Computed tomography (CT) Part 1

J. Kybic¹

2005-2022

 $^{^1 \}text{Using}$ images from J. Hozman, J. Fessler, S. Webb, M. Slaney, A. Kak and others

Introduction

Hardware

Mathematics and Physics of CT

Radon transform

Reconstruction methods

CT scanner

CT history

- **1917** mathematical theory (Radon)
- 1956 tomography reconstruction in radioastronomy (Bracewell)
- **1963** CT reconstruction theory (Cormack)
- **1971** CT principles demonstrated (Hounsfield)
- 1972 first working CT for humans (EMI, London, Hounsfield)
- 1973 PET
- **1974** Ultrasound tomography
- **1975** whole body scanner (Hounsfield)
- 1982 SPECT
- 1985 Helical CT
- 1998 Multislice CT, 0.5 s/frame

Johann Radon 1887–1956

D.J. Reisen

- born in Děčín (Czech Republic), lived in Göttingen, Brno, Hamburg, Greifswald, Erlangen, Breslau, Innsbruck and Vienna
- mathematician; Radon transform (1917) reconstruction of a function from its integrals on certain manifolds (projections)

Godfrey Hounsfield

- physicist and engineer (did not attend university)
- worked on radar and on first transistor computers
- created the first CT X-ray scanner
- Nobel prize in Medicine (1979, together with Cormack)

Allan MacLeod Cormack

born in South Africa, studied in Cambridge, lived in the US

- particle physicist
- theoretical foundation of CT scanning (independently of Hounsfield)
- Nobel prize in Medicine (1979, together with Hounsfield)

CT principles

1. Sequence of parallel sections (tomos)

CT principles

- 1. Sequence of parallel sections (tomos)
- 2. Sequence of projections from multiple directions

CT principles

- 1. Sequence of parallel sections (tomos)
- 2. Sequence of projections from multiple directions
- 3. Reconstruction of the object

CT example scans

Head and kidneys

CT example scans

CT angiography, pelvis

- Lungs
- Head
- Abdomen

Tomography modalities

- X-rays CT
- gamma rays PET, SPECT
- light optical tomography
- RF waves MRI
- DC electric impedance tomography
- ultrasound ultrasound tomography

Introduction

Hardware

Mathematics and Physics of CT

Radon transform

Reconstruction methods

First scanner

Scanner geometry — generation 1

- Single source and single detector
- Finely collimated narrow beam
- Alternating translation and rotation
- Very slow (4 min / section), low resolution
- Low cost, good scatter rejection, easy calibration

Scanner geometry — generation 2 ¹⁹⁷⁴

- ▶ Narrow fan beam ($\sim 10^{\circ}$), multiple detectors (N)
- N projections acquired in parallel
- Increased rotation increment
- Increased speed (20 s / section)

Scanner geometry — generation 3 1975

- \blacktriangleright Wide fan beam (30° \sim 60°) covering complete field of view
- 100s of detectors
- Only rotation, no translation
- Pulsed or continuous acquisition
- Fast (5 s / section)

Scanner geometry — generation 4 \sim 1977

- Rotating source, stationary detector rings
- More expensive
- Avoids rotating contacts

Fast

Scanner geometry — generation 5 Electron beam CT (EBCT, 1983)

- No moving parts
- Directional X-ray source
- Extremely fast (beating heart)
- Lower signal to noise ratio and spatial resolution

CT X-ray sources

Similar but bigger than radiography X-ray sources

Typical properties of an X-ray tube used for CT compared to those of a conventional radiographic tube.

	Conventional X-Ray Tube	CT X-Ray Tube
Typical exposure parameters	70 kV, 40 mAs	120 kV, 10,000 mAs
Energy requirements	2,800 J	1,200,000 J
Anode diameter	100 mm	160 mm
Anode heat storage capacity	450,000 J	3,200,000 J
Maximum anode heat dissipation	120,000 J/min	540,000 J/min
Maximum continuous power rating	450 W	4000 W
Cooling method	Fan	Circulating oil

Challenges: Power leads, cooling, vibration, ...

CT X-ray sources

Similar but bigger than radiography X-ray sources

Challenges: Power leads, cooling, vibration, ...

