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Lecture 7: Cortical organization & Random networks
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Cortical column - size

(lmm?) Size of a pin head
30,000 cells, 100 million connections (Synapses)




Cortical column - microcircuit
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Mouse whisker and barrel cortex
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The excitatory cell types in the cortical column
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Excitatory cell types in the cortical column

pia surface

‘white matter 500pm

Sakmann et al.,

» Bert Sakmann - Nobel prize in 1991



Input (axons) from the thalamus

Input (axons) from thalamus
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Cortex column
» neocortex-no horizontal anatomic segrregation, rat column:
6-10.000 neurons, 10 mil synapses
> 86 % synapses are excitatory, 14 % are inhibitatory
> % excitatory synapses: (i) axon from the column, (ii) axons from
neighboring columns, (iii) more distant regions, most inhibitatory
connesction from the colums
A. Different staining techniques B. Variation in cortex
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Cortical parameters

Variable Value
Neuronal density 40,000/mm°
Neuronal composition:

Pyramidal 75%

Smooth stellate 15%

Spiny stellate 10%
Synaptic density 8 10%/mm°
Synapses per neuron 1000-20000
Distribution of synaptic types on pyramidal cell

Inhibitory synapses 10%

Excitatory synapses from remote sources 45%

Excitatory synapses from local sources 45%
Asynchronous gain (relative synaptic efficiency) 0.003-0.2
Time duration of spike ~1ms
Velocity of spike {myelinated axon of 0.02 mm diameter) 120 m/s
Length of axon few mmto~ 1m
Synaptic cleft 20 nm
Synaptic transmission delay due to diffusion 0.6 ms




Basic cortical microcurcuit-general
> 70-80 % - pyramidal cell,
» spiny nonpyramidal cells (short-axon cells)
» 15-30 % Aspiny nonpyramidal cells (short-axon cells without
dendritic spines)
> red: glutamatergic (excitatory) , blue: GABAergic (inhibitory),
black: others
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Basic cortical microcurcuit-cats and monkeys
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FIGURE 1-2. A schematic circuit based upon the known cortical cells upon which thalamic
afferent fibers terminate in cats and monkeys. The GABAergic smooth intereneurons (blue)
are identified by the names that they have received in these species. Arc, neuron with arciform
axon; Ch, chandelier cell; DB, double bouquet cell; LB, large basket cell; Ng, neurogliaform
cell; Pep, peptidergic neuron. Excitatory neurons (red) include pyramidal cells of layers II-VI
and the spiny stellate cells (SS) of layer IV. (Based on Jones, 2007)



Presynaptic and postsynapt

Ficure 3-1. Simplified schematic rep ion of the neocortical microcircuitry. Red indi-
cates excitatory neurons, dendrites, and axons; blue indicates inhibitory neurons, dendrites,
and axons. Inhibitory synapses are marked in blue dots, and excitatory synapses are marked
in red forks. From the top left and down, the insert illustrates a synaptic response from an
MC onto a PC, a PC onto an MC, and a CCP onto a CTP. From top right and down, the inserts
illustrate synaptic responses from an HAC on a VAC, an LBC ona PC, a PC response on a PC,
and a disynaptic PC response on a PC via an MC. In all cases the presynaptic action potentials
are above and the postsynaptic responses are below. Layers are indicated in roman numerals.
Axons projecting beyond the neacortical dimensions are indicated by dotted lines. For the PCs,
axons are thin lines relative to the dendrites; for the inhibitory neurons, only axons are sche-
matized. Black arraws from grayed background circles indicate the synaptic locations for the
inserted illustrated responses. BP, bipolar cell; CCP, cortico-cortical pyramid; CHC, chandelier
cell; CHP, cortico-hemispheric pyramid; CLP, cortico-claustral pyramid; CRC, Cajal-Retzius
cell; CSP, cortica-spinal pyramidal; CTP, cortico-thalamic pyramid; DBC, double bouguet cell;
HAC, horizontal axon cell; LBC, large basket cell; MC, Martinotti cell; NBC, nest basket cell;
NGC, neurogliaform cell; PC, pyramidal cell; SBC, small basket cell; SPC, star pyramidal cell;
SSC, spinv stellate cell: DAC, descending axon cell: SAC, short axon cell: WM. white matter.
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Example - visual system

(4) Lateral

(B) Medial

Figure

1116 Localization of multiple
ireas in the human brain using,
£MRL. (A,B) Lateral and medial views
(respectively) of the human brain, illus-
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Cat’s famous experimnet - Hubel, Wiesel

(A) Experimental setup (B) Stimulus Stimulus
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projected on screen
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Columnar organization
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Rapid transmission in brain

» Object recognition is fast - 20 ms: experiments of Simon Thorpe

» Presence of animals in visual scenes presented by short time -
20ms — subject released button when animal was present

» Evoked potentials by surface EEG — frontal cortex indicates
correct answer after 150 ms!

» Each neuron in hierarchical level process and pass on
information of the order of 10-20ms!

A. Recognition performance
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Evoked potentials - EEG averaging (100-1000)

» EEG surgace or Macroelectodes recording (contribution of
thousands neuron cells)

» low amplitudes — low signal-to-noise ration (SNR)

» averaging is used (noise is random) — signal is time-locked to
stimulus — over 100-1000 trials

» Above example is somatosensory evoked potentials (SSEP),
compared to visual EP (VEP)
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How do we measure cortical maps - Evoked potentials

Central sulcus

Primary motor

Corticobulbar tract
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Adaptive sematosensory information

Rabbit Cat Monkey Human




Topographical sematosensory maps
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Simulation - neurons modellling
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Cable Theory

Passive cable equation
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Learning - plasticity

Modeling synapses (PSP’s) as R-C circuits and
as plastic device

when( Lo > tp”‘)

Aw =Ae ™ when(i >t )

pre post



Blue Brain Project




Towards Human Brain project

Héhs baa yen, MD
Neurosurgeon
VUmc Amsterdam




Recording and reconstructing Human Neurons
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Histological characterization
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Human pyramidal neurons across cortical layers
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Expected growth in computational power

Computing Memory

Exabyte (10 bytes)
Petabyte (10" bytes) -
Terabyte (107 bytes) -

Gigabyte (107 bytes) 4

Megabyte (10¢ bytes)

2005
Single-
neuron
model

2011
2008 Cortical
Columnin  mesocircuit Lo
neocortex (100 neocortical Tt iy ?
(10,000 columns)  _,ee*"" 2023
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- human brain
2014 (1,000 times
Complete rodent brain)
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Random networks - ex vivo




Random networks - microelectrode array




Random networks - Development changes in neocortical activity

Random fifing — Periodic synchronized bursting
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Random networks - stimulation
> 50uA stimulust lasting 4205
> three responses: (i) early componet, (ii) refractory period (iii) late
component

ebtpraicovner oy l100 pv




Random networks - response to stimulation: 3 components
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Random networks - response to stimulation: Hebb’s rule
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Random networks with axonal delay

A. Spike trains in random network C. Spike activation with axonal delay
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Polychronization

»

>

two groups: i) (d,c,b,a) firing spike time pattern (0,4,8,10) ms / ii)
(b,c,d,e) firing spike time pattern (0,3,7,9) ms

firing is not synchronous but time-locked, poly — many, chronous
— time/clock

reproducible time locking pattern

spike-timing-dependent plasticity (STDP) can spontaneously
organize neurons into such groups

main result:he number of coexisting polychronous groups could
be far greater than the number of neurons in the network,
sometimes even greater than the number of synapses

Each neuron is part of many groups, firing with one group at one
time and with another group at another time.

Simultion on 1000 neurons with STDP and conduction delays
mamalian cortex — neuron distribution:excitatory (80%) and

inhibitory (20%), 0.1 probability of connection between any two
neurons



STDP rule
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Figure 4: STDP rule (spike-timing-dependent plasticity, or Hebbian temporally
asymmetric synaptic plasticity): The weight of synaptic connection from pre- to
postsynaptic neuron is increased if the postneuron fired after the presynaptic
spike, that is, the interspike interval ¢ > 0. The magnitude of change decreases
as A,e !/, Reverse order results in a decrease of the synaptic weight with
magnitude A_e!/*-. Parametersused: 7, = 7. =20ms, A, =0.1,and A_ = 0.12.



Rhythmic activity of the spiking model
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Polychronous group activation

network activity (gamma rhytl
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Example of polychronous group

» Although spiking of excitatory neurons looks random and
uncorrelated, there are certain persistent spike-timing patterns
that emerge and reoccur with millisecond precision

» Pattern denoted by circles in the middle of the figure repeats
itself a few times per hour with 1 ms spike jitter.

» activation of the group is locked to the gamma oscillation; that is,
the first three neurons fire at the first gamma cycle, their spikes
travel 10 to 20 ms and arrive at the next four neurons in the next
gamma cycle, and so on, resulting in precise stereotypical
activity.
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Figure 7: Example of a polychronous group: Firing of neurons (125, 275, 490)
with the timing pattern (0, 3, 7) ms results in spikes arriving simultaneously at
neuron 1, then at neurons 172, 695, and 380. This multitiming (polychronous)
activity propagates farther along the network and terminates at neuron 510.



Group emergence

» 1000 neurons: 5000 groups, The groups did not exist at the
beginning of simulation but appear as a result of STDP acting on
random spiking

» groups constantly appear and disappear; their total number
fluctuates between 5000 and 6000

» a core of 471 groups that appeared and survived the entire
duration of 24 hour simulation
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More groups than synapses
» 5 neurons: 14 groups, 6 neurons, 42 groups > synapses !
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Representation: Significance of polychronous group?

> Representation of memories and experience

» no coherent external input to the system was present,random
groups emerge; that is, the network generates random memories
not related to any previous experience

» Stimulation Every second during a 20-minute period, we
stimulate 40 neurons, 1, 21, 41, 61, . . ., 781, either with the
pattern (1,2,...,40) ms or with the inverse pattern (40,...,2,1) ms

» after 20 minutes of simulation 25 new groups emerged

stimulation pattern 1 :f stimulation pattern 2 H%




Conclusion

>

>

minimal model: spiking neurons, axonal conduction delays, and
STDP: well-established properties of the real brain

Polychronous groups are representations of possible inputs to
the network, so that each input selects groups from the
repertoire.

Learning of a new input consists of selecting and reinforcing an
appropriate group (or groups) that resonates with the input,
persistent stimuli may create new groups

FeedForward:The anatomy of the spiking networks that we
consider is not feedforward but reentrant. Thus, the network
does not “wait” for stimulus to come but exhibits an autonomous
activity.

Spiking networks with delays have more groups than neurons.
The system has potentially enormous memory capacity and will
never run out of groups, which could explain how networks of
mere 10"1neurons (the size of the human neocortex) could have
such a diversity of behavior.
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% Created by Eugene M. Izhikevich, February 25, 2003

% Excitatory neurons Inhibitory neurons
Ne=800; Ni=200;

re=rand (Ne, 1) ; ri=rand(Ni, 1) ;
a=[0.02xones (Ne, 1) ; 0.02+0.08*ri];
b=[0.2*ones (Ne, 1) ; 0.25-0.05%ri];
c=[-65+15%re."2; -65%ones (Ni, 1) ];
d=[8-6*re."2; 2+«ones (Ni,1)];

S=[0.5«rand (Ne+Ni, Ne), -rand (Ne+Ni,Ni) ];

o°

Initial values of v
Initial values of u
spike timings

v=-65+ones (Ne+Ni, 1);
u=b.x*v;
firings=[];

o°

o

o

for t£=1:1000 simulation of 1000 ms
I=[5+«randn(Ne, 1) ;2xrandn(Ni,1)]; % thalamic input
fired=find(v>=30); % indices of spikes
if “isempty (fired)
firings=[firings; t+0xfired, fired];
v (fired)=c (fired);
u(fired)=u(fired)+d(fired);
I=I+sum(S(:,fired),2);
end;
v=v+0.5% (0.04xv. 2+5+xv+140-u+I);
v=v+0.5% (0.04%v. 2+5xv+140-u+I);
u=uta.x* (b.*xv-u);
end;
plot (firings(:,1), firings(:,2),".");



Further Readings

Edward L. White (1989) Cortical circuits, Birkhauser

Moshe Abeles (1991) Corticonics: Neural circuits of the cerebral
cortex, Cambridge University Press



