
UsingJasonto Implement a Team of Gold Miners

Rafael H. Bordini1, Jomi F. Ḧubner2, and Daniel M. Tralamazza3

1 Department of Computer Science
University of Durham

Durham DH1 3LE, U.K.
R.Bordini@durham.ac.uk

2 Departamento de Sistemas e Computação
Universidade Regional de Blumenau

Blumenau, SC 89035-160, Brazil
jomi@inf.furb.br

3 School of Computer & Communication Sciences
Ecole Polytechnique F́ed́erale de Lausanne

CH-1015 Lausanne, Switzerland
daniel.tralamazza@epfl.ch

Abstract. This paper describes a team of agents that took part in the second
CLIMA Contest. The team was implemented in a logic-based language for BDI
agents and was run in a Java-based interpreter that makes it easy for legacy code
to be invoked from within the agents’ practical reasoning. Even though the im-
plementation was not completely finished in time, the team won the competition,
and the experience also allowed us to improve various aspects of the interpreter.

1 Introduction

In this paper, we describe the development of a team of agents created to enter the sec-
ond CLIMA Contest, which took place with CLIMA VII. We quote bellow the general
description of the scenario (Figure 1 shows a screenshot).

Recently, rumours about the discovery of gold scattered around deep
Carpathian woods made their way into the public. Consequently hordes of
gold miners are pouring into the area in the hope to collect as much of gold
nuggets as possible. Two small teams of gold miners find themselves exploring
the same area, avoiding trees and bushes and competing for the gold nuggets
spread around the woods. The gold miners of each team coordinate their
actions in order to collect as much gold as they can and to deliver it to the
trading agent located in a depot where the gold is safely stored.

(http://cig.in.tu-clausthal.de/CLIMAContest/ )

The first important characteristic of the team described here is that the agents were
programmed in AgentSpeak, an agent-oriented programming language based on logic
programming and suitable for (BDI) reactive planning systems (the language is briefly
explained in Section 2). TheJason interpreter for an extended version of AgentSpeak
was used to run the agents (see Section 3). Section 4 presents the overall team specifi-
cation and Section 5 gives further details of the implementation.



Fig. 1.The Contest Scenario and the Quadrants Used by our Team.

2 AgentSpeak

The AgentSpeak(L) programming language was introduced in [7]. It is based on logic
programming and provides an elegant abstract framework for programming BDI agents.
The BDI architecture is, in turn, the predominant approach to the implementation of
intelligent or rational agents [8], and a number of commercial applications have been
developed using this approach.

An AgentSpeak agent is defined by a set ofbeliefsgiving the initial state of the
agent’sbelief base, which is a set of ground (first-order) atomic formulæ, and a set of
plans which form itsplan library. An AgentSpeak plan has aheadwhich consists of a
triggering event (specifying the events for which that plan isrelevant), and a conjunction
of belief literals representing acontext. The conjunction of literals in the context must
be a logical consequence of that agent’s current beliefs if the plan is to be considered
applicablewhen the triggering event happens (only applicable plans can be chosen for
execution). A plan also has abody, which is a sequence of basic actions or (sub)goals
that the agent has to achieve (or test) when the plan is triggered.Basic actionsrepresent
the atomic operations the agent can perform so as to change the environment. Such
actions are also written as atomic formulæ, but using a set ofaction symbolsrather than
predicate symbols. AgentSpeak distinguishes two types ofgoals: achievement goals
and test goals. Achievement goals are formed by an atomic formulæ prefixed with the
‘ ! ’ operator, while test goals are prefixed with the ‘?’ operator. Anachievement goal
states that the agent wants to achieve a state of the world where the associated atomic



formulæ is true. Atest goalstates that the agent wants to test whether the associated
atomic formulæ is (or can be unified with) one of its beliefs.

An AgentSpeak agent is areactive planning system. Plans are triggered by thead-
dition (‘+’) or deletion(‘ - ’) of beliefs due to perception of the environment, or to the
addition or deletion of goals as a result of the execution of plans triggered by previous
events.

+green patch(Rock)
: not battery charge(low)
<- ?location(Rock,Coordinates);

!traverse(Coordinates);
!examine(Rock).

+!traverse(Coords)
: safe path(Coords)
<- move towards(Coords).

+!traverse(Coords)
: not safe path(Coords)
<- ...

Fig. 2.Example of AgentSpeak Plans.

A simple example of an
AgentSpeak program for a Mars
robot is given in Figure 2.
The robot is instructed to be
especially attentive to “green
patches” on rocks it observes
while roving on Mars. The
AgentSpeak program consists of
three plans. The first plan says
that whenever the robot per-
ceives a green patch on a cer-
tain rock (a belief addition), it
should try and examine that par-
ticular rock. However this plan
can only be used (i.e., it is only
applicable) if the robot’s batter-

ies are not too low. To examine the rock, the robot must retrieve, from its belief base,
the coordinates it has associated with that rock (this is the reason for the test goal in the
beginning of the plan’s body), then achieve the goal of traversing to those coordinates
and, once there, examining the rock. Recall that each of these achievement goals will
trigger the execution of some other plan.

The two other plans (note the last one is only an excerpt) provide alternative courses
of action that the rover should take to achieve a goal of traversing towards some given
coordinates. Which course of action is selected depends on its beliefs about the envi-
ronment at the time the goal-addition event is handled. If the rover believes that there
is a safe path in the direction to be traversed, then all it has to do is to take the action of
moving towards those coordinates (this is a basic action which allows the rover to effect
changes in its environment, in this case physically moving itself). The alternative plan
(not shown here) provides an alternative means for the agent to reach the rock when the
direct path is unsafe.

3 Jason

TheJasoninterpreter implements the operational semantics of AgentSpeak as given in,
e.g., [4].Jason4 is written in Java, and its IDE supports the development and execution
of distributed multi-agent systems [3, 2]. Some of the features ofJasonare:

4 Jason is Open Source (GNU LGPL) and is available fromhttp://jason.
sourceforge.net



– speech-act based inter-agent communication (and annotation of beliefs with infor-
mation sources);

– the possibility to run a multi-agent system distributed over a network (using SACI
or some other middleware);

– fully customisable (in Java) selection functions, trust functions, and overall agent
architecture (perception, belief-revision, inter-agent communication, and acting);

– straightforward extensibility and use of legacy code by means of user-defined “in-
ternal actions” implemented in Java;

– clear notion ofmulti-agent environments, which can be implemented in Java (this
can be a simulation of a real environment, e.g., for testing purposes before the
system is actually deployed).

Jason agent

Agent
AgentSpeak code

architecture
percept()

act()

Contest
simulator

internal actions
direction()
distance()

TCP/IP

Fig. 3.Agent Extensibility and Customisation.

To implement our agent
team, two of these features
were specially useful: architec-
ture customisation and internal
actions (see Figure 3). A cus-
tomisation of the agent archi-
tecture is used to interface be-
tween the agent and its envi-
ronment. The environment for
the CLIMA Contest was imple-
mented by the contest organisers
in a remote server that simulates
the mining field, sending per-
ception to the agents and receiv-
ing requests for action execu-
tion. Therefore, when an agent
attempts to perceive the environ-
ment, the architecture sends to it
the information provided by the

simulator, and when the agent chooses an action to be performed, the architecture sends
the action execution request to the simulator. For example, the plan

+pos(X,Y) : Y > 0 <- up.

is triggered when the agent perceives its position and its current line in the world grid
is greater than zero. The+pos(X,Y) percept is produced by the architecture from the
messages sent by the simulator, andup is an action that the architecture sends to the
simulator.

