Microscopic Techniques



Outline

1. Optical microscopy

Conventional light microscopy, Fluorescence microscopy,
confocal /multiphoton microscopy and Stimulated emission depletion

microscopy

2. Scanning probe microscopy

Scanning tunneling microscopy (STM), Atomic force
microscopy (AFM), Near-field scanning optical microscopy

and others

3. Electron microscopy

Scanning electron microscopy (SEM), Transmission electron microscopy
(TEM), Scanning transmission electron microscopy (STEM), Focus ion

beam microscopy (FIB)



1. Optical Microscopy



Conventional Optical Microscopy

This is an optical instrument containing one or more lenses that produce an
enlarged image of an object placed in the focal plane of the lens

Resolution limit: submicron particles approaches the wavelength of visible
light (400 to 700nm)

1. Transmission: beam of light passes through the sample
e.g. Polarizing or petrographic microscope

Samples are usually fine powder or thin slices (transparent)
2. Reflection: beam of light reflected off the sample surface

e.g. Metallurgical or reflected light microscope

Surface of materials, especially opaque ones



Polarizing Microscope
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Polarized light microscopy is utilized to distinguish between singly refracting
(optically isotropic) and doubly refracting (optically anisotropic) media



Principle of Polarizing Microscope

Polarizer Analyser
T sample

Unpolarized
light source

—» eyes

Crossed polars: 1. No sample - black
2. Isotropic sample -> black

3. Anisotropic sample > color

The interaction of plane-polarized light with a doubly refracting (birefringent)
specimen to produce two individual wave components (ordinary ray and
extraordinary ray) that are polarized in mutually perpendicular planes.

eDifferent velocities

eDifferent propagation direction



Reflected Light Microscope
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Partially reflecting plane glass mirror
that deflects light traveling from the
horizontal illuminator by 90 degrees
into the vertical optical train of
imaging components in the microscope.

Objective Lens

* A matching well-corrected condenser
properly aligned

* An image-forming objective projecting
the image-carrying rays toward the
eyepiece



Dark Field vs. Bright Field

Bright field:

* “normal” wide-field
illumination method

* bright background

e low contrast

bright field darkfield

Dark field:

e an opaque disc is placed underneath
the condenser lens

» scattered light
e dark background

* high contrast (structural details)

BF
objective lens
stage
D F condenser

lens

http:/ /www.geog.ucl.ac.uk/~jhope/lab/micro23.stm



Phase Contrast Microscope
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* bright-field

» destructive interference patterns in
the viewed image (amplitude and
phase difference)

e details in the image appear
darker/brighter against a
background

 colorless and transparent
specimen, such as living cells and
microorganisms
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Applications of Optical Microscopy

1. Crystal morphology and symmetry

* Crystal fragments (characteristic shape)
» Classify isotropic and anisotropic substances

* Check possible symmetry (parallel extinction)

2. Phase identification, purity and homogeneity

e Standard optical data (refractive indices and
optical axes) for comparison

* Phase analysis (impurities with separated
crystalline /amorphous phase)

e Single vs. twinned crystal




Applications of Optical Microscopy

3. Crystal defects — grain boundaries and dislocations

» Defects always present, even in single crystal

e Chemical etching may preferentially occur at
stress sites

4. Refractive index determination
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Above L & Above

Focus Light Focus .

_"aﬁﬁge | —Rays— "_eﬁﬁnée Becke line method:
Inside . \ ; Outside

Specimen—/* | Bils . —Specimen

L]
e

Below Belaw e Sample (n,;) is immersed in a liquid (n,)

Becke k|1 Becke . .

oLine . L] Line e Out of focus, light is seen to emerge from
side Inside

region of higher n




Fluorescence Microscope
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Fluorescence is the property of some atoms and molecules to absorb light at a
particular wavelength and to subsequently emit light of longer wavelength



Fluorescence Microscope

Especially useful in the examination
of biological samples:

 Identify the particular molecules in
complex structure (e.g. cells)

» Locate the spatial distribution of
particular molecules in the structure

* Biochemical dynamics
* High signal to noise ratio

e Both reflected and fluorescence
light

Drawback:

* Chemical labeling




Laser Scanning Confocal Microscope
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Laser Scanning Confocal Microscope

Important technique for live cell and tissue imaging, the studies of biochemical
dynamics!

