Magnetická rezonance (2)

J. Kybic, J. Hornak¹, M. Bock, J. Hozman

2008-2013

¹http://www.cis.rit.edu/htbooks/mri/

NMR spektroskopie

Excitační sekvence Chemický posun NMR spektroskopie

Principy zobrazování

Kódování polohy Zpětná projekce Výběr řezu

Fourierovské MRI

Prostorové kódování Matematický popis Rekonstrukce Rozlišení

• Magnetizace rotuje okolo $z \rightarrow { m indukovan}{ m y}$ proud

• Magnetizace rotuje okolo $z \rightarrow { m indukovan}{ m y}$ proud

• Magnetizace rotuje okolo $z \rightarrow$ indukovaný proud

• Magnetizace rotuje okolo $z \rightarrow { m indukovan}{ m y}$ proud

• Magnetizace rotuje okolo $z \rightarrow { m indukovan}{ m y}$ proud

- Magnetizace rotuje okolo $z \longrightarrow$ indukovaný proud
- Proud má sinusový průběh

- Magnetizace rotuje okolo $z \longrightarrow$ indukovaný proud
- Proud má sinusový průběh
- Amplituda exponenciálně klesá (T^{*}₂)

Free induction decay

Fyzikální základy - pokračování

FID (pokračování)

 V realném vzorku je mnoho spinových systémů, jejichž frekvence jsou odlišné od frekvence B, (carrier frequency) Protože jsme efektivné excitovali všechny tyto spiny, dostaneme kombinaci signálů a různé frekvenci Free Induction Decay (FD);

· Po zpracování Fourierovou transformací dostaneme:

NMR spektroskopie Excitační sekvence

Chemický posun NMR spektroskopie

Principy zobrazování

Kódování polohy Zpětná projekce Výběr řezu

Fourierovské MRI

Prostorové kódování Matematický popis Rekonstrukce Rozlišení

NMR sekvence

Časová posloupnost

- excitačních pulsů
- změn magnetického pole
- intervalů snímání signálu

sloužící pro získání dat/obrazu.

- 90° impuls překlopí **M** do roviny *xy*
- Magnetizace **M** začne rotovat okolo *z* (precese)

- 90° impuls překlopí **M** do roviny *xy*
- Magnetizace **M** začne rotovat okolo z (precese)

- 90° impuls překlopí **M** do roviny *xy*
- Magnetizace **M** začne rotovat okolo z (precese)

- 90° impuls překlopí **M** do roviny *xy*
- Magnetizace **M** začne rotovat okolo z (precese)

- 90° impuls překlopí **M** do roviny *xy*
- Magnetizace **M** začne rotovat okolo z (precese)

- 90° impuls překlopí **M** do roviny *xy*
- Magnetizace **M** začne rotovat okolo z (precese)
- Amplituda **M** bude exponenciálně klesat (FID)

- 90° impuls překlopí **M** do roviny *xy*
- Magnetizace **M** začne rotovat okolo z (precese)
- Amplituda **M** bude exponenciálně klesat (FID)

- 90° impuls překlopí **M** do roviny *xy*
- Magnetizace **M** začne rotovat okolo z (precese)
- Amplituda **M** bude exponenciálně klesat (FID)

- 90° impuls překlopí **M** do roviny *xy*
- Magnetizace **M** začne rotovat okolo z (precese)
- Amplituda **M** bude exponenciálně klesat (FID)

- 90° impuls překlopí **M** do roviny *xy*
- Magnetizace **M** začne rotovat okolo z (precese)
- Amplituda **M** bude exponenciálně klesat (FID)

- 90° impuls překlopí **M** do roviny *xy*
- Magnetizace **M** začne rotovat okolo z (precese)
- Amplituda **M** bude exponenciálně klesat (FID)
- Časový diagram

- 90° impuls překlopí **M** do roviny *xy*
- Magnetizace M začne rotovat okolo z (precese)
- Amplituda **M** bude exponenciálně klesat (FID)
- Časový diagram

Sekvenci opakujeme s periodou T_R (repetition time).