Filtering and collimation (1)

Filtering and collimation (2)

Beam shaping (attenuate lateral part of the beam)

Prepatient and detector collimation — beam(slice) width

CT detector types

- Xenon ionization chamber detectors
 - Faster but less sensitive
- Scintillation detectors
 - More sensitive but slower (afterglow, scintillator dependent)

CT detector types

	Xenon Detectors	Crystal Scintillator	Ceramic Scintillator
Detector	High pressure (8–25 atm) Xe ionisation chamber	CaWO ₄ + silicon photodiode	Gd ₂ O ₂ S + silicon photodiode
Detector array	Single chamber, divided into elements by septa	Discrete detectors	Discrete detectors
Signal	Proportional to ionisation intensity	Proportional to light intensity	Proportional to light intensity
Detector efficiency	40%-70%	95%-100%	90%-100%
Geometric efficiency (in fan direction)	>90%	>80%	>80%
Afterglow limitations	No	Yes	No
Detector matching	No	Yes	Yes

Properties of detectors in common use in CT scanning.

Scintillation detector construction

Scintillation detector construction

Multiple (e.g. 32, 64) slices \longrightarrow acceleration

Scintillation detector construction

Multiple (e.g. 32, 64) slices \longrightarrow acceleration

Electric processing — corrections

- Offset correction (zero signal at rest)
- Normalization correction (x-ray source intensity fluctuation)
- Sensitivity correction (inhomogeneous detectors and amplifiers)
- Geometric correction
- Beam hardening correction
- Cosine correction (for fan beam geometry)

Introduction

Hardware

Mathematics and Physics of CT

Radon transform

Reconstruction methods

Attenuation along a line

Homogeneous material (Beer-Lambert's law)

$$I = I_0 e^{-\mu \Delta \xi}$$

Piecewise homogeneous material

$$I = I_0 \prod_{i=1}^{n} e^{-\mu\Delta\xi} = I_0 e^{-\Delta\xi \sum_{i=1}^{n} \mu_i}$$

Continuously varying $\mu(x)$, $x = i\Delta\xi$

$$I = I_0 e^{-\lim_{\Delta \xi \to 0} \Delta \xi \sum_{i=1}^n \mu_i}$$
$$= I_0 e^{-\int_0^D \mu(x) dx}$$

Line integral for line L

$$= I_0 \mathrm{e}^{-\int_L \mu(\mathbf{x}) \mathrm{d}\mathbf{x}}$$

Hounsfield units

$${\cal CT} = 1000 rac{\mu - \mu_{\sf water}}{\mu_{\sf water}}$$

- ▶ Values between -1000 (air) and approximately 1000 (bones)
- Densities in HU are reproducible between devices
- To differentiate soft tissue types, tumor types etc.
- Accurate calibration is needed

Hounsfield units

HU, CT number

X-ray Photon Energy, keV

Attenuation decreases with E

- Attenuation decreases with E
- \blacktriangleright \longrightarrow low *E* rays are attenuated more
- \blacktriangleright \longrightarrow mean *E* increases

- Attenuation decreases with E
- \blacktriangleright \longrightarrow low *E* rays are attenuated more
- $\blacktriangleright \longrightarrow$ mean E increases
- Measured attenuation $p = \log(I_0/I) <$ theoretically linear $\mu \Delta \xi$.

- Attenuation decreases with E
- \blacktriangleright \longrightarrow low *E* rays are attenuated more
- $\blacktriangleright \longrightarrow$ mean *E* increases
- Measured attenuation $p = \log(I_0/I) <$ theoretically linear $\mu\Delta\xi$.
- Beam hardening correction

Linear forward problem

For N straight lines L_j , measure the attenuation

$$p_j = \log rac{l_0^j}{l^j} = \int_{L_j} \mu(\mathbf{x}) \mathrm{d}\mathbf{x}$$

Assumptions

- Infinitely thin rays
- Straight lines no scattering, reflection or refraction
- Monochromatic radiation no beam hardening

(Assumptions can be relaxed but more complicated dependency.)

Linear forward problem

For N straight lines L_j , measure the attenuation

$$p_j = \log rac{l_0^j}{l^j} = \int_{L_j} \mu(\mathbf{x}) \mathrm{d}\mathbf{x}$$

Assumptions

- Infinitely thin rays
- Straight lines no scattering, reflection or refraction
- Monochromatic radiation no beam hardening

(Assumptions can be relaxed but more complicated dependency.) **Discretization**

$$\mu(\mathbf{x}) = \sum_{i=1}^{M} c_i \varphi_i(\mathbf{x})$$

 \longrightarrow linear system of equations $\mathsf{L} \mathbf{c} = \mathbf{p}$

Integration lines in polar coordinates

Describe integration lines by angle φ and offset r:

$$L(\varphi, r) = \{ (x, y) \in \mathbb{R}^2; \ x \cos \varphi + y \sin \varphi = r \} \\ = \{ (r \cos \varphi - t \sin \varphi, r \sin \varphi + t \cos \varphi); \ t \in \mathbb{R} \}$$

Integration lines in polar coordinates

Describe integration lines by angle φ and offset r:

$$L(\varphi, r) = \{ (x, y) \in \mathbb{R}^2; x \cos \varphi + y \sin \varphi = r \} \\ = \{ (r \cos \varphi - t \sin \varphi, r \sin \varphi + t \cos \varphi); t \in \mathbb{R} \}$$

Implicit line equation, $\mathbf{x} = (x, y)$

$$[\cos \varphi, \sin \varphi] \mathbf{x} = \mathbf{0}$$

Parametric line equation

$$\underbrace{\begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}}_{\text{rotation matrix } R(\varphi)} \begin{bmatrix} r \\ t \end{bmatrix} = \mathbf{x}$$

Introduction

Hardware

Mathematics and Physics of CT

Radon transform

Reconstruction methods

Rotating system of coordinates

$$\begin{bmatrix} \xi \\ \eta \end{bmatrix} = R(\varphi) \begin{bmatrix} \xi' \\ \eta' \end{bmatrix}$$
$$\begin{bmatrix} \xi' \\ \eta' \end{bmatrix} = R^{\mathsf{T}}(\varphi) \begin{bmatrix} \xi \\ \eta \end{bmatrix}$$
$$R^{\mathsf{T}}(\varphi) = R(-\varphi)$$

Projection

$$egin{aligned} & P_{arphi}(\xi') = \int_{\mathcal{L}(arphi,\eta')} \mu(\mathbf{x}) \mathrm{d}\mathbf{x} \ & = \int o(\xi,\eta') \mathrm{d}\eta' \end{aligned}$$

Measurements

$$P_{\varphi}(\xi') = \log rac{I_0}{I(\varphi,\xi')}$$

Change of variables

$$\xi' = r, \quad \eta' = t, \quad x = \xi, \quad y = \eta$$

Radon transform

Projection in polar coordinates:

$$P_{\varphi}(\xi') = \mathscr{R}[o(\xi,\eta)]$$
$$P_{\varphi}(\xi') = \int_{L} o(\xi,\eta) dI$$

along the line L defined by φ a $\xi':$

$$\xi' = \xi \cos \varphi + \eta \sin \varphi$$

Equivalently

$$P_{\varphi}(\xi') = \int o(\xi' \cos \varphi - \eta' \sin \varphi, \xi' \sin \varphi + \eta' \cos \varphi) \mathrm{d}\eta'$$

Radon transform properties

$$P_{arphi}(\xi') = P_{arphi \pm 2\pi}(\xi') = P_{arphi \pm \pi}(-\xi')$$

... and many others

Radon transform of a point

$$egin{aligned} & oldsymbol{o}(\xi,\eta) = \delta(\xi-\xi_0,\eta-\eta_0) \ & P_arphi(\xi') = \mathscr{R}ig[oldsymbol{o}(\xi,\eta)ig] = \deltaig(\xi_0\cosarphi+\eta_0\sinarphi-\xi') \end{aligned}$$

... is a sinusoid with amplitude $\sqrt{\xi_0^2 + \eta_0^2}$ and phase $\angle(\xi_0, \eta_0)$.

$$\xi' = \xi_0 \cos \varphi + \eta_0 \sin \varphi$$

Radon transform result $P_{\varphi}(\xi')$ is called a *sinogram*

Radon transform (sinogram)

of a disc

Radon transform

(sinogram) of a square (inverted)

36 / 58

Radon transform

(sinogram)

of an object with inserts (inverted)

Object

Sinogram