Computed tomography (CT)
 Part 1

J. Kybic ${ }^{1}$

2005-2022

[^0]
Introduction

Hardware

Mathematics and Physics of CT

Radon transform

Reconstruction methods

CT scanner

CT history

1917 mathematical theory (Radon)
1956 tomography reconstruction in radioastronomy (Bracewell)
1963 CT reconstruction theory (Cormack)
1971 CT principles demonstrated (Hounsfield)
1972 first working CT for humans (EMI, London, Hounsfield)
1973 PET
1974 Ultrasound tomography
1975 whole body scanner (Hounsfield)
1982 SPECT
1985 Helical CT
1998 Multislice CT, 0.5 s/frame

Johann Radon

1887-1956

DTR Ram.

- born in Děčín (Czech Republic), lived in Göttingen, Brno, Hamburg, Greifswald, Erlangen, Breslau, Innsbruck and Vienna
- mathematician; Radon transform (1917) — reconstruction of a function from its integrals on certain manifolds (projections)

Godfrey Hounsfield

- physicist and engineer (did not attend university)
- worked on radar and on first transistor computers
- created the first CT X-ray scanner
- Nobel prize in Medicine (1979, together with Cormack)

Allan MacLeod Cormack

- born in South Africa, studied in Cambridge, lived in the US
- particle physicist
- theoretical foundation of CT scanning (independently of Hounsfield)
- Nobel prize in Medicine (1979, together with Hounsfield)

CT principles

Head section

1. Sequence of parallel sections (tomos)

CT principles

1. Sequence of parallel sections (tomos)
2. Sequence of projections from multiple directions

CT principles

1. Sequence of parallel sections (tomos)
2. Sequence of projections from multiple directions
3. Reconstruction of the object

CT example scans

Head and kidneys

CT example scans

CT angiography, pelvis

Clinical applications

- Lungs

Clinical applications

- Lungs

Clinical applications

- Lungs
- Head

Clinical applications

- Lungs
- Head

Clinical applications

- Lungs
- Head

Clinical applications

- Lungs
- Head
- Abdomen

Tomography modalities

- X-rays - CT
- gamma rays - PET, SPECT
- light - optical tomography
- RF waves - MRI
- DC - electric impedance tomography
- ultrasound - ultrasound tomography

Introduction

Hardware

Mathematics and Physics of CT

Radon transform

Reconstruction methods

First scanner

Scanner geometry - generation 1

 1971

- Single source and single detector
- Finely collimated narrow beam
- Alternating translation and rotation
- Very slow (4 min / section), low resolution
- Low cost, good scatter rejection, easy calibration

Scanner geometry - generation 2

 1974

- Narrow fan beam $\left(\sim 10^{\circ}\right)$, multiple detectors (N)
- N projections acquired in parallel
- Increased rotation increment
- Increased speed (20 s / section)

Scanner geometry - generation 3

 1975

Fan-beam detector

- Wide fan beam ($30^{\circ} \sim 60^{\circ}$) covering complete field of view
- 100s of detectors
- Only rotation, no translation
- Pulsed or continuous acquisition
- Fast (5 s / section)

Scanner geometry — generation 4

~ 1977

- Rotating source, stationary detector rings
- More expensive
- Avoids rotating contacts
- Fast

Scanner geometry - generation 5

Electron beam CT (EBCT, 1983)

- No moving parts
- Directional X-ray source
- Extremely fast (beating heart)
- Lower signal to noise ratio and spatial resolution

CT X-ray sources

Similar but bigger than radiography X -ray sources
Typical properties of an X-ray tube used for CT compared to those of a conventional radiographic tube.

	Conventional X-Ray Tube	CT X-Ray Tube
Typical exposure parameters	$70 \mathrm{kV}, 40 \mathrm{mAs}$	$120 \mathrm{kV}, 10,000 \mathrm{mAs}$
Energy requirements	$2,800 \mathrm{~J}$	$1,200,000 \mathrm{~J}$
Anode diameter	100 mm	160 mm
Anode heat storage capacity	$450,000 \mathrm{~J}$	$3,200,000 \mathrm{~J}$
Maximum anode heat dissipation	$120,000 \mathrm{~J} / \mathrm{min}$	$540,000 \mathrm{~J} / \mathrm{min}$
Maximum continuous power rating	450 W	4000 W
Cooling method	Fan	Circulating oil

- Challenges: Power leads, cooling, vibration, ...

CT X-ray sources

Similar but bigger than radiography X -ray sources

- Challenges: Power leads, cooling, vibration, ...

Filtering and collimation (1)

Filtering and collimation (2)

- Beam shaping (attenuate lateral part of the beam)

- Prepatient and detector collimation - beam(slice) width

CT detector types

- Xenon ionization chamber detectors
- Faster but less sensitive
- Scintillation detectors

- More sensitive but slower (afterglow, scintillator dependent)

CT detector types

Properties of detectors in common use in CT scanning.

