by the following structures:

1



(struct edge (u v weight) #:transparent)
(struct graph (nodes edges) #:transparent)

Your file has to be called task3.rkt and must provide the function minimum-spanning-tree and
the above structures so it should start like this:

#lang racket
(provide minimum-spanning-tree (struct-out edge) graph)
(struct edge (u v weight) #:transparent)
(struct graph (nodes edges) #:transparent)

; your code goes here

Example The graph from Figure 1 is represented as follows:

(define gr (graph '(A B C D E F)
(list (edge 'A 'B 1)

(edge 'D 'E 4)
(edge 'E 'F 7)
(edge 'A 'D 5)
(edge 'B 'E 2)
(edge 'C 'F 5)
(edge 'D 'B 6)
(edge 'E 'C 4)
(edge 'A 'E 3))))

> (minimum-spanning-tree gr)
(list (edge 'C 'F 5) (edge 'E 'D 4) (edge 'E 'C 4)

(edge 'B 'E 2) (edge 'A 'B 1))

Note that the structure (edge x y w) represents a bidirectional edge so it can be used in Jarník’s
algorithm as (x,y) and also as (y,x).
The returned list of edges might be ordered arbitrarily. Each edge might be ordered arbitrarily as
well. For instance, it does not matter if your output contains (edge 'C 'F 5) or (edge 'F 'C 5).
However, do not include both variants in your output.

Hint To find the minimum-weight edge, you may want to sort a list of edges by their weight. This
can be done by the function sort allowing sorting w.r.t. a given comparing function, e.g.,

> (sort (list (edge 'a 'b 3) (edge 'b 'c 1) (edge 'c 'a 2))
(lambda (e1 e2) (< (edge-weight e1) (edge-weight e2))))

(list (edge 'b 'c 1) (edge 'c 'a 2) (edge 'a 'b 3))

2 Task 4 - Haskell
In Haskell, we represent the weighted graph and edges by the following types:

2



data Edge a b = Edge { u :: a,
v :: a,
weight :: b } deriving (Eq,Show)

data Graph a b = Graph { nodes :: [a],
edges :: [Edge a b] } deriving Show

Implement a function minSpanningTree :: (Eq a, Ord b) => Graph a b -> [Edge a b] that
accepts a connected weighed graph and returns a list of edges from the minimum spanning tree.

gr :: Graph Char Int
gr = Graph{ nodes = ['A'..'F'],

edges = [Edge 'A' 'B' 1,
Edge 'D' 'E' 4,
Edge 'E' 'F' 7,
Edge 'A' 'D' 5,
Edge 'B' 'E' 2,
Edge 'C' 'F' 5,
Edge 'D' 'B' 6,
Edge 'E' 'C' 4,
Edge 'A' 'E' 3] }

> minSpanningTree gr
[Edge {u = 'C', v = 'F', weight = 5},Edge {u = 'E', v = 'D', weight = 4},
Edge {u = 'E', v = 'C', weight = 4},Edge {u = 'B', v = 'E', weight = 2},
Edge {u = 'A', v = 'B', weight = 1}]

The returned list of edges might be ordered arbitrarily. Each edge might be ordered arbitrarily as
well. For instance, it does not matter if your output contains Edge {u='C', v='F', weight=5} or
Edge {u='F', v='C', weight=5}. However, do not include both variants in your output.
Your file has to be called Task4.hs and must export the function minSpanningTree and the data
types Graph a b, Edge a b so it should start like this:

module Task4 (minSpanningTree, Graph (..), Edge (..)) where
import Data.List -- for sortOn

data Edge a b = Edge { u :: a,
v :: a,
weight :: b } deriving (Eq,Show)

data Graph a b = Graph { nodes :: [a],
edges :: [Edge a b] } deriving Show

-- your code goes here

Hint To find the minimum-weight edge, you may want to sort a list of edges by their weight.
This can be done by the function sortOn :: :: Ord b => (a -> b) -> [a] -> [a] provided by
Data.List . Below is an example.

3



import Data.List

> sortOn weight [Edge 'A' 'B' 4, Edge 'B' 'C' 3, Edge 'C' 'A' 1]
[Edge {u = 'C', v = 'A', weight = 1},Edge {u = 'B', v = 'C', weight = 3},
Edge {u = 'A', v = 'B', weight = 4}]

4


	Task 3 - Scheme
	Task 4 - Haskell

