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Lecture 7: Cortical organization & Random networks



Brain areas - Broadmann classification
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Cortical column - size



Cortical column - microcircuit



Mouse whisker and barrel cortex



The excitatory cell types in the cortical column



Excitatory cell types in the cortical column

I Bert Sakmann - Nobel prize in 1991



Input (axons) from the thalamus



Cortex column
I neocortex-no horizontal anatomic segrregation, rat column:

6-10.000 neurons, 10 mil synapses
I 86 % synapses are excitatory, 14 % are inhibitatory
I 1

3 excitatory synapses: (i) axon from the column, (ii) axons from
neighboring columns, (iii) more distant regions, most inhibitatory
connesction from the colums
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B. Variation in cortex



Cortical parameters



Basic cortical microcurcuit-general
I 70-80 % - pyramidal cell,
I spiny nonpyramidal cells (short-axon cells)
I 15-30 % Aspiny nonpyramidal cells (short-axon cells without

dendritic spines)
I red: glutamatergic (excitatory) , blue: GABAergic (inhibitory),

black: others



Basic cortical microcurcuit-cats and monkeys



Presynaptic and postsynaptic AP



Example - visual system



Cat’s famous experimnet - Hubel, Wiesel



Columnar organization



Rapid transmission in brain
I Object recognition is fast - 20 ms: experiments of Simon Thorpe
I Presence of animals in visual scenes presented by short time -

20ms → subject released button when animal was present
I Evoked potentials by surface EEG → frontal cortex indicates

correct answer after 150 ms!
I Each neuron in hierarchical level process and pass on

information of the order of 10-20ms!

350 400 450 500 550 600
88
90

92
94

96
98

100

Median reaction time [ms]

Pe
rc

en
ta

ge
 c

or
re

ct

A.  Recognition performance

B.  Event-related potential

100 200 300

μV
6

3

 3

 6

Animal
Non-animal
Difference

Time [ms]



Evoked potentials - EEG averaging (100-1000)

I EEG surgace or Macroelectodes recording (contribution of
thousands neuron cells)

I low amplitudes → low signal-to-noise ration (SNR)
I averaging is used (noise is random) → signal is time-locked to

stimulus → over 100-1000 trials
I Above example is somatosensory evoked potentials (SSEP),

compared to visual EP (VEP)



How do we measure cortical maps - Evoked potentials



Adaptive sematosensory information



Topographical sematosensory maps



Simulation - neurons modellling



Cable Theory



Learning - plasticity



Blue Brain Project



Towards Human Brain project



Recording and reconstructing Human Neurons



Histological characterization



Human pyramidal neurons across cortical layers



Expected growth in computational power



Random networks - ex vivo



Random networks - microelectrode array



Random networks - Development changes in neocortical activity



Random networks - stimulation
I 50µA stimulust lasting 420µs
I three responses: (i) early componet, (ii) refractory period (iii) late

component



Random networks - response to stimulation: 3 components



Random networks - response to stimulation: Hebb’s rule



Random networks with axonal delay
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C.  Spike activation with axonal delay
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Polychronization

I two groups: i) (d,c,b,a) firing spike time pattern (0,4,8,10) ms / ii)
(b,c,d,e) firing spike time pattern (0,3,7,9) ms

I firing is not synchronous but time-locked, poly → many, chronous
→ time/clock

I reproducible time locking pattern
I spike-timing-dependent plasticity (STDP) can spontaneously

organize neurons into such groups
I main result:he number of coexisting polychronous groups could

be far greater than the number of neurons in the network,
sometimes even greater than the number of synapses

I Each neuron is part of many groups, firing with one group at one
time and with another group at another time.