90° FID sekvence (2)

Intenzita signálu naměřená po vyslání pulzu

$$S \propto arrho ig(1 - \mathrm{e}^{-rac{T_R}{T_1}}ig)$$

závisí na relaxaci v ose z, která je dána časem T_R od předchozího sklopení vektoru magnetizace do roviny xy konstantou (T_1)

- S intenzita signálu
- *ρ* hustota spinů
- T_R perioda opakování ($T_R > T_2$)

- 90° impuls
- Spiny se začnou rozfázovávat

- 90° impuls
- Spiny se začnou rozfázovávat

- 90° impuls
- Spiny se začnou rozfázovávat

Spin-echo sekvence

- 90° impuls
- Spiny se začnou rozfázovávat

- 180° impuls překlopení okolo x'
- Dojde k resynchronizaci (fáze vůči f změní znaménko, pomaleji rotující spiny teď budou napřed a naopak)
- Vzniká signál zvaný echo

- 180° impuls překlopení okolo x'
- Dojde k resynchronizaci (fáze vůči f změní znaménko, pomaleji rotující spiny teď budou napřed a naopak)
- Vzniká signál zvaný echo

- 180° impuls překlopení okolo x'
- Dojde k resynchronizaci (fáze vůči f změní znaménko, pomaleji rotující spiny teď budou napřed a naopak)
- Vzniká signál zvaný echo

- 180° impuls překlopení okolo x'
- Dojde k resynchronizaci (fáze vůči f změní znaménko, pomaleji rotující spiny teď budou napřed a naopak)
- Vzniká signál zvaný echo

- 180° impuls překlopení okolo x'
- Dojde k resynchronizaci (fáze vůči f změní znaménko, pomaleji rotující spiny teď budou napřed a naopak)
- Vzniká signál zvaný echo

- 180° impuls překlopení okolo x'
- Dojde k resynchronizaci (fáze vůči f změní znaménko, pomaleji rotující spiny teď budou napřed a naopak)
- Vzniká signál zvaný echo

- 180° impuls překlopení okolo x'
- Dojde k resynchronizaci (fáze vůči f změní znaménko, pomaleji rotující spiny teď budou napřed a naopak)
- Vzniká signál zvaný echo

- 180° impuls překlopení okolo x'
- Dojde k resynchronizaci (fáze vůči f změní znaménko, pomaleji rotující spiny teď budou napřed a naopak)
- Vzniká signál zvaný echo
- Časový diagram

Intenzita signálu

$$S \propto arrho ig(1-{
m e}^{-rac{T_R}{T_1}}ig){
m e}^{-rac{T_E}{T_2}}$$

- S intenzita signálu
- *ρ* hustota spinů
- T_R perioda opakování
- T_E čas mezi 90° pulsem a čtením
- T₁ konstanta relaxace spin-mřížka
- T_2 konstanta relaxace spin-spin

volbou T_R a T_E určujeme vliv T_1 a T_2 na výslednou intenzitu

Spin-echo sekvence — kompenzace T_2^+

připomenutí: celková ztráta synchronizace spinů popsaná konstantou T_2^* má dvě příčiny, spin-spin relaxaci (T_2) a nehomogenitu pole (T_2^+)

$$rac{1}{T_2^*} = rac{1}{T_2} + rac{1}{T_2^+}$$

resynchronizace echo pulzem koriguje pouze ztrátu způsobenou nehomogenitou pole (T_2^+ -relaxace) a umožňuje měřit čistou T_2

- homogenní NMR vzorek $ightarrow T_2^+ \gg T_2
 ightarrow T_2^* \sim T_2$
- tkáně zobrazované MRI $ightarrow T_2^+ < T_2
 ightarrow T_2^* < T_2$

- 180° impuls \rightarrow magnetizace -z
- Než dojde k návratu, 90° impuls \rightarrow precese v xy

- 180° impuls \rightarrow magnetizace -z
- Než dojde k návratu, 90° impuls \rightarrow precese v xy

- 180° impuls \rightarrow magnetizace -z
- Než dojde k návratu, 90° impuls \rightarrow precese v xy

- 180° impuls \rightarrow magnetizace -z
- Než dojde k návratu, 90° impuls \rightarrow precese v xy

- 180° impuls \rightarrow magnetizace -z
- Než dojde k návratu, 90° impuls \rightarrow precese v xy

- 180° impuls \rightarrow magnetizace -z
- Než dojde k návratu, 90° impuls \rightarrow precese v xy

- 180° impuls \rightarrow magnetizace -z
- Než dojde k návratu, 90° impuls \rightarrow precese v xy
- Časový diagram

Intenzita signálu pro jedno opakování naměřená po 90° pulsu

$$S\propto arrhoig(1-2\mathrm{e}^{-rac{ au_l}{ au_1}}ig)$$

naměřením intenzity pro různé T_1 získáme T_1

Intenzita signálu pro mnohonásobné opakování

$$S \propto arrho ig(1-2\mathrm{e}^{-rac{T_I}{T_1}}+\mathrm{e}^{-rac{T_R}{T_1}}ig)$$

- S intenzita signálu
- ρ hustota spinů
- T_R perioda opakování
- T_{I} čas mezi oběma pulsy

Měření magnetizace

 V závislosti na mix získáme signál s měnicí se intenzitou, který závisí na relaxačním času T₁.

