
Chapter 3

Analytical Tomographic Image

Reconstruction Methods
ch,tomo

Our models of physical phenomena are merely games we play with symbols on paper [1]
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3.1 Introduction (s,tomo,intro)
s,tomo,intro

The primary focus of this book is on statistical methods for tomographic image reconstruction using reasonably re-

alistic physical models. Nevertheless, analytical image reconstruction methods, even though based on somewhat

unrealistic simplified models, are important when computation time is so limited that an approximate solution is tol-

erable. Analytical methods are also useful for developing intuition, and for initializing iterative algorithms associated

with statistical reconstruction methods. This chapter reviews classical analytical tomographic reconstruction methods.

(Other names are Fourier reconstruction methods and direct reconstruction methods, because these methods are non-

iterative.) Entire books have been devoted to this subject [2–6], whereas this chapter highlights only a few results.

Many readers will be familiar with much of this material except perhaps for the angularly weighted backprojection

that is described in §3.3. This backprojector is introduced here to facilitate analysis of weighted least-squares (WLS)

formulations in Chapter 4.

There are several limitations of analytical reconstruction methods that impair their performance. Analytical

methods generally ignore measurement noise in the problem formulation and treat noise-related problems as an “af-

terthought” by post-filtering operations. Analytical formulations usually assume continuous measurements and pro-

vide integral-form solutions. Sampling issues are treated by discretizing these solutions “after the fact.” Analytical

methods require certain standard geometries (e.g., parallel rays and complete sampling in radial and angular coordi-

nates). Statistical methods for image reconstruction can overcome all of these limitations.

3.2 Radon transform in 2D (s,tomo,radon)
s,tomo,radon

The foundation of analytical reconstruction methods is the Radon transform, which relates a 2D function f(x, y) to

the collection of line integrals of that function. (We focus on the 2D case throughout most of this chapter.) Emission

and transmission tomography systems acquire measurements that are something like blurred line integrals, so the

line-integral model represents an idealization of such systems. Fig. 3.2.1 illustrates the geometry of the line integrals

associated with the 2D Radon transform.

3.2.1 Definition

LetL(r, ϕ) denote the line in the Euclidean plane at angle ϕ counter-clockwise from the y axis and at a signed distance

r from the origin:

L(r, ϕ) =
{
(x, y) ∈ R

2
: x cosϕ+y sinϕ = r

}
(3.2.1)

= {(r cosϕ−ℓ sinϕ, r sinϕ+ℓ cosϕ) : ℓ ∈ R} . (3.2.2)
e,tomo,ray
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Figure 3.2.1: Geometry of the line integrals associated with the Radon transform.

fig,tomo,geom

Let pϕ(r) denote the line integral through f(x, y) along the line L(r, ϕ). There are several equivalent ways to express

this line integral, each of which has its uses:

pϕ(r) =

∫

L(r,ϕ)

f(x, y) dℓ

=

∫ ∞

−∞
f(r cosϕ−ℓ sinϕ, r sinϕ+ℓ cosϕ) dℓ (3.2.3)

e,tomo,line,l

=

∫ ∞

−∞

∫ ∞

−∞
f(r′ cosϕ−ℓ sinϕ, r′ sinϕ+ℓ cosϕ) δ(r′ − r) dr′ dℓ (3.2.4)

e,tomo,radon,r’,l

=

∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(x cosϕ+y sinϕ−r) dxdy (3.2.5)

e,tomo,line,dirac

=







1

|cosϕ|

∫ ∞

−∞
f

(
r − t sinϕ

cosϕ
, t

)

dt, cosϕ 6= 0

1

|sinϕ|

∫ ∞

−∞
f

(

t,
r − t cosϕ

sinϕ

)

dt, sinϕ 6= 0,
(3.2.6)

e,tomo,line,xy

where δ(·) denotes the 1D Dirac impulse. (The last form came from [7].) The step between (3.2.4) and (3.2.5) uses

the following change of variables:
[

x
y

]

=

[
cosϕ − sinϕ
sinϕ cosϕ

] [
r′

ℓ

]

. (3.2.7)
e,tomo,radon,change

The Radon transform of f is the complete collection of line integrals1

f
Radon↔ {pϕ(r) : ϕ ∈ [0, π], r ∈ (−∞,∞)} . (3.2.8)

e,tomo,radon

The function pϕ(·) is called the projection of f at angle ϕ. As discussed in §3.4.4, we often write p = P f .