	Xenon Detectors	Crystal Scintillator	Ceramic Scintillator
Detector	High pressure (8-25atm) Xe ionisation chamber	$\mathrm{CaWO}_{4}+$ silicon photodiode	$\mathrm{Gd}_{2} \mathrm{O}_{2} \mathrm{~S}+$ silicon photodiode
Detector array	Single chamber, divided into elements by septa	Discrete detectors	Discrete detectors
Signal	Proportional to ionisation intensity	Proportional to light intensity	Proportional to light intensity
Detector efficiency	40\%-70\%	95\%-100\%	90\%-100\%
Geometric efficiency (in fan direction)	>90\%	>80\%	>80\%
Afterglow limitations	No	Yes	No
Detector matching	No	Yes	Yes

Scintillation detector construction

Scintillation detector construction

Multiple (e.g. 32, 64) slices \longrightarrow acceleration

Scintillation detector construction

Multiple (e.g. 32, 64) slices \longrightarrow acceleration

Electric processing - corrections

- Offset correction (zero signal at rest)
- Normalization correction (x-ray source intensity fluctuation)
- Sensitivity correction (inhomogeneous detectors and amplifiers)
- Geometric correction
- Beam hardening correction
- Cosine correction (for fan beam geometry)

Introduction

Hardware

Mathematics and Physics of CT

Radon transform

Reconstruction methods

Attenuation along a line

Homogeneous material (BeerLambert's law)

$$
I=I_{0} \mathrm{e}^{-\mu \Delta \xi}
$$

Piecewise homogeneous material

$$
I=I_{0} \prod_{i=1}^{n} \mathrm{e}^{-\mu \Delta \xi}=I_{0} \mathrm{e}^{-\Delta \xi \sum_{i=1}^{n} \mu_{i}}
$$

Continuously varying $\mu(x), x=i \Delta \xi$

$$
\begin{aligned}
I & =I_{0} \mathrm{e}^{-\lim _{\Delta \xi \rightarrow 0} \Delta \xi \sum_{i=1}^{n} \mu_{i}} \\
& =I_{0} \mathrm{e}^{-\int_{0}^{D} \mu(x) \mathrm{d} x}
\end{aligned}
$$

Line integral for line L

$$
=I_{0} \mathrm{e}^{-\int_{L} \mu(\mathrm{x}) \mathrm{d} \mathbf{x}}
$$

Hounsfield units

HU, CT number

$$
C T=1000 \frac{\mu-\mu_{\mathrm{water}}}{\mu_{\mathrm{water}}}
$$

- Values between - 1000 (air) and approximately 1000 (bones)
- Densities in HU are reproducible between devices
- To differentiate soft tissue types, tumor types etc.
- Accurate calibration is needed

Hounsfield units

HU, CT number

Beam hardening

- Attenuation decreases with E

Beam hardening

- Attenuation decreases with E
$-\longrightarrow$ low E rays are attenuated more
$\rightarrow \longrightarrow$ mean E increases

Beam hardening

- Attenuation decreases with E
- \longrightarrow low E rays are attenuated more
- \longrightarrow mean E increases
- Measured attenuation $p=\log \left(I_{0} / I\right)<$ theoretically linear $\mu \Delta \xi$.

Beam hardening

- Attenuation decreases with E
$-\longrightarrow$ low E rays are attenuated more
$\rightarrow \longrightarrow$ mean E increases
- Measured attenuation $p=\log \left(I_{0} / I\right)<$ theoretically linear $\mu \Delta \xi$.
- Beam hardening correction

Linear forward problem

For N straight lines L_{j}, measure the attenuation

$$
p_{j}=\log \frac{\nu_{0}^{j}}{\mid j}=\int_{L_{j}} \mu(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

Assumptions

- Infinitely thin rays
- Straight lines - no scattering, reflection or refraction
- Monochromatic radiation - no beam hardening
(Assumptions can be relaxed but more complicated dependency.)

Linear forward problem

For N straight lines L_{j}, measure the attenuation

$$
p_{j}=\log \frac{\nu_{0}^{j}}{\mid j}=\int_{L_{j}} \mu(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

Assumptions

- Infinitely thin rays
- Straight lines - no scattering, reflection or refraction
- Monochromatic radiation - no beam hardening
(Assumptions can be relaxed but more complicated dependency.) Discretization

$$
\mu(\mathbf{x})=\sum_{i=1}^{M} c_{i} \varphi_{i}(\mathbf{x})
$$

\longrightarrow linear system of equations $L \mathbf{c}=\mathbf{p}$

Integration lines in polar coordinates

Describe integration lines by angle φ and offset r :

$$
\begin{aligned}
L(\varphi, r) & =\left\{(x, y) \in \mathbb{R}^{2} ; x \cos \varphi+y \sin \varphi=r\right\} \\
& =\{(r \cos \varphi-t \sin \varphi, r \sin \varphi+t \cos \varphi) ; t \in \mathbb{R}\}
\end{aligned}
$$