Inversion recovery (pokračování)

 Kdyż vyneseme závislost intenzity signálu na směšovacím čase t_{min}, dostaneme exponenciální závislost.

 Velmi robustní metoda – získaná hodnota T, závisí velmi málo na přesné kalibraci pulzů (jen její statistická přesnost). Případně je vhodné nahradit faktor 2 ve vzorci proměnným parametrem.

Měřit raději T, než T2 !!!!

NMR spektroskopie

Excitační sekvence Chemický posun NMR spektroskopie

Principy zobrazování

Kódování polohy Zpětná projekce Výběr řezu

Fourierovské MRI

Prostorové kódování Matematický popis Rekonstrukce Rozlišení

Atom v magnetickém poli

- Atom v magnetickém poli B
- Elektrony obíhají okolo osy magnetického pole
- Tento pohyb vytváří magnetické pole oslabuje externí pole B
- Efektivní magnetické pole v místě jádra je zeslabené

$$B=B_0(1-s)$$

faktor $0 < s \ll 1$

Chemický posun (Chemical shift)

- snížení intenzity magnetického pole vlivem chemických vazeb
- Snížení rezonanční frekvence
- Rezonanční frekvence se liší podle vazby atomu v molekule
- Rozdíl vyjadřujeme jako [ppm] (parts per million):

$$d = \frac{n - n_{\rm ref}}{n_{\rm ref}} 10^6$$

- Rozdíl závisí na B₀
- Pro srovnání výsledků při různých B₀ používáme standard tetramethylsilane (TMS)
- V lidském těle rozdíl mezif vodíků ve vodě a v tuku je $\sim 3.5\cdot 10^{-6}$

Excitační sekvence Chemický posun NMR spektroskopie

NMR spektroskopie

- Magnet Většinou supravodivý. Pro speciální účely se ještě používají elektromagnety nebo permanentní magnety.
- Zdroj RF záření (frekvenční generátor) Generuje střídavý proud (_{eo,}), který indukuje RF pole B₁.
- Detektor Detekuje odezvu souboru měřených jader. Odečítá nosnou frekvenci w_o (převod systému do rotující soustavy souřadnic).
- · Zapisovač XY plotter, osciloskop, počitač ...

NMR spektroskopie

NMR spektroskopie

 Jedná se o jakýsi separátní NMR spektrometr, který pracuje nejčastěji se signálem deuteria a podle velikosti změny B_o a tedy polohy signálu ²H koriguje hlavní pole B_a.

Homogenizace magnetického pole v prostoru

 Nehomogenita B, vzniká vlivem nedokonalé konstrukce magnetu, okolních feromagnetických předmětů, nehomogenity vzorku...

 Odstraňuje se malými změnami B_o pomocí tzv. korekčních cívek. Tento proces se nazývá shimování.

 Korekční civky jsou umístěny okolo hlavní civky v různých směrech a lze jimi definovaně modifikovat hlavní pole.

Detekce NMR signálu

Detekce NMR signálu

 Signál z přijímací cívky je tzv. analogový, to znamená v určitých mezich nabývá libovolných hodnot. Pokud jej převádíme do počítače, je nutné jej převést na signál v digitální podobě.

 Podivejme se proto na vztah šiřky spektra a rychlosti, kterou musime data snimat, t. j. tzv. vzorkovací rychlosti (sampling rate).

 Nyquistova teorie říká, že je nutné vzorkovat minimálně dvojnásobkem rychlosti, která odpovídá signálu s nejvyšší frekvencí. Jinými slovy šířka spektra SW v Hz je rovna polovině rychlosti vzorkování SR.

Detekce NMR signálu

Kvadraturni detekce

 Dochází k překládání šumu z prázdné části excitované oblasti. Důsledkem toho je nutnost použítí většího počtu průchodů, abychom dosáhli stejné kvality spektra, tj. stejného poměru signál/šum.