Although most of the agent is coded in AgentSpeak, some parts were implemented
in Java, in this case because we wanted to use legacy code, in particular, we already
had a Java implementation of he A* search algorithm, which we used to find paths
in the scenario (it is interesting to note that in one of the “maze” scenarios used in
the competition, our team was the only to successfully find a path to the depot). This
algorithm was made accessible to the agents by means ofinternal actions. These were
used in AgentSpeak plans as shown in the example below:



+gold(X,Y): pos(X,Y) & depot(DX,DY) & carrying gold
<- pick; jia.direction(X,Y,DX,DY,Dir); Dir.

In this plan, when the agent perceives some gold in its current position, it picks
up the gold and calls thedirection internal action of thejia library. This internal
action receives two locations as parameters (〈X,Y〉 and〈DX,DY〉), computes a path be-
tween them using A* (using the Manhattan distance as heuristic, as usual in scenarios
such as this), and instantiatesDir with the first action (up , down, left , or right )
according to the path it found from the first to the second coordinate. The plan then
says that the agent should performs the action instantiated to variableDir . Note that
this plan is illustrative, it does not generate the behaviour of carrying the gold to the
depot; only one step towards it is performed in the excerpt above. Also, as this is a
cooperative team and each agent has only a partial view of the environment, the un-
derlying architecture ensures that the agents share all the information about obstacles
which the A* algorithms uses for navigation.

4 Overall Team Strategy

The team is composed of two roles enacted by five agents. The miner role is played
by four agents who will have the goal of finding gold and carrying it to the depot.
The team also has one agent playing the leader role; its goals are to allocate agents’
quadrants and allocate free agents to a piece of gold that has been found. The leader
agent helps the team, but each team must have exactly four miner agents that log into
the simulation server as official contestants, so the leader is not registered with the
server. The diagrams in Figures 4, 5, and 6 give an overview of the system and the two
roles using the Prometheus methodology [6].

Fig. 4.System overview diagram.



Fig. 5.Leader agent specification.

Fig. 6.Miner agent specification.

miner leader

myLocation(X,Y)

quadrant(Q)

Fig. 7.Quadrant allocation protocol.

The overall strategy of theJason
team is as follows. Each miner is respon-
sible for systematically (rather than ran-
domly) searching goldwithin one quad-
rant of the environment (see Figure 9).
Since the initial positions of the agents
are only known when the game starts, the
allocation of the agents to quadrants de-
pends on such positions. The team uses
the protocol in figure 7 for the leader to
allocate each agent to a quadrant. At the
beginning of each game, the four miner
agents send their location to the leader
agent, the leader allocates each quadrant

to an agent by checking which agent is nearest to that quadrant, and sends a message
to each agent saying which quadrant they have been allocated. We have decided to
centralise some decisions in a leader agent so as to decrease the number of required
messages in a distributed negotiation; even though all agents were run in the same ma-
chine in the actual competition, this is particularly important if in future competitions



we decide to run agents in different machines, in case agents become too elaborate to
be run all in one machine.

Another (simple) protocol is used to decide which agent will commit to a gold
found by a miner that is already carrying gold (Figure 8). When a miner (e.g.,miner1
in Figure 8) sees a piece of gold and cannot pick it up (e.g., because it is already carrying
gold), it broadcasts the location of the piece of gold just found to all agents. The other
agents bid to take on the task of fetching that piece of gold; such bid is computed based
on its availability and distance to that gold. All bids are sent to the leader who then
chooses the best agent to commit to collect that piece of gold.

miner1 leader

gold(X,Y)

miner

gold(X,Y)
bid(Vl)

allocatedTo(gold(X,Y))

Fig. 8.Gold Allocation Protocol.

5 Implementation in Jason

Fig. 9. Miner’s Search Path Within
its Quadrant.

The miner agents have two mutually exclusive
goals: “find gold” or “handle gold”. Whenever the
agent has currently no other intention, it adopts
the goal of exploring its own quadrant to find gold.
When the agent either perceives some gold or was
allocated to a piece of gold by the protocol in Fig-
ure 8, it gives up the “find gold” goal and com-
mits to the goal of handling that particular piece of
gold. When this latter goal is achieved, the agent
commits again to the “find gold” goal.