In its most idealized form, the 2D image reconstruction problem is to recover f(x, y) from its projections {pϕ(·)}.
To do this one must somehow return the data in projection space back to object space, as described in §3.4.

1Sometimes one refers to values of ϕ outside of the domain given in (3.2.8); this is possible using the “periodic extension” described in (3.2.19).

Of course a practical system has a finite maximum radius that defines its circular field of view.
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x,tomo,proj,disk Example 3.2.1 Consider the centered uniform disk object with radius r0:

f(x, y) = α rect

(
r

2r0

)

, rect(t) , 1{|t|≤1/2} =

{
1, |t| ≤ 1/2
0, otherwise.

(3.2.9)
e,rect

Using (3.2.3), the Radon transform of this object is:

pϕ(r) =

∫ ∞

−∞
f(r cosϕ−ℓ sinϕ, r sinϕ+ℓ cosϕ) dℓ

=

∫ ∞

−∞
α rect

(√

(r cosϕ−ℓ sinϕ)2 + (r sinϕ +ℓ cosϕ)2

2r0

)

dℓ

= α

∫ ∞

−∞
rect

(√
r2 + ℓ2

2r0

)

dℓ = α

∫

{ℓ : r2+ℓ2≤r2
0}

dℓ = α

∫ +
√

r2
0
−r2

−
√

r2
0
−r2

dℓ

= 2α
√

r2
0 − r2 rect

(
r

2r0

)

, (3.2.10)
e,tomo,proj,disk

which is a semi-circle function as shown in Fig. 3.2.2. These projections are independent of ϕ due to the circular

symmetry of f(x, y).

f(x, y)

p
ϕ
(r

)

r
r 0

r0

2
α
r 0

x

y

Figure 3.2.2: Projection of a centered uniform disk object, illustrated at ϕ = π/2.

fig,tomo,disk

x,tomo,proj,square Example 3.2.2 Consider the unit square object:

f(x, y) = rect(x) rect(y) =

{
1, |x| < 1/2, |y| < 1/2
0, otherwise.

In general the projections of this object are trapezoidal shaped functions (see Example 3.2.6 below), as illustrated in

Fig. 3.2.3. At angles ϕ that are multiples of π/2, the trapezoid degenerates to a rectangle, and at angles that are odd

multiples of π/4, the trapezoid degenerates to a triangle. Specifically, the projections are given by the following:

pϕ(r) = lmax(ϕ) ·







r + dmax(ϕ)

dmax(ϕ) − dbreak(ϕ)
, −dmax(ϕ) < r < −dbreak(ϕ)

1, |r| ≤ dbreak(ϕ)
dmax(ϕ)− r

dmax(ϕ) − dbreak(ϕ)
, dbreak(ϕ) < r < dmax(ϕ)

0, otherwise,

=







√
2 tri

(
r√
2/2

)

, ϕ = ±π/4,±3π/4, . . .

rect(r), ϕ = 0,±π/2,±π, . . .
1

|cosϕ sinϕ|

[

dmax(ϕ) tri
(

r
dmax(ϕ)

)

−dbreak(ϕ) tri
(

r
dbreak(ϕ)

)]

, otherwise,

(3.2.11)
e,tomo,proj,square

where

tri(x) = (1− |x|) rect
(x

2

)

(3.2.12)
e,tomo,tri
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Figure 3.2.3: The projection at angle ϕ of the unit square object.

fig,tomo,square

denotes the unit triangle function, and we define

lmax(ϕ) =
1

max(|cosϕ| , |sinϕ|)

dmax(ϕ) =
|cosϕ|+ |sinϕ|

2

dbreak(ϕ) =

∣
∣
∣ |cosϕ| − |sinϕ|

∣
∣
∣

2
.