 Alternativou je umistit nosnou frekvenci přesně doprostřed spektra a použít tzv. kvadraturní detekci pro rozlišení kladného a záporného znaménka.

Kvadraturni detekce

 Základem jsou dva přijímače, jejichž fáze je posunutá o 90°. Ve skutečnosti je použita pouze jedna přijímaci cívka a její signál je rozdělen na dvě části.

 Zatímco odezva přijímače s fází 0 je pro oba signály shodná (cos), přijímač s fázi 90° detekuje signál s opačnou polaritou (sin a –sin).
NMR spektroskopie

Excitační sekvence Chemický posun NMR spektroskopie

Principy zobrazování

Kódování polohy Zpětná projekce Výběr řezu

Fourierovské MRI

Prostorové kódování Matematický popis Rekonstrukce Rozlišení

Zobrazování — motivace

- NMR spektroskopie integrální informace z celého objemu
- MRI (magnetic resonance imaging) informace o prostorovém rozložení parametrů

NMR spektroskopie

Excitační sekvence Chemický posun NMR spektroskopie

Principy zobrazování Kódování polohy

Zpětná projekce Výběr řezu

Fourierovské MRI

Prostorové kódování Matematický popis Rekonstrukce Rozlišení

Princip prostorového rozlišení

 Předpokládejme, že máme v NMR spektru jediný druh 1H.
Pokud se vzorek bude nacházet ve dvou různých magnetických polích, ve spektru budou 2 signály.

Většina biologických tkání obsahuje téměř všechen vodík vázaný v molekulách H₂O.

Gradient magnetického pole

$$f = \gamma B$$

- Nechť intenzita magnetického pole B je funkcí polohy
- \rightarrow *f* spinů bude funkcí polohy

$$B_z = B_0 + xG_x + yG_y + zG_z$$

Isocentrum magnetu

Definujeme souřadnou soustavu magnetu tak, aby v bodě (0,0,0) bylo pole $B_z = B_0$

Frekvenční kódování polohy

Magnetické pole: $B_z = B_0 + xG_x$

Frekvence: $f = \gamma (B_0 + xG_x)$

NMR spektroskopie

Excitační sekvence Chemický posun NMR spektroskopie

Principy zobrazování Kódování polohy Zpětná projekce Výběr řezu

Fourierovské MRI

Prostorové kódování Matematický popis Rekonstrukce Rozlišení

- Jako zpětná projekce pro CT
- Historicky první forma NMR zobrazování

První MR obraz (Lauterbur P. C., 1973)

- <u>V praktickém zobrazovacím experimentu potřebujeme</u> provést 4 kroky:
- · lokalizace spinů z oblasti, o niž se zajímáme.
- · excitace vybraných spinů.
- zakódování prostorové informace do signálu.
- · detekce signálu a rekonstrukce prostorové informace.

• Objekt je vložen do magnetického pole

- Objekt je vložen do magnetického pole
- Gradient ve směru y, sejmeme spektrum

- Objekt je vložen do magnetického pole
- Gradient ve směru y, sejmeme spektrum
- Zopakujeme pro další úhly

- Objekt je vložen do magnetického pole
- Gradient ve směru y, sejmeme spektrum
- Zopakujeme pro další úhly

- Objekt je vložen do magnetického pole
- Gradient ve směru y, sejmeme spektrum
- Zopakujeme pro další úhly

- Objekt je vložen do magnetického pole
- Gradient ve směru y, sejmeme spektrum
- Zopakujeme pro další úhly

- Objekt je vložen do magnetického pole
- Gradient ve směru y, sejmeme spektrum
- Zopakujeme pro další úhly
- Zpětná projekce

- Objekt je vložen do magnetického pole
- Gradient ve směru y, sejmeme spektrum
- Zopakujeme pro další úhly
- Zpětná projekce

- Objekt je vložen do magnetického pole
- Gradient ve směru y, sejmeme spektrum
- Zopakujeme pro další úhly
- Zpětná projekce

- Objekt je vložen do magnetického pole
- Gradient ve směru y, sejmeme spektrum
- Zopakujeme pro další úhly
- Zpětná projekce

- Objekt je vložen do magnetického pole
- Gradient ve směru y, sejmeme spektrum
- Zopakujeme pro další úhly
- Zpětná projekce
- nebo lépe Radonova transformace

- Objekt je vložen do magnetického pole
- Gradient ve směru y, sejmeme spektrum
- Zopakujeme pro další úhly
- Zpětná projekce
- nebo lépe Radonova transformace

Obrázky z knihy: Rinck P.A. ed.: Magnetic Resonance in Medicine: The Basic Textbook of the European Magnetic Resonance Forum, Blackwell Scientific Publications, Oxford 1993.