Advantages:
* Optical sectioning ability
e 3D reconstruction

* Excellent resolution (0.1-0.2 um)

e Specific wavelengths of light used
e Very high sensitivity

Optical sectioning

Drawbacks: * Expensive
* Complex to operate
e Chemical labeling

* High intensity laser light



Advantages of Confocal Microscope

Conventional
microscope

Confocal
microscope

Confocal microscope image



Multiphoton Microscope

Dalivery it Acquisitio b Er
Imaging, FFR _____ Dissipafion
XY and ather sit -&
’7 Scanner A TR technigue
Pockels Cell ——

Fockels Cell
Driver

ce

[~
3
-
x
15‘:
g 2f
2
0
Ee]
[*%]

" Virtual State

Ti:S Laser

External
Detectors

UW- or Visible-
Excitation Photon
Stokes-Shifted

Visible Flucrasce:
(Longer '-'.I'n:wolem;iih
ls]

Than Excitation Ph
{Sharter Wavelangth
Than Excitation Phatons)

Visible Flucrascence

Pump Laser

Red-1R
||| Exeitation Phaton

One-Photon Excitation Twa-Photon Excitation

| c
H Condenser PMT

Advantages:

* Fluorescence only occurs at the focal point

* Able to image deeper into tissue sample

Drawbacks:

* Even more expensive (pulsed laser)

* Localized heating (photobleaching)



Limitation in Optical Microscopy

Resolution limited by wavelength of light (diffraction)
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Numerical Aperture
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NA = nsin® n: refractive index
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Stimulated Emission Depletion (STED) Microscopy

Prof. Stefan W. Hell (Max Planck Institute for Biophysical Chemistry)
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* The excitation spot is ~200 nm by focusing with a lens

* A STED beam (doughnut-shaped and centered over the excitation spot) is used
to quench the fluorescent markers before they fluoresce

* Very smaller effective fluorescence spot (~60 nm)



Resolution Enhancement using STED

www.physorg.com



2. Scanning Probe Microscopy



Scanning Tunneling Microscopy (STM)

1986 Nobel Prize in Physics: Drs. Gerd Binning and Heinrich Rohrer (IBM Zurich)
Invention of the STM

Quantum tunneling:
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In quantum mechanics, an electron has a non-zero probability of tunneling
through a potential barrier




Principle of STM

1. When a conducting tip is very close 2. The tunneling current (~pA-
to a conducting/semiconducting nA) is a strong function of the
surface and a bias voltage is applied, gap between the tip and the
there will be a tunneling current surface
flowing between the tip and the
surface <
£
]
| £
, S
() 2
[
| =
S
= R
’ 1 2 3435
7 Distance (S) in A




Principle of STM

3. If the tunneling current is 4. The surface morphology in
monitored and maintained atomic resolution can be
constant by adjusting the gap, the obtained by x-y scan

elevation of the surface can be
traced




Very Sharp Tungsten Tip

Drop-off Method

Graphiie 501] m
electrode holder

()

e Electrochemical etching method

U

— e Average radius curvature < 50nm

Jeong et al., review of scientific instruments 77, 103706 (20006)



Piezoelectric Scanner
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STM Imaging

HOPG surface (atomically flat)

Scanning Tunneling
Microscope (STM)

Atomic resolution (0.1nm)



Scanning Tunneling Spectroscopy (STS)

By ramping the bias voltage, or distance of the tip from surface, the current
signal can reveal the local electronic character of the substrate.