3.2.2 Signed polar forms (s,tomo,radon,polar)
s,tomo,radon,polar

It can be useful to have a form of the Radon transform when f is represented in a polar form. Throughout this chapter,

we use a “signed polar form” f◦(r, ϕ) = f(r cosϕ, r sinϕ), in which the radial argument r can be both positive and

negative. Usually we abuse notation slightly and write f(r, ϕ) without the subscript.

For making changes of variables between Cartesian coordinates and signed polar coordinates, we define

r±(a, b) ,

{ √
a2 + b2, {b > 0} or {b = 0 & a ≥ 0}
−
√

a2 + b2, {b < 0} or {b = 0 & a < 0} (3.2.13)
e,tomo,srad

∠π(a, b) ,







tan−1
(

b
a

)
, ab > 0

0, b = 0
π/2, a = 0, b 6= 0
tan−1

(
b
a

)
+ π, ab < 0.

(3.2.14)
e,tomo,angpi

These functions obey the following natural properties:

∠π(a, b) ∈ [0, π)

∠π(b, a) =

{
0, a = 0 & b = 0
(π/2− ∠π(a, b))mod π, else

|r±(a, b)| =
√

a2 + b2

r±(αa, αb) = α r±(a, b)

∠π(αa, αb) = ∠π(a, b), α 6= 0

cos∠π(a, b) =

{
1, b = 0

a sgn(b) /
√

a2 + b2, b 6= 0

sin ∠π(a, b) =

{
0, b = 0

|b| /
√

a2 + b2, b 6= 0

r±(a, b) cos∠π(a, b) = a

r±(a, b) sin ∠π(a, b) = b. (3.2.15)
e,tomo,polar,prop
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Making a change of variables r = r±(x, y) and ϕ = ∠π(x, y) leads to the following integral relationship:
∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy =

∫ π

0

∫ ∞

−∞
f◦(r, ϕ) |r| dr dϕ . (3.2.16)

e,tomo,radon,polar,int

In particular, substituting r′ = r±(x, y) and ϕ′ = ∠π(x, y) into the Radon transform expression (3.2.5) leads to the

following Radon transform in polar coordinates:

pϕ(r) =

∫ π

0

∫ ∞

−∞
f◦(r

′, ϕ′) δ(r′ cos(ϕ− ϕ′)−r) |r′| dr′ dϕ′ (3.2.17)
e,tomo,line,polar

The properties (3.2.15) arise in several of the subsequent derivations.

3.2.3 Radon transform properties (s,tomo,radon,prop)
s,tomo,radon,prop

The following list shows a few of the many properties of the Radon transform. This list is far from exhaustive; indeed

new properties continue to be found, e.g., [8, 9]. Throughout this list, we assume f(x, y)
Radon↔ pϕ(r).

• Linearity

If g(x, y)
Radon↔ qϕ(r), then

αf + βg
Radon↔ αp + βq.

• Shift / translation

f(x− x0, y − y0)
Radon↔ pϕ(r − x0 cosϕ−y0 sinϕ) (3.2.18)

e,tomo,radon,shift

• Rotation

f(x cosϕ′ +y sinϕ′,−x sinϕ′ +y cosϕ′)
Radon↔ pϕ−ϕ′(r)

• Circular symmetry

f◦(r, ϕ) = f◦(r, 0) ∀ϕ =⇒ pϕ = p0 ∀ϕ

• Symmetry/periodicity

pϕ(r) = pϕ±π(−r) = pϕ±kπ

(
(−1)kr

)
, ∀k ∈ Z (3.2.19)

e,tomo,radon,prop,period

• Affine scaling

f(αx, βy)
Radon↔

p∠π(β cosϕ, α sinϕ)

(

r|α|β√
(β cosϕ)2+(α sinϕ)2

)

√

(β cosϕ)2 + (α sinϕ)2
, (3.2.20)

e,tomo,radon,prop,affine

for α, β 6= 0, where r± and ∠π were defined in §3.2.2.