I Simultion on 1000 neurons with STDP and conduction delays
I mamalian cortex → neuron distribution:excitatory (80%) and

inhibitory (20%), 0.1 probability of connection between any two
neurons



STDP rule



Rhythmic activity of the spiking model

from Izhikevich 2003/2006



Polychronous group activation

from Izhikevich 2003/2006



Example of polychronous group
I Although spiking of excitatory neurons looks random and

uncorrelated, there are certain persistent spike-timing patterns
that emerge and reoccur with millisecond precision

I Pattern denoted by circles in the middle of the figure repeats
itself a few times per hour with 1 ms spike jitter.

I activation of the group is locked to the gamma oscillation; that is,
the first three neurons fire at the first gamma cycle, their spikes
travel 10 to 20 ms and arrive at the next four neurons in the next
gamma cycle, and so on, resulting in precise stereotypical
activity.



Group emergence
I 1000 neurons: 5000 groups, The groups did not exist at the

beginning of simulation but appear as a result of STDP acting on
random spiking

I groups constantly appear and disappear; their total number
fluctuates between 5000 and 6000

I a core of 471 groups that appeared and survived the entire
duration of 24 hour simulation



More groups than synapses
I 5 neurons: 14 groups, 6 neurons, 42 groups > synapses !



Representation: Significance of polychronous group?
I Representation of memories and experience
I no coherent external input to the system was present,random

groups emerge; that is, the network generates random memories
not related to any previous experience

I Stimulation Every second during a 20-minute period, we
stimulate 40 neurons, 1, 21, 41, 61, . . . , 781, either with the
pattern (1,2,...,40) ms or with the inverse pattern (40,...,2,1) ms

I after 20 minutes of simulation 25 new groups emerged

from Izhikevich 2003/2006



Conclusion

I minimal model: spiking neurons, axonal conduction delays, and
STDP: well-established properties of the real brain

I Polychronous groups are representations of possible inputs to
the network, so that each input selects groups from the
repertoire.

I Learning of a new input consists of selecting and reinforcing an
appropriate group (or groups) that resonates with the input,
persistent stimuli may create new groups

I FeedForward:The anatomy of the spiking networks that we
consider is not feedforward but reentrant. Thus, the network
does not “wait” for stimulus to come but exhibits an autonomous
activity.

I Spiking networks with delays have more groups than neurons.
The system has potentially enormous memory capacity and will
never run out of groups, which could explain how networks of
mere 1011neurons (the size of the human neocortex) could have
such a diversity of behavior.



1 % Created by Eugene M. Izhikevich, February 25, 2003
2 % Excitatory neurons Inhibitory neurons
3 Ne=800; Ni=200;
4 re=rand(Ne,1); ri=rand(Ni,1);
5 a=[0.02*ones(Ne,1); 0.02+0.08*ri];
6 b=[0.2*ones(Ne,1); 0.25-0.05*ri];
7 c=[-65+15*re.ˆ2; -65*ones(Ni,1)];
8 d=[8-6*re.ˆ2; 2*ones(Ni,1)];
9 S=[0.5*rand(Ne+Ni,Ne),-rand(Ne+Ni,Ni)];
10
11 v=-65*ones(Ne+Ni,1); % Initial values of v
12 u=b.*v; % Initial values of u
13 firings=[]; % spike timings
14
15 for t=1:1000 % simulation of 1000 ms
16 I=[5*randn(Ne,1);2*randn(Ni,1)]; % thalamic input
17 fired=find(v>=30); % indices of spikes
18 if ˜isempty(fired)
19 firings=[firings; t+0*fired, fired];
20 v(fired)=c(fired);
21 u(fired)=u(fired)+d(fired);
22 I=I+sum(S(:,fired),2);
23 end;
24 v=v+0.5*(0.04*v.ˆ2+5*v+140-u+I);
25 v=v+0.5*(0.04*v.ˆ2+5*v+140-u+I);
26 u=u+a.*(b.*v-u);
27 end;
28 plot(firings(:,1),firings(:,2),’.’);



Further Readings

Edward L. White (1989) Cortical circuits, Birkhäuser

Moshe Abeles (1991) Corticonics: Neural circuits of the cerebral
cortex, Cambridge University Press