Integration lines in polar coordinates

Describe integration lines by angle φ and offset r :

$$
\begin{aligned}
L(\varphi, r) & =\left\{(x, y) \in \mathbb{R}^{2} ; x \cos \varphi+y \sin \varphi=r\right\} \\
& =\{(r \cos \varphi-t \sin \varphi, r \sin \varphi+t \cos \varphi) ; t \in \mathbb{R}\}
\end{aligned}
$$

Implicit line equation, $\mathbf{x}=(x, y)$

$$
[\cos \varphi, \sin \varphi] \mathbf{x}=0
$$

Parametric line equation

$$
\underbrace{\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right]}_{\text {rotation matrix } R(\varphi)}\left[\begin{array}{l}
r \\
t
\end{array}\right]=\mathbf{x}
$$

Introduction

Hardware

Mathematics and Physics of CT

Radon transform

Reconstruction methods

Rotating system of coordinates

$$
\begin{aligned}
{\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right] } & =R(\varphi)\left[\begin{array}{l}
\xi^{\prime} \\
\eta^{\prime}
\end{array}\right] \\
{\left[\begin{array}{l}
\xi^{\prime} \\
\eta^{\prime}
\end{array}\right] } & =R^{T}(\varphi)\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right] \\
R^{T}(\varphi) & =R(-\varphi)
\end{aligned}
$$

Projection

$$
\begin{aligned}
P_{\varphi}\left(\xi^{\prime}\right) & =\int_{L\left(\varphi, \eta^{\prime}\right)} \mu(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& =\int o\left(\xi, \eta^{\prime}\right) \mathrm{d} \eta^{\prime}
\end{aligned}
$$

Measurements
Change of variables

$$
P_{\varphi}\left(\xi^{\prime}\right)=\log \frac{I_{0}}{I\left(\varphi, \xi^{\prime}\right)}
$$

$$
\xi^{\prime}=r, \quad \eta^{\prime}=t, \quad x=\xi, \quad y=\eta
$$

Radon transform

Projection in polar coordinates:

$$
\begin{aligned}
& P_{\varphi}\left(\xi^{\prime}\right)=\mathscr{R}[o(\xi, \eta)] \\
& P_{\varphi}\left(\xi^{\prime}\right)=\int_{L} o(\xi, \eta) \mathrm{d} /
\end{aligned}
$$

along the line L defined by φ a ξ^{\prime} :

$$
\xi^{\prime}=\xi \cos \varphi+\eta \sin \varphi
$$

Equivalently

$$
P_{\varphi}\left(\xi^{\prime}\right)=\int o\left(\xi^{\prime} \cos \varphi-\eta^{\prime} \sin \varphi, \xi^{\prime} \sin \varphi+\eta^{\prime} \cos \varphi\right) \mathrm{d} \eta^{\prime}
$$

Radon transform properties

- Linearity:

$$
\mathscr{R}[\alpha f+\beta g]=\alpha \mathscr{R}[f]+\beta \mathscr{R}[f]
$$

- Periodicity:

$$
P_{\varphi}\left(\xi^{\prime}\right)=P_{\varphi \pm 2 \pi}\left(\xi^{\prime}\right)=P_{\varphi \pm \pi}\left(-\xi^{\prime}\right)
$$

... and many others

Radon transform of a point

$$
\begin{aligned}
& o(\xi, \eta)=\delta\left(\xi-\xi_{0}, \eta-\eta_{0}\right) \\
& P_{\varphi}\left(\xi^{\prime}\right)=\mathscr{R}[o(\xi, \eta)]=\delta\left(\xi_{0} \cos \varphi+\eta_{0} \sin \varphi-\xi^{\prime}\right)
\end{aligned}
$$

\ldots is a sinusoid with amplitude $\sqrt{\xi_{0}^{2}+\eta_{0}^{2}}$ and phase $\angle\left(\xi_{0}, \eta_{0}\right)$.

$$
\xi^{\prime}=\xi_{0} \cos \varphi+\eta_{0} \sin \varphi
$$

Radon transform result $P_{\varphi}\left(\xi^{\prime}\right)$ is called a sinogram

Radon transform

(sinogram)
of a disc

Radon transform

(sinogram)
of a square (inverted)

Radon transform

(sinogram)
of an object with inserts (inverted)

Object

Sinogram

[^0]: ${ }^{1}$ Using images from J. Hozman, J. Fessler, S. Webb, M. Slaney, A. Kak and others

