
Jump to main content
Jump to project navigation
Jump to downloads for SourceForge.net

SourceForge.net

page | discussion | history | notify me | backlinks |

Annotations
Concurrency

edit navigation

Wiki Navigation concurrency

Concurrency in
Jason

Introduction
Atomic
Suspend and
Resume
Wait
Proposals to be
Discussed and
Implemented

Monitors
Concurrent
goals
Semaphore

Open questions

Introduction

This page is for people who understand the idea of programming
with threads (i.e., concurrently) who would like to discuss issues
of concurrency of intentions in Jason.

Intentions in Jason are somewhat similar to threads in other
languages in so far as they also execute concurrently, unless you
have customised the intention selection function to alter the
schedulling. By default, different intentions are executed in a
round-robin fashion, executing only one element of the (topmost)
plan body each time the intention is selected.

New intentions are created by:

external events

each perceived change in the environment that the agent reacts to starts a new intention

another agent delegates a goal (through an achieve message)

initial goals

the !! operator

depending on the interpreter setting, belief addtions other than by perception of the environment can also

cause a new intention to be created

(tbd add and explain examples)

Atomic

An atomic intention cannot be stopped in the middle. An intention is atomic if it has a plan
with an atomic annotation.

(tbd add and explain examples)

Suspend and Resume

Programmers can suspend and resume intentions by means of specific internal actions
(.suspend, .resume); an intention can suspend/resume other intentions.

Intentions are automatically put in suspended mode whilst it is waiting for some action to be
done in the environment; it resumes when the action feedback from the environment is
received.

Table of ContentsConcurrency in Jason

New Page

Recent Changes

Manage Space

jason Search Project Project Search Advanced

Intentions are automatically put in suspended mode when an askOne or askAll message is sent; it resumes when the agent
receives the answer (or timeout).

(tbd add and explain examples)

Wait

The internal action .wait can also be used to suspend an intention for some time:

+!g

 <- ...;

 .wait(1000); // suspend the intention for 1 second

 ...

and to suspend it until some event:

+!g

 <- ...;

 .wait("+b(4)"); // suspend the intention until the belief-addition event +b(4) takes place

 ...

see more details (e.g., elapsed time and timeout) at wait API .

(tbd add and explain examples)

Proposals to be Discussed and Implemented

Monitors
.wait(a(X))

.notify(a(10))

Concurrent goals
Creation of a new plan-body operator that allows concurrent execution:

a1; (!g1 || !g2; a2 || !g3); a3

do action a1; concurrently execute !g1, (!g2; a2), and !g3, where (g2;a2) means achieve goal g2 then in sequence do action
a2; when all three separate subplans are finished, only then do action a3.
Note: the implementation requires that intentions be modelled as trees and no longer as stacks.

Semaphore
Proposal for an internal action:

.synchronize(s) { bla }

or .lock
(see how locks are implemented in Java 5)

Open questions

are intentions really like threads? or is there something peculiar about them? (perhaps we should try to come up with a higher level mechanism)1.

how to relate/manage intentions at a higher level: hinder, resume (some intentions always suspend others), cancel (some intentions abort/fail others),

incompatible-with (two intentions cannot be executed together) -- perhaps a simplification of TAEMS relationships?

2.

 Wikis by Wikispaces®

©Copyright 1999-2009 - SourceForge, Inc., All Rights Reserved