· Tento koncept je podobný CT tomografii.

Orientace gradientu

Gradientu ve směru φ dosáhneme lineární kombinací

$$G_x = G_f \sin \varphi$$
$$G_y = G_f \cos \varphi$$

kde G_f je požadovaná velikost gradientu.

Zpětná projekce pro MRI – časový diagram Sekvence založená na 90° FID sekvenci RF Gx Gy Gz Signal

NMR spektroskopie

Excitační sekvence Chemický posun NMR spektroskopie

Principy zobrazování

Kódování polohy Zpětná projekce Výběr řezu

Fourierovské MRI

Prostorové kódování Matematický popis Rekonstrukce Rozlišení

Výběr řezu (Slice selection)

- Gradient Gz během excitačního RF pulsu s frekvencí f
- Jen spiny s odpovídající rezonanční frekvencí jsou excitovány

$$\gamma(B_0+zG_z)=f$$

Výběr řezu (Slice selection)

- Gradient Gz během excitačního RF pulsu s frekvencí f
- Jen spiny s odpovídající rezonanční frekvencí jsou excitovány

$$\gamma(B_0+zG_z)=f$$

- Tloušťka vrstvy se nastavuje silou gradientu (nebo selektivitou pulzu).
- Typické hodnoty: G = 4 mT.m⁻¹
- Selektivita pulzu 2 kHz
- Tloušťka vrstvy 12 mm
- Repetiční čas TR doba mezi dvěma excitacemi téže oblasti: délka sekvence + relaxační perioda d₁
- pro urychlení je během d₁ možné excitovat jinou vrstvu.

- Pravoúhlý 90° impuls $rect(t) sin(2\pi ft)$
- ... ve frekvenční oblasti je to sinc

- Pravoúhlý 90° impuls $rect(t) sin(2\pi ft)$
- ... ve frekvenční oblasti je to sinc
- ightarrow profil excitovaného řezu není pravoúhlý

- Pravoúhlý 90° impuls $rect(t) sin(2\pi ft)$
- ... ve frekvenční oblasti je to sinc
- \rightarrow profil excitovaného řezu není pravoúhlý

- Pravoúhlý 90° impuls $rect(t) sin(2\pi ft)$
- ... ve frekvenční oblasti je to sinc
- \rightarrow profil excitovaného řezu není pravoúhlý

- Pravoúhlý 90° impuls $rect(t) sin(2\pi ft)$
- ... ve frekvenční oblasti je to sinc
- ightarrow profil excitovaného řezu není pravoúhlý

Tvar RF impulsu (2)

- 90° tvarovaný jako sinc $\frac{t-t_0}{\tau} \sin(2\pi ft)$
- ... ve frekvenční oblasti je to obdélník

Tvar RF impulsu (2)

- 90° tvarovaný jako sinc $\frac{t-t_0}{\tau} \sin(2\pi ft)$
- ... ve frekvenční oblasti je to obdélník
- ightarrow profil excitovaného řezu je pravoúhlý

Tvar RF impulsu (2)

- 90° tvarovaný jako sinc $\frac{t-t_0}{\tau} \sin(2\pi ft)$
- ... ve frekvenční oblasti je to obdélník
- ightarrow profil excitovaného řezu je pravoúhlý

Tvar RF impulsu (2)

- 90° tvarovaný jako sinc $\frac{t-t_0}{\tau} \sin(2\pi ft)$
- ... ve frekvenční oblasti je to obdélník
- ightarrow profil excitovaného řezu je pravoúhlý

Tvar RF impulsu (3)

- Čím kratší impuls (v časové oblasti)
- \rightarrow tím širší bude ve frekvenční oblasti
- ullet ightarrow tím širší řez excitujeme
- ...a naopak

Šířka řezu:

$$d = \frac{2\Delta f_{\mathsf{RF}}}{\gamma G_{\mathsf{slice}}}$$

d je šířka řezu f_{RF} je šířka pásma RF impulsu

Zpětná projekce pro MRI — časový diagram (2)