The following two properties are special cases of the affine scaling property.

• Magnification/minification

f(αx, αy)
Radon↔ 1

|α| pϕ(αr), α 6= 0

• Flips

f(x,−y)
Radon↔ pπ−ϕ(−r)

f(−x, y)
Radon↔ pπ−ϕ(r)

• The projection integral theorem

For a scalar function h : R→ R:
∫

pϕ(r) h(r) dr =

∫ (∫

f(r cosϕ−ℓ sinϕ, r sinϕ+ℓ cosϕ) dℓ

)

h(r) dr

=

∫∫

f(x, y)h(x cosϕ+y sinϕ) dx dy, (3.2.21)
e,tomo,pit

by making the orthonormal coordinate rotation: x = r cosϕ−ℓ sinϕ, y = r sinϕ+ℓ cosϕ .
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Figure 3.2.4: Left: cross-section of 2D object containing three Dirac impulses. Right: the corresponding sinogram

consisting of three sinusoidal impulse ridges.

fig˙tomo˙sino˙points

• Volume conservation ∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy =

∫ ∞

−∞
pϕ(r) dr, ∀ϕ. (3.2.22)

e,tomo,radon,dc

This is a corollary to the projection integral theorem for h(r) = 1. The volume conservation property is one of

many consistency conditions of the Radon transform [4].

The following example serves to illustrate some of these properties.

x,tomo,proj,dirac Example 3.2.3 Consider the object f(x, y) = δ2(x − x0, y − y0), the 2D Dirac impulse centered at (x0, y0). This

generalized function can be thought of as a disk function centered at (x0, y0) of radius r0 and height 1/(πr2
0) (so that

volume is unity) in the limit as r0 → 0.

Let Cr0
(r) = 2

√

r2
0 − r2 rect

(
r

2r0

)

denote the projection of centered uniform disk with radius r0 as derived in

(3.2.10) in Example 3.2.1. Then by the shift property (3.2.18), the projections of a disk centered at (x0, y0) are:

pϕ(r) = Cr0
(r − [x0 cosϕ+y0 sinϕ]).

(See Fig. 3.2.5 below.) Thus the projections of the 2D Dirac impulse are found as follows:

pϕ(r) =
1

πr2
0

Cr0
(r − [x0 cosϕ+y0 sinϕ])→ δ(r − [x0 cosϕ+y0 sinϕ]) as r0 → 0.

In summary, for a 2D Dirac impulse object located at (x0, y0), the projection at angle ϕ is a 1D Dirac impulse located

at r = x0 cosϕ +y0 sinϕ. See Fig. 3.2.4.

3.2.4 Sinogram

Because pϕ(r) is a function of two arguments, we can display pϕ(r) as a 2D grayscale picture where usually r and ϕ
are the horizontal and vertical axes respectively. If we make such a display of the projections pϕ(r) of a Dirac impulse,

then the picture looks like a sinusoid corresponding to the function r = x0 cosϕ+y0 sinϕ. Hence this 2D function

is called a sinogram and (when sampled) represents the raw data available for image reconstruction. So the goal of

tomographic reconstruction is to estimate the object f(x, y) from a measured sinogram.

Each point (x, y) in object space contributes a unique sinusoid to the sinogram, with the “amplitude” of the sinusoid

being
√

x2 + y2, the distance of the point from the origin, and the “phase” of the sinusoid depending on ∠π(x, y).
A sinogram is the superposition of all of these sinusoids, each one weighted by the value f(x, y). Hence it seems

plausible that there could be enough information in the sinogram to recover the object f , if we can unscramble all of

those sinusoids.

x,tomo,radon,points Example 3.2.4 Fig. 3.2.4 illustrates these concepts for the object f(x, y) = δ2(x, y)+ δ2(x−1, y)+ δ2(x−1, y−1)
with corresponding projections pϕ(r) = δ(r) + δ(r − cosϕ)+ δ(r − cosϕ− sinϕ) .