To systematically find gold in its quadrant, the
miner “scans” its quadrant as illustrated in Fig-
ure 9. The plans for achieving this goal determine
that the agent should start from the place where it
last stopped searching for gold, or start from the



position in its quadrant which is closest to the depot. As the agent can perceive gold in
all neighbouring cells, it can skip three lines when moving vertically.

When a miner sees a piece of gold, three relevant plans can be selected as applicable
depending on the following conditions (the AgentSpeak code is shown in Figure 10):

1. The first plan is applicable when the miner is not carrying gold and is free.5 The
plan execution consist of removing the belief that it is free, adding a belief that
there is gold at that location, and creating a goal to handle that gold.

2. The second plan is applicable when the miner is also not carrying gold but is not
free because it is going to positionOldX,OldY to collect some gold there. In
this case, it prefers the gold just found, so the agent: drops the previous intention,
announces the availability of gold at the “old” location to the other agents (this will
trigger again the allocation protocol in Figure 7), and creates a goal to handle the
piece of gold it has just found.

3. If none of the above plans is applicable (i.e., the agent is carrying gold), the third
alternative plan is used to announce the gold location to others agents, starting the
allocation protocol (shown in Figure 7).

The last three plans in Figure 10 implement part of the allocation protocol. When
the agent receives a message with some gold position, if it is free, it sends a bid based
on its Manhattan distance to the gold; otherwise, it sends a very high bid. When some
gold is allocate by the leader to the agent, it handles this gold if it is still free. Note
that this is not an optimal strategy: we have not as yet dealt with the possibility that
reallocating tasks to the agents that are already committed (i.e., no longer free) might
lead to a better overall task allocation; in the future, we might use some distributed
constraint optimisation algorithm for this.

The plan to achieve the goal of handling a found piece of gold6 is shown in Fig-
ure 11. The plan initially drops the goal of finding gold (exploration behaviour), moves
the agent to the gold position, picks the gold, announces to others that the gold was
collected so they do not try to fetch this gold (to avoid agents moving to pieces of gold
that are no longer there), retrieves the depot location from the belief base, moves the
agent to the depot, drops the gold, and finally chooses another gold to pursue. In case
the handle-gold plan fails (e.g., because the gold disappeared due to the environment
being dynamic), the event-!handle(G) is created and the second plan is selected.
This plan just removes the information about that gold location from the belief base and
chooses another piece of gold to be collected. Thechoose gold plans find the near-
est known gold and create a gold to handle it; if no gold location is known, the agent is
free and resumes the gold-searching behaviour.

It is important to note that AgentSpeak is the language used to define the high-level
(practical) reasoning of the agents. The use of internal actions facilitates keeping the
agent language at the right level of abstraction, even when legacy code needs to be
invoked.

5 The agent maintains a belief stating whether it is currently “free” or not. Being free means that
the agent is not committed to handling any piece of gold.

6 Note that only the most important plans are included here; the complete code is available in
theJasonweb site.



+cell(X,Y,gold) : not carrying_gold & free
<- -free; +gold(X,Y);

!handle(gold(X,Y)).
+cell(X,Y,gold) : not carrying_gold & not free &

.desire(handle(gold(OldX,OldY))) &
<- +gold(X,Y);

.dropIntention(handle(gold(_,_)));

.broadcast(tell,gold(OldX,OldY));
!handle(gold(X,Y)).

+cell(X,Y,gold) : not committed(gold(X,Y))
<- +gold(X,Y);

.broadcast(tell,gold(X,Y)).

+gold(X1,Y1)[source(A)] : A \== self & free & pos(X2,Y2)
<- jia.dist(X1,Y1,X2,Y2,Dist);

.send(leader,tell,bidFor(gold(X1,Y1),Dist)).
+gold(X1,Y1)[source(A)] : A \== self

<- .send(leader,tell,bidFor(gold(X1,Y1),1000)).