- Apodizace pulsu (windowing)
- Výběr řezu
- Frekvenční kódování (frequency encoding)

NMR spektroskopie

Excitační sekvence Chemický posun NMR spektroskopie

Principy zobrazování

Kódování polohy Zpětná projekce Výběr řezu

Fourierovské MRI

Prostorové kódování

Matematický popis Rekonstrukce Rozlišení

Kódovací gradienty

Vždy je to gradient pole B_z

Co už jsme viděli:

- Gradient výběru řezu (slice selection gradient)
- Gradient frekvenčního kódování (frequency encoding gradient)

Kódovací gradienty

Vždy je to gradient pole B_z

Co už jsme viděli:

- Gradient výběru řezu (slice selection gradient)
- Gradient frekvenčního kódování (frequency encoding gradient)

Nový typ

• Tři spiny v konstantním **B** rotují se stejnou f

• Tři spiny v konstantním **B** rotují se stejnou f

• Tři spiny v konstantním **B** rotují se stejnou f

- Tři spiny v konstantním **B** rotují se stejnou f
- Gradient $G_{arphi} o$ rozdílná f

- Tři spiny v konstantním **B** rotují se stejnou f
- Gradient $G_{arphi} o$ rozdílná f

- Tři spiny v konstantním **B** rotují se stejnou f
- Gradient $G_{arphi} o$ rozdílná f

- Tři spiny v konstantním B rotují se stejnou f
- Gradient $G_{\varphi} \rightarrow \operatorname{rozd}(\operatorname{Ind} f)$
- Vypnutí $G_{\!\scriptscriptstyle arsigma} \ o$ stejná f ale rozdílná fáze

- Tři spiny v konstantním B rotují se stejnou f
- Gradient $G_{arphi} o$ rozdílná f
- Vypnutí $G_{\omega} \rightarrow$ stejná f ale rozdílná fáze

- Tři spiny v konstantním B rotují se stejnou f
- Gradient $G_{\varphi} \rightarrow \operatorname{rozd}(\operatorname{Ind} f$
- Vypnutí $G_{\omega} \rightarrow$ stejná f ale rozdílná fáze

- Tři spiny v konstantním **B** rotují se stejnou f
- Gradient $G_{arphi} o$ rozdílná f
- Vypnutí ${\it G}_{arphi} ~
 ightarrow$ stejná f ale rozdílná fáze
- \rightarrow z fáze spinu zjistíme jeho pozici

• RF impuls

• Gradient výběru řezu

Gradient fázového kódování (před snímáním)

• Gradient frekvenčního kódování (během snímání)

• Snímání signálu

- Gradient výběru řezu
- Gradient fázového kódování (před snímáním)
- Gradient frekvenčního kódování (během snímání)
- Snímání signálu

- Diagram zachycuje jednu excitaci
- Pro nasnímání jednoho 2D řezu potřebujeme nejčastěji 128 ~ 512 excitací
- Interval mezi excitacemi T_R (repetition time)
- Intenzita gradientu fázového kódování ${\it G}_{\phi}$ je různá (\pm)

- Diagram zachycuje jednu excitaci
- Pro nasnímání jednoho 2D řezu potřebujeme nejčastěji 128 \sim 512 excitací
- Interval mezi excitacemi T_R (repetition time)
- Intenzita gradientu fázového kódování ${\it G}_{\phi}$ je různá (\pm)

- Diagram zachycuje jednu excitaci
- Pro nasnímání jednoho 2D řezu potřebujeme nejčastěji 128 \sim 512 excitací
- Interval mezi excitacemi T_R (repetition time)
- Intenzita gradientu fázového kódování ${\it G}_{\phi}$ je různá (\pm)

- Diagram zachycuje jednu excitaci
- Pro nasnímání jednoho 2D řezu potřebujeme nejčastěji 128 \sim 512 excitací
- Interval mezi excitacemi T_R (repetition time)
- Intenzita gradientu fázového kódování ${\it G}_{\phi}$ je různá (\pm)

Poznámka: Orientace roviny řezu

- Orientace řezu může být libovolná xy,yz,xz, nebo i šikmá
- Všechny gradienty mění složku Bz
- Gradient frekvenčního kódování v rovině řezu
- Gradient fázového kódování v rovině řezu
- Gradient výběru řezu kolmý na rovinu řezu

Poznámka: Orientace roviny řezu

- Orientace řezu může být libovolná xy,yz,xz, nebo i šikmá
- Všechny gradienty mění složku Bz
- Gradient frekvenčního kódování v rovině řezu
- Gradient fázového kódování v rovině řezu
- Gradient výběru řezu kolmý na rovinu řezu
- Pro jednoduchost výkladu stále předpokládáme řez xy.

• Řez je excitován

- Řez je excitován
- Po aplikaci fázového a frekvenčního gradientu je
 - fáze funkcí x
 - frekvence funkcí y

- Řez je excitován
- Po aplikaci fázového a frekvenčního gradientu je
 - fáze funkcí x
 - frekvence funkcí y

- Řez je excitován
- Po aplikaci fázového a frekvenčního gradientu je
 - fáze funkcí x
 - frekvence funkcí y

- Řez je excitován
- Po aplikaci fázového a frekvenčního gradientu je
 - fáze funkcí x
 - frekvence funkcí y

- Řez je excitován
- Po aplikaci fázového a frekvenčního gradientu je
 - fáze funkcí x
 - frekvence funkcí y

- Řez je excitován
- Po aplikaci fázového a frekvenčního gradientu je
 - fáze funkcí x
 - frekvence funkcí y

Makroskopický pohled

- Řez je excitován
- Po aplikaci fázového a frekvenčního gradientu je
 - fáze funkcí x
 - frekvence funkcí y

NMR spektroskopie

Excitační sekvence Chemický posun NMR spektroskopie

Principy zobrazování

Kódování polohy Zpětná projekce Výběr řezu

Fourierovské MRI

Prostorové kódování Matematický popis

Rekonstruk Rozlišení

Signál jednoho spinového paketu

Přijímaný (komplexní) signál a jeho fáze:

$$s(t) \propto e^{-j\phi(t)}$$

 $\phi(t) = 2\pi ft$

po dosazeni $f = \gamma B$:

$$\phi(t) = 2\pi\gamma Bt$$

Časově proměnné magnetické pole

Přijímaný (komplexní) signál:

 $s(t) \propto {
m e}^{-j\phi(t)}$

pro stacionární pole *B*:

$$\phi(t) = 2\pi\gamma Bt$$

pro časově proměnné pole B(t):

$$\phi(t) = 2\pi\gamma \int B(t)\,\mathrm{d}t$$

Účinky gradientu fázového kódování

$$\phi(t) = 2\pi\gamma \int B(t) \,\mathrm{d}t$$
 $\phi(t) = 2\pi\gamma \int B_0 + G_\phi(t) y \,\mathrm{d}t$

fázový posun vlivem gradientu:

$$\Delta\phi=2\pi\gamma y\int G_{\phi}(t)\,\mathrm{d}t$$

 \rightarrow nezáleží na průběhu, jen na integrálu.

Pro obdélníkový průběh G_{ϕ} o trvání τ_{ϕ} :

$$\Delta \phi = 2\pi \gamma y G_{\phi} \tau_{\phi}$$

Účinky gradientu fázového kódování Na tvaru impulzu $G_{\phi}(t)$ nezáleží, jen na integrálu.

Pro zjednodušení budeme dále předpokládat pravoúhlý impuls

Fázový a frekvenční gradient

Signál po aplikaci fázového gradientu :

$$egin{aligned} & s(t) \propto \mathrm{e}^{-2\pi j \gamma \int B_0 + G_\phi(t) y \, \mathrm{d}t} \ & s(t) \propto \mathrm{e}^{-2\pi j \gamma (B_0 t + G_\phi au_\phi y)} \end{aligned}$$

Signál po aplikaci fázového a frekvenčního gradientu :

$$s(t) \propto {
m e}^{-2\pi j \gamma (B_0 t + G_\phi au_\phi y + G_f tx)}$$

Kvadraturní demodulace

Signál

$$s(t) \propto {
m e}^{-2\pi j \gamma (B_0 t + G_\phi au_\phi y + G_f tx)}$$

Kvadraturní demodulace s frekvencí $f_0 = \gamma B_0$ je jako snímání v rotujícím systému souřadnic:

$$s(t) \propto {
m e}^{-2\pi j \gamma (G_\phi au_\phi y + G_f tx)}$$

k-prostor

Demodulovaný signál

$$s(t) \propto {
m e}^{-2\pi j \gamma (G_\phi au_\phi y + G_f tx)}$$

Substituce

$$egin{aligned} k_{\mathrm{x}} &= \gamma \, \mathcal{G}_{\mathrm{f}} \, t \qquad k_{\mathrm{y}} &= \gamma \, \mathcal{G}_{\phi} au_{\phi} \ s(t) \propto \mathrm{e}^{-2\pi j (k_{\mathrm{x}} \mathrm{x} + k_{\mathrm{y}} \mathrm{y})} \end{aligned}$$

k-prostor, signál z řezu

Demodulovaný signál z jednoho bodu:

$$s(t) \propto \mathrm{e}^{-2\pi j (k_x x + k_y y)}$$

Signál z celého řezu:

$$s(t) \propto \int_{(x,y)\in ilde{\mathsf{F}}}
ho(x,y) \mathrm{e}^{-2\pi j (k_x x + k_y y)} \, \mathrm{d}x \mathrm{d}y$$

kde $\rho(x, y)$ je hustota spinů.

ightarrow Přijímaný signál je 2D Fourierovou transformací ho

Snímání k-prostoru

Snímání *k*-prostoru po řádcích. Každý řádek jedna excitace

Jiné trajektorie jsou možné a používají se. Trajektorie je určená časovým průběhem gradientů.

Zobrazovaný prostor (Field of view, FOV)

• Signál v k prostoru vzorkujeme s krokem

$$\Delta k_x = \gamma G_f t_{samp}$$
 $\Delta k_y = \gamma \Delta G_\phi \tau_\phi$

• Vzorkovací věta \rightarrow zobrazovaný objekt musí být menší než

$$FOV_{x} = \frac{1}{\Delta k_{x}} = \frac{1}{\gamma G_{f} t_{samp}}$$
$$FOV_{y} = \frac{1}{\Delta k_{y}} = \frac{1}{\gamma \Delta G_{\phi} \tau_{\phi}}$$

(kvadraturní detekce \rightarrow komplexní vzorkování \rightarrow faktor 2)

je-li objekt větší, dojde k aliasingu (přeložení obrazu)

NMR spektroskopie

Excitační sekvence Chemický posun NMR spektroskopie

Principy zobrazování

Kódování polohy Zpětná projekce Výběr řezu

Fourierovské MRI

Prostorové kódování Matematický popis

Rekonstrukce

Rozlišení

• Jediný aktivní pixel

• Signál z 10 excitací s různým G_{ϕ}

• FT signálu dle x

• Pohled s jemnějším vzorkováním

• FT dle y

• originál

• Aktivní pixel posunutý ve směru G_f

• Signál z 10 excitací s různým G_{ϕ}

• FT signálu dle x

• Pohled s jemnějším vzorkováním

• FT dle y

• originál

• Aktivní pixel posunutý ve směru G_{ϕ}

• Signál z 10 excitací s různým G_{ϕ}

• FT signálu dle x

• Pohled s jemnějším vzorkováním

• FT dle y

• originál

• Aktivní pixel posunutý ve směru G_{ϕ}

• Signál z 10 excitací s různým G_{ϕ}

• FT signálu dle x

• Pohled s jemnějším vzorkováním

• FT dle y

Rekonstrukce řezu (4)

• originál

Rekonstrukce, zobrazení

• Zobrazíme amplitudu 2D FT signálu jako intenzitní obraz

Jak se z toho dostane obraz ?????

· Realistický obrázek.

NMR spektroskopie

Excitační sekvence Chemický posun NMR spektroskopie

Principy zobrazování

Kódování polohy Zpětná projekce Výběr řezu

Fourierovské MRI

Prostorové kódování Matematický popis Rekonstrukce Rozlišení

Prostorové rozlišení

Low Resolution Image High Resolution Image

rozlišení = vzdálenost rozlišitelných objektů

Prostorové rozlišení (2)

- Při odvozování s(t) jsme zanedbali relaxaci
- Ve skutečnosti s(t) exponenciálně odeznívá jako $e^{-rac{t}{T_2^*}}$
- Obraz $\mathscr{F}^{-1}\{s\}$ konvolucí ρ a prostorové odezvy spinu
- Prostorové rozlišení je přibližně $w = (\pi G \gamma T_2^*)^{-1}$

Prostorové rozlišení (3)

Příklad, dlouhá T_2

Prostorové rozlišení (3)

Příklad, krátká T₂