Fig. 3.2.5 shows the sinogram for a disk of radius r0 = 20 centered at position (x0, y0) = (40, 0).
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Figure 3.2.5: Sinogram for a disk object of radius r0 = 20 centered at (x0, y0) = (40, 0).

fig˙tomo˙disk˙sino

3.2.5 Fourier-slice theorem

The most important corollary of the projection-integral theorem (3.2.21) is the Fourier-slice theorem, also known

as the central-slice theorem or central-section theorem or projection-slice theorem. In words, the statement of this

theorem is as follows2. If pϕ(r) denotes the Radon transform of f(x, y), then the 1D Fourier transform of pϕ(·) equals

the slice at angle ϕ through the 2D Fourier transform of f(x, y).
Let Pϕ(ν) denote the 1D Fourier transform3 of pϕ(r), i.e.,

Pϕ(ν) =

∫ ∞

−∞
pϕ(r) e−ı2πνr dr .

Let F (u, v) denote the 2D Fourier transform of f(x, y), i.e.,

F (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) e−ı2π(ux+vy) dx dy . (3.2.23)

e,ft2

Then in mathematical notation, the Fourier-slice theorem is simply:

Pϕ(ν) = F (ν cosϕ, ν sinϕ) = F◦(ν, ϕ), ∀ν ∈ R, ∀ϕ ∈ R, (3.2.24)
e,tomo,fst

where F◦(ρ, Φ) = F (ρ cosΦ, ρ sinΦ) denotes the polar form of F (u, v). (Again we will frequently recycle notation

and omit the subscript.) The proof of the Fourier-slice theorem is remarkably simple: merely set h(r) = exp(−ı2πνr)
in the projection-integral theorem (3.2.21).

It follows immediately from the Fourier-slice theorem that the Radon transform (3.2.8) describes completely any

(Fourier transformable) object f(x, y), because there is a one-to-one correspondence between the Radon transform

and the 2D Fourier transform F (u, v), and from F (u, v) we can recover f(x, y) by an inverse 2D Fourier transform.

x,tomo,slice,bessel Example 3.2.5 For the circularly symmetric Bessel object f(x, y) = f(r) = (π/2)J0(πr), from a table of Hankel

transforms F (ρ) = 1
2 δ
(
|ρ| − 1

2

)
. (So F (ρ) is an impulse-ring of radius 1/2.) Thus Pϕ(ν) = F (ν) = 1

2 δ
(
|ν| − 1

2

)
=

1
2 δ
(
ν − 1

2

)
+ 1

2 δ
(
ν + 1

2

)
, so pϕ(r) = cos(πr) . So the projections of Bessel objects are sinusoids.

x,tomo,slice,rect Example 3.2.6 The 2D the uniform rectangle object and its Fourier transform are

f(x, y) = rect
(x

a

)

rect
(y

b

)
2D FT←→ F (u, v) = a sinc(au) b sinc(bv),

2Apparently the first publication of this result was in Bracewell’s 1956 paper [10]. However, at a symposium on 2004-7-17 held at Stanford

University to celebrate the 75th birthday of Albert Macovski, Ron Bracewell stated that he believes that the theorem was “well known” to other

radio astronomers at the time.
3Being an engineer, I simply assume existence of the Fourier transforms of all functions of interest here.
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so in polar form: F◦(ρ, Φ) = a sinc(aρ cosΦ) b sinc(bρ sinΦ) . By the Fourier slice theorem, the 1D FT of its projec-

tions are given by

Pϕ(ν) = F◦(ν, ϕ) = a sinc(νa cosϕ) b sinc(νb sinϕ) . (3.2.25)
e,tomo,slice,rect,Pau

Thus, by the convolution property of the FT (27.3.3), each projection is the convolution of two rect functions:

pϕ(r) =
1

|cosϕ| rect
(

r

a cosϕ

)

∗ 1

|sinϕ| rect
(

r

b sinϕ

)

, (3.2.26)
e,tomo,slice,rect,proj

which is a trapezoid in general, as illustrated Fig. 3.2.3 for the case a = b = 1. (The “∗” above denotes 1D

convolution with respect to r.)

s,tomo,proj,disk Example 3.2.7 The 2D FT of a uniform disk object f(x, y) = rect
(

r
2r0

)

is F (ρ) = r2
0 jinc(r0ρ).

Thus Pϕ(ν) = r2
0 jinc(r0ν) = r2

0
J1(πr0ν)

2r0ν , where J1 denotes the 1st-order Bessel function of the first kind. Because

J1(2πν)/(2ν) and
√

1− t2 rect(t/2) are 1D Fourier transform pairs [11, p. 337], we see that the projections of a

uniform disk are given by pϕ(r) = 2
√

r2
0 − r2 rect

(
r

2r0

)

. This agrees with the result shown in (3.2.10) by integration.

x,tomo,slice,gauss Example 3.2.8 Consider the 2D gaussian object f(x, y) = f(r) = 1
w2 exp

(

−π
(

r
w

)2
)

, with corresponding 2D FT

F (ρ) = exp
(
−π(wρ)2

)
. By the Fourier-slice theorem: Pϕ(ν) = exp

(
−π(wν)2

)
, the inverse 1D Fourier transform

of which is pϕ(r) = 1
w exp

(

−π
(

r
w

)2
)

. (Notice the slight change in the leading constant.) Thus the projections of a

gaussian object are gaussian, which is a particularly important relationship. In fact, this property is related to the fact

that two jointly gaussian random variables have gaussian marginal distributions.

The following corollary follows directly from the Fourier-slice theorem.

c,tomo,radon,conv Corollary 3.2.9 (Convolution property.) If f
Radon↔ p and g

Radon↔ q then

f(x, y) ∗∗ g(x, y)
Radon↔ pϕ(r) ∗ qϕ(r) . (3.2.27)

e,tomo,radon,conv

In particular, it follows from Example 3.2.8 that 2D gaussian smoothing of an object is equivalent to 1D radial gaussian

smoothing of each projection4:

f(x, y) ∗∗ 1

w2
e−π(r/w)2 Radon↔ pϕ(r) ∗ 1

w
e−π(r/w)2 .

3.3 Backprojection (s,tomo,back)
s,tomo,back

The Radon transform maps a 2D object f(x, y) into a sinogram pϕ(r) consisting of line integrals through the object.

One approach to try to recover the object from pϕ(r) would be to take each sinogram value and “smear” it back into

object space along the corresponding ray, as illustrated in Fig. 3.3.1. This type of operation is called backprojection

and is fundamental to tomographic image reconstruction. Unfortunately in its simplest form this procedure does not

recover the object f(x, y), but instead yields a blurred version of the object fb(x, y). This blurred version fb(x, y) is

called a laminogram or layergram [12].

Recall from Example 3.2.3 that the projection of an impulse object centered at (x0, y0) is the “sinusoidal impulse”

along r = x0 cosϕ+y0 sinϕ . Because each object point (x0, y0) contributes its own sinusoid to the sinogram, it is

natural to “sum along the sinusoid” to attempt to find f(x0, y0). (There are analogous image formation methods in

other modalities such as ultrasound beamforming by delay and sum.)