Can determine:

e Conductivity
 Bandgap
 Work function

Spectroscopy (STS) * Density of State
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di/dV [GQ ]
dl/dV

Prof. Qystein Fischer’s research group

http:/ /dpmc.unige.ch/gr_fischer/



Manipulation of Atoms
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Atomic Force Microscopy (AFM)

Tip-Surface Force

o

Principle:

repulse regime
(contact mode)
far away from surfe
(out of feedback’

__________ e

attractive regime
(non-contact mode)

Tip-Surface Distance

1. The molecular force is a strong
function of the separation
between two object

Mirror

Photodiode
detector

2. The force can be monitored by the
deflection of a cantilever (100-
200mm long) which is in turn
amplified by the deflection of a laser
beam

Laser

3. Constant force is maintained
by adjusting the z-position of
the surface. A x-y scan will
produce the morphology



Operation Modes of AFM

[. Contact mode

flexible
cantilever

tip Q

» Tip touching surface

* Interaction force is
repulsive (108 -10°N)

) s
CRe 28 "aN

II. Tapping mode

flexible vibrating cantilever

—

surface

=

L

horizontal sample motion

* >10nm above surface, no contact
e Cantilever set into vibration

* Detect changes in the resonant
frequency of cantilever

* Feedback control of height



Applications of AFM

1. Imaging

Red blood cell

www3.imperial.ac.uk/

* Resolution ~nm

» Topology

» Able to image non-conducting materials e.g. polymer and biological
samples



Applications of AFM

2. Force mapping
Force-distance curve
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e To detect the variation of softness,
elasticity and stickiness on sample
surface

e Useful for composite materials
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Applications of AFM

3. Dip-Pen Nanolithography 4. Nanofabrication
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Prof. Chad A. Mirkin research group

» Pattern molecules in high resolution

* Functionalize surfaces with patterns of two or more components



Summary of STM and AFM Functions

STM AFM
Instrumentation Tip, scanner, controller Cantilever, scanner, optics,
controller
Conducting samples Yes Yes
Non-conducting samples No Yes
Resolution in vacuum <0.1 A ~ A
In dry air <1A ~ nm
In liquid ~ nm ~ 10 nm

Operation in liquid

Tip coating

No coating needed

Modes of operation

Constant height

Constant height

Constant current

Constant force

Contact mode

Tapping mode

Applications

Imaging

Imaging

Tunneling spectroscopy

Force mapping

Manipulation of
atoms/molecules

nanolithography




Near-field Scanning Optical Microscope (NSOM)

Principle of NSOM: Can be simply modeled by the electromagnetic interaction
of two very closely positioned nano-objects, which

represent a probe and sample

(a) (b)
Sharpened Optical Fiber Metallized Probe
llumination Light

!

Metal Coating [llumination Light
ropagating Light

Evanescent Light Optical Near Field Scattering Light)
\ Evanescent Light

Propagating Ligh

Aperture-type Scattering-type
* Nanoscale light spot same as e Sharpened homogeneous metal tip, with
aperture size enhanced electric field
* Aperture-sample distance is » Spatial resolution defined by apex
regulated at < 10 nm diameter

Review paper: Lewis A., Nature Biotech. 21, 1378 (2003)



Single Molecule Fluorescence Imaging
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e Spatial resolution ~10-30nm

e Single molecule, quantum dot

2 um
Images conrtesy of D1. Dan Higgins _“‘——-—-—._______4

and Prof. Dx. Paul Barbara
Department of Chemistry, 7 of Minnesota

0 pm



Near-field Optical Spectroscopy

NanoRaman Spectroscopy
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 Enhanced electric field at the tip

* Resolution as high as 15 nm



3. Electron Microscopy

Transmission Electron Microscopy, by David B. Williams and C. Barry
Carter (Plenum Press, New York, 1996)

ISBN: 0-306-45247-2



Resolution and Abbe’s Equation

Numerical aperture

Abbe’s e quation: Resolution /

R=0.612A /|n sin a

!

Wavelength of
imaging radiation

Wavelength of Electron: A=h(2 mewi/ 2

accelerating voltage
Planck’s constant ;nass  charge

Electron microscopy:

* Very short wavelength (depends on accelerating voltage, ~0.04 A
at 100 kV )

e Can be deflected by magnetic field (focusing)



Fundamentals of Electron Microscopy

Scanning electron For studying the texture, topography and surface
microscopy (SEM): feature, resolution ~ 10 nm

Transmission electron

microscopy (TEM): Lattice imaging, resolution < 0.2 nm
_____ oEM
e OFTICAL MICROSCOPY __
————tEM____ NAKED EYE __
1 1 1| | | ] ] 1
1A 10A 100A 1000A 1um 1Oum 100 um 1 mm
Ot um 0.1 mm

RESOLUTION ( log scale )