+allocatedTo(Gold,Me)[source(leader)]
: .myName(Me) & free // I am still free

<- -free; !handle(Gold).

Fig. 10.Relevant Plans for When Gold is Perceived or Allocated.

+!handle(gold(X,Y)) : true
<- .dropIntention(explore(_,_));

!pos(X,Y); !ensure(pick);
.broadcast(tell,picked(gold(X,Y)));
?depot(_,DX,DY);
!pos(DX,DY); !ensure(drop);
-gold(X,Y); !choose_gold.

-!handle(Gold) : true <- -Gold; !choose_gold.

+!choose_gold : not gold(_,_) <- +free.
+!choose_gold : gold(_,_)

<- .findall(gold(X,Y),gold(X,Y),LG);
!calcGoldDistance(LG,LD);
// LD is a list of terms d(Distance,gold(X,Y))
!min(LD,d(Distance,NewGold));
!handle(NewGold).

+!pos(X,Y) : pos(X,Y) <- true.
+!pos(X,Y) : not pos(X,Y) & pos(AgX,AgY)

<- jia.getDirection(AgX, AgY, X, Y, D);
D; !pos(X,Y).

Fig. 11.Plans to Handle a Piece of Gold.



6 Conclusion

The AgentSpeak code for the team of gold miners, in our opinion, is a quite elegant
solution, being declarative, goal-based (based on the BDI architecture), but also neatly
allowing for agents to have long term goals but also to react to changes in the environ-
ment. TheJason interpreter provided good support for high-level (speech-act based)
communication, transparent integration with the contest server, and for use of existing
Java code (e.g., for the A* algorithm). Although not a “purely” declarative, logic-based
approach, the combination of both declarative and legacy code was quite efficient yet
without compromising the declarative level (the agent’s practical reasoning which is the
specific level for which AgentSpeak is an appropriate language).

On the other hand, using a new programming paradigm [1] is never easy, and we
also faced difficulties withJason being a new platform that had some features that
had never been thoroughly tested yet. The development of aJason team was good
not only in the result of the competition but also for the experience with multi-agent
programming and the improvement of theJason platform. The scenarios where our
team did not do so well were the ones with highest uncertainty; we still need more
work and experience taking this type of scenario into consideration. In future versions
of this team, we plan to avoid the use of centralised negotiation (which has the leader
as a single point of failure) and to useMoise+ [5] to create an organisation with the
specification of the roles in the system. In our original plan, there was yet another role
which was that of the “courier” which, in case the depot happens to be in a position too
far from the some of the quadrant, would help carry to the depot pieces of gold from
agents that are in the more distant quadrants. We also plan to experiment with DCOP
algorithms for optimal gold allocation.

References

1. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors.Multi-Agent Pro-
gramming: Languages, Platforms and Applications. Springer, 2005.

2. R. H. Bordini, J. F. Ḧubner, et al. Jason, manual version 0.8, Mar 2006.
http://jason.sourceforge.net/ .

3. R. H. Bordini, J. F. Ḧubner, and R. Vieira.Jasonand the golden fleece of agent-oriented
programming. In Bordini et al. [1], chapter 1, pages 3–37.

4. R. H. Bordini andÁ. F. Moreira. Proving BDI properties of agent-oriented programming
languages: The asymmetry thesis principles in AgentSpeak(L).Annals of Mathematics and
Artificial Intelligence, 42(1–3):197–226, Sept. 2004.

5. J. F. Ḧubner, J. S. Sichman, and O. Boissier. Using the Moise+ for a cooperative framework
of MAS reorganisation. InProc. of 17th SBIA, LNAI 3171, pages 506–515. Springer, 2004.

6. L. Padgham and M. Winikoff.Developing Intelligent Agent Systems: A Practical Guide. John
Wiley and Sons, 2004.

7. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. InProc.
of MAAMAW’96, LNAI 1038, pages 42–55. Springer 1996.

8. M. Wooldridge.Reasoning about Rational Agents. The MIT Press, Cambridge, MA, 2000.