When the sinogram of an asymmetric object is corrupted by noise, it is conceivable that different views will

have different signal to noise ratios, so it may be useful to weight the views accordingly5 while “summing along the

sinusoid.” Therefore, we analyze the following angularly-weighted backprojection operation:

fb(x, y) =

∫ π

0

w(ϕ) pϕ(x cosϕ+y sinϕ) dϕ, (3.3.1)
e,tomo,back

4Expressions of the form f(x, y) ∗∗ h(r) should be interpreted as 2D convolution in Cartesian coordinates as follows: g(x, y) = f(x, y) ∗∗
h(r) =

RR

f(x − s, y − t) h
“√

s2 + t2
”

ds dt .
5It could also be useful to weight each ray differently, but such weighting is more difficult to analyze. Most readers should probably consider

w(ϕ) = 1 on a first pass anyway.
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Figure 3.3.1: Illustration of back projection operation for a single projection view.

fig,tomo,back

where w(ϕ) denotes the user-chosen weight for angle ϕ. In the usual case where w(ϕ) = 1, this operation is the

adjoint of the Radon transform (see §3.4.4).

3.3.1 Image-domain analysis

The following theorem shows that the laminogram fb(x, y) is a severely blurred version of the original object f(x, y).

t,tomo,1/r Theorem 3.3.1 If pϕ(r) denotes the Radon transform of f(x, y) as given by (3.2.3), and fb(x, y) denotes the angularly-

weighted backprojection of pϕ(r) as given by (3.3.1), then

fb(x, y) = h(r, ϕ) ∗∗ f(x, y), where h(r, ϕ) =
w((ϕ + π/2)modπ)

|r| , (3.3.2)
e,tomo,1r

for ϕ ∈ [0, π] and r ∈ R.

Proof:

It is clear from (3.2.3) and (3.3.1) that the operation f(x, y)→ pϕ(r)→ fb(x, y) is linear. Furthermore, this operation

is shift invariant because

fb(x− c, y − d) =

∫ π

0

w(ϕ) pϕ((x− c) cosϕ+(y − d) sinϕ) dϕ

=

∫ π

0

w(ϕ) qϕ(x cosϕ+y sinϕ) dϕ,

where, using the shift property (3.2.18), the projections qϕ(r) , pϕ(r − c cosϕ−d sinϕ) denote the Radon transform

of f(x− c, y − d).
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Due to this shift-invariance, it suffices to examine the behavior of fb(x, y) at a single location, such as the center.

Using (3.2.3):

fb(0, 0) =

∫ π

0

w(ϕ′) pϕ′(0) dϕ′

=

∫ π

0

w(ϕ′)

[∫ ∞

−∞
f
(
0 cosϕ′−ℓ sinϕ′, 0 sinϕ′ +ℓ cosϕ′) dℓ

]

dϕ′

=

∫ π

0

∫ ∞

−∞

w((ϕ + π/2)modπ)

|r| f(0− r cosϕ, 0− r sinϕ) |r| dr dϕ, (3.3.3)
e,tomo,back,b00

making the variable changes ϕ′ = (ϕ+π/2)modπ and ℓ =

{
r, ϕ′ ∈ [π/2, π]
−r, ϕ′ ∈ [0, π/2).

Thus, using the shift-invariance

property noted above:

fb(x, y) =

∫ π

0

∫ ∞

−∞

w((ϕ + π/2)modπ)

|r| f(x− r cosϕ, y − r sinϕ) |r| dr dϕ, (3.3.4)
e,tomo,back,bxy,proof

which is the convolution integral (3.3.2) in (signed) polar coordinates. 2

An alternative proof uses the projection and backprojection of a centered Dirac impulse based on Example 3.2.3.

In the usual case where w(ϕ) = 1, we see from (3.3.2) that unmodified backprojection yields a result that is the

original object blurred by the 1/r function. This PSF has very heavy tails, so the laminogram is nearly useless for

visual interpretation. Fig. 3.3.2 illustrates the 1/r function.