Interaction of Electron with Samples
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Configuration of SEM
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Secondary electrons

] Lower accelerating Higher accelerating

* Low energy @ 1 ®) 1

e Topographic contrast (surface texture
and roughness)

e Resolve surface structure down to
10nm

» Excitation region depends on the
accelerating voltage

N
E\&:‘\\\‘\\\ﬁ




Backscattered electrons

* High energy
* Both Compositional and Topographic information
* Atomic number contrast

» Lateral resolution is worse than secondary electron image

Secondary electron image Backscattered electron image

Ni/Au nanorods

y’ 3um  EHT=5.00KkV Signal A=InLens Date:13
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Characteristic X-ray

e Chemical information of sample

* Energy Disperse X-ray Spectroscopy (EDS)

Primary beam
electron

X-ray

— s -‘
. K L M N geattered
beam

electron

Detection area is limited by the resolution of SEM (accelerating voltage of electron)



E-beam Lithography

Spin coated PMMA Exposed to e-beam
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Resolution ~50
to 100nm




Transmitted electrons

In the TEM, we utilize the electrons that go through a very thin specimen (<200nm)
e Scattering electrons (strong interaction between electrons and matter)

* Image, diffraction pattern, x-ray spectrum and electron energy loss spectrum

Incident beam

— Incident
electron beam

with uniform
— intensity

Thin specimen

Thin specimen

Scattered
; S 1
_Image catlered_ e e,ctrons Sletiaing
with

varying intensity

do

Unscattered
electrons

Non-uniform distribution of
electrons contains all the
.structure.ll & compositional 2dsind = ni
information

When d >> A, sinf become very small!



[llumination System

TEM operation using a parallel beam
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[llumination System

Function of C2 condenser aperture Convergent beam for (S)TEM
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Alignment and Adjustment

1. Gun alignment: Electron should follow a straight line through the lens and apertures
until it hit the specimen

2. Alighment of C2 aperture 3. Lens aberration

* Control the minimum possible probe
size

Distorted image
of beam (R
off axis SN ai s

e Aberration corrected TEM

4. Astigmatism

Viewing screen




Imaging vs. Diffraction Modes
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Bright Field vs. Dark Field

Bright field
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To select the electrons to form the image by inserting an objective
aperture into the back focal plane of the objective lens



High Resolution Imaging and Diffraction

e Atomic resolution < 0.16 nm e Crystalline vs. amorphous
materials

e Lattice spacing, atomic structure

* Interface (different phases, crystal * Single vs. polycrystalline materials

structure) * Crystal structure and orientation

e Combined with computer simulation * Crystal phases, facet



Scanning TEM

Electron
source
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Diaphragm

<—— Specimen

Lower polepiece
of objective lens

Back focal plane
of objective lens

Direct beam in  Diffracted beam
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Specimen

STEM signal generated at any point

opieme on the specimen is detected,
« Beam has to scan parallel to the amplified and a proportional signal is
displayed at an equivalent point on

optic axis at all times
CRT



Scanning TEM

Scanning
beam

Figure 9.18A

Au islands
on C film

N

DF

BF

. Unpublished result, Qian, Li and Lieber
Dark-field STEM image:

e Annular detector, surrounds the BF detector
* Image contrast is sensitive to the atomic number of imaged materials

* Possible to detect impurities (dopant) using high resolution STEM



Energy Disperse X-ray Spectroscopy (EDS)

Line scan Elemental mapping

Position (nm)

Highly resolved spatial distribution of elements in specimen



Electron Energy Loss Spectroscopy (EELS)

Magnetic prism spectrometer

Entrance
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* Absorption spectroscopy

e Inelastic scattered electrons
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 Complementary to EDS
* High energy resolution

* Atomic composition, chemical
bonding, valence and conduction band
electronic properties and surface
properties

 Ability to fingerprint different forms
of the same element



Summary

Microscopy:  Optical microscopy,
Scanning probe microscopy
Electron microscopy

Functions:

* Imaging (fluorescence, lattice-resolved and topography)
e Chemical analysis

e Structure determination

* Manipulation of atoms and molecules

* Nanolithography, e-beam lithography

* Spectroscopy: surface, electrical and optical properties



