
Jump to main content
Jump to project navigation
Jump to downloads for SourceForge.net

SourceForge.net

page | discussion | history | notify me | backlinks |

Annotations
Concurrency

edit navigation

Wiki Navigation annotations

Annotations in
Jason

Introduction
Syntax
Unification
Between
Literals
Unification
Between
Variables
Annotated
Variables in a
Plan Body
Annotations
in Goals and
Plans

Introduction

Each belief in an agent's belief base has at least
one annotation; goals and plans can also have
annotations. The whole idea of annotations
emerged when we added speech-act based
communication, so we needed to annotate the
source of each belief. In a multi-agent systems,
agents' beliefs can come from inter-agent
communication, by sensing the envioronment
(such beliefs are called percepts), or because the
agent added "mental notes" (i.e., beliefs the agent
created itself whilst executing plans in order to
remind itself of something). In Jason, all beliefs
have a pre-defined source annotation, which is
automatically handled by the interpreter; all other
annotations are user-defined an need to be
used/controled by the programmer.

Annotations do not change the expressive power of the programming
language, but they greatly improve legibility. In fact, they are one of the
most interesting additions to the original AgentSpeak language that were
introduced in Jason. As agent-oriented programming is heavily
influenced by Artificial Intelligence, it often makes sense to represent
meta-level information about each individual belief, goal, or plan that an
agent has. Even though originally we only needed annotations to denote
the sources of information an agent had, they turned out to be an
extremely flexible mechanism with many uses and purposes. Much
research work extending AgentSpeak has taken advantage of
annotations for specific purposes.

Table of
Contents

Annotations in Jason

New Page

Recent Changes

Manage Space

jason Search Project Project Search Advanced

However, in order to deal with annotations, we have had to create a more sophisticated unification algorithm.
This article presents how it works by means of examples.

Syntax

Annotations are represented with the same syntax of a list in Prolog; however, this needs to be a list of terms
rather than literals, and it must immediately follow the literal or term they are annotating (plans are annotated in
the optional label they have, which is itself a predicate). For example:

p(t)[source(ag)]

represents a belief literal p(t) with a single annotation source(ag) which is an annotation handled by Jason to
say that this belief originating from agent ag telling this agent that ag believed p(t) to be true. Other possible
sources are source(percept) and source(self); the former means that belief p(t) originated from
perceiving the environment and the latter from a mental note. In the following example:

p(t)[a1,a2(0)].

the literal p(t) has two annotations, terms a1 and a2(0).

One important thing to note is that even though the complete notation for lists in Prolog is used for Jason
annotations, this is semantically treated as as set of annotations.

Unification Between Literals

In the case of a unification like A = B, the set of annotations of the first argument A has to be a subset of the
annotations of the second argument B.

Example:

p(t) = p(t)[a1]; // unifies

p(t)[a1] = p(t); // does not unify

p(t)[a2] = p(t)[a1,a2,a3]; // unifies

The "tail" of the list of annotations (in this case working like set difference) can be used:

p[a2|T] = p[a1,a2,a3]; // T unifies with [a1,a3]

p[a1,a2,a3] = p[a1,a4|T]; // T unifies with [a2,a3]

When the unification is between a triggering event and a plan's trigger, the triggering event is the first argument
of the unification. So for an event +!g[a], the relevance of the following plans would be as follows:

+!g : true <- ... // relevant for event +!g[a]

+!g[a] : true <- ... // relevant for event +!g[a]

+!g[a,b] : true <- ... // not relevant for event +!g[a]

+!g[b] : true <- ... // not relevant for event +!g[a]

However, for an event +!g a plan with trigger +!g[a] is not relevant. In other words, to put an annotation is a
plan's trigger means "this plan is relevant only for events with (at least) these annotations, or annotations that
unify with these".

Unification Between Variables

Consider the various cases of the a unification X[As] = Y[Bs] below; the notation used is X and Y for
variables, and As, Bs, Cs, and Ds are sets of annotations.

X and Y are ground

X = p[Cs] // unify X with p[Cs], where Cs is a set of annotations

Y = p[Ds] // unify Y with p[Ds], where Ds is a set of annotations

X[As] = Y[Bs] // unifies if (Cs union As) is a subset of (Ds union Bs) ...

 // ... after attempting to unify the annotations individually

Example:

X = p[a1,a2];

Y = p[a1,a3];

X[a4] = Y[a2,a4,a5]; // unifies

(note that tail of lists does not work here. TODO make it to work as for literals? In the current implementation, the tail in

annotations of variables has no meaning)

Only X is ground

X = p[Cs]

X[As] = Y[Bs] // unifies if (Cs union As) in Bs

 // and Y unifies with p

note: what Y should unify with is p[(Cs + As) - Bs]. TODO: the current implementation is as above and not as proposed

in this note.

Example:

X = p[a1,a2];

X[a3] = Y[a1,a2,a3,a4,a5]; // unifies Y with p

X[a3] = Y[a2,a3,a4,a5]; // does not unify

X[a3] = Y[a1,a2,a4,a5]; // does not unify

Only Y is ground

Y = p[Ds]

X[As] = Y[Bs] // unifies if As in (Ds union Bs)

 // and unifies X with p

note: the annotations of X is an issue to discuss (what X should unify with). It could be [], since [] is a subset of anything. It

could be: X = p[(Ds + Bs) - As]. A minimal subset approach or a maximal subset approach. TODO: the current

implementation is like above (minimal subset approach).

The problem is that X = p[a,b,c] unifies X with p[a,b,c], i.e., the maximal approach. So the current implementation is

somewhat inconsistent. Proposal: use always the maximal approach when Y is ground and the minimal when X is ground.

Example:

Y = p[a1,a3];

X[a1] = Y[a4,a5]; // unifies X with p

X[a6] = Y[a4,a5]; // does not unify

Neither X nor Y are ground

X[As] = Y[Bs] // unifies if As is a subset of Bs

 // and X unifies with Y

Annotated Variables in a Plan Body

The annotations of the variable and the annotations of its instantiated are combined (using set union) to produce
the corresponding event:

X=g[a];

...

!X[b]; // produce event +!g[a,b]

Annotations in Goals and Plans

(tbd)

 Wikis by Wikispaces®

©Copyright 1999-2009 - SourceForge, Inc., All Rights Reserved