Thus far we have focused on the parallel ray geometry implicit in (3.2.3). For a broad family of other geometries,

Gullberg and Zeng [13] found appropriate pixel-dependent weighted-backprojection operations that also yield the

original object convolved with 1/r. So the nature of (3.3.2) is fairly general.

h(r)
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Figure 3.3.2: Illustrations of 1/r function and its “heavy tails.”
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3.3.2 Frequency-domain analysis

Because the laminogram fb(x, y) is the object f(x, y) convolved with the PSF h(r, ϕ) in (3.3.2), it follows that in the

frequency domain we have

Fb(ρ, Φ) = H(ρ, Φ)F◦(ρ, Φ),

where H(ρ, Φ) denotes the polar form of the 2D FT of h(r, ϕ).
It is well known that 1/ |r| and 1/ |ρ| are 2D FT pairs [11, p. 338]. The following theorem generalizes that result

to the angularly weighted case.
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t,tomo,2dft,1r Theorem 3.3.2 The PSF given in (3.3.2) has the following 2DFT for6 Φ ∈ [0, π] and ρ ∈ R:

h(r, ϕ) =
1

|r| w((ϕ + π/2)modπ)
2D FT←→ H(ρ, Φ) =

1

|ρ| w(Φ) . (3.3.5)
e,tomo,2dft,1r

Proof:

Evaluate the 2D FT of h:

H(ρ, Φ) =

∫ π

0

∫ ∞

−∞
h(r, ϕ) e−ı2πrρ cos(ϕ−Φ) |r| dr dϕ

=

∫ π

0

w((ϕ + π/2)mod π)

[∫ ∞

−∞
e−ı2πrρ cos(ϕ−Φ) dr

]

dϕ

=

∫ π

0

w((ϕ + π/2)mod π) δ(ρ cos(ϕ− Φ)) dϕ

=
1

|ρ|

∫ π

0

w(ϕ′) δ(sin(ϕ′ − Φ)) dϕ′ =
1

|ρ| w(Φ),

letting ϕ′ = (ϕ + π/2)mod π and using7 the following Dirac impulse property [11, p. 100]

δ(f(t)) =
∑

s : f(s)=0

δ(t− s)
∣
∣
∣ḟ(s)

∣
∣
∣

. (3.3.6)
e,tomo,back,dirac

In particular,

δ(sin(t)) =
∑

k

δ(t + πk) .

Thus, the 2D FT of h(r, ϕ) in (3.3.2) is H(ρ, Φ) = w(Φ) / |ρ|. 2

So the frequency-space relationship between the laminogram and the original object is

Fb(ρ, Φ) =
w(Φ)

|ρ| F◦(ρ, Φ) . (3.3.7)
e,tomo,lamino,1rho

High spatial frequencies are severely attenuated by the 1/ |ρ| term, so the laminogram is very blurry. However, the

relationship (3.3.7) immediately suggests a “deconvolution” method for recovering f(x, y) from fb(x, y), as described

in the next section.

More generally, if qϕ(r) is an arbitrary sinogram to which we apply a weighted backprojection of the form (3.3.1),

then the Fourier transform of the resulting image is

Fb(ρ, Φ) =
w(Φ)

|ρ| Qϕ(ν)
∣
∣
∣
ν=ρ, ϕ=Φ

=
w(Φ)

|ρ|

{
QΦ(ρ), Φ ∈ [0, π)
QΦ−π(−ρ), Φ ∈ [π, 2π),

(3.3.8)
e,tomo,back,general

where Qϕ(ν) is the 1D FT of qϕ(r) along r. (See Problem 3.15.) The special case (3.3.7) follows from the Fourier-

slice theorem.

Summary

Fig. 3.3.3 summarizes the various Fourier-transform relationships described above, as well as the Fourier-slice theo-

rem, and the projection and backprojection operations.

x,tomo,back Example 3.3.3 Fig. 3.3.4 shows an object f(x, y) consisting of two squares, the larger of which has several small

holes in it. Also shown is the sinogram pϕ(r) of this object. The laminogram fb(x, y) is so severely blurred that the

small holes are not visible.

6Alternatively we could write H(ρ, Φ) = 1

|ρ|
w(Φ mod π) for Φ ∈ [0, 2π) and ρ ≥ 0.

7Some readers may question the rigor of this proof, and well they should because the function 1/ |r| is not square integrable so the existence of

its 2D FT is questionable. Apparently this transform pair belongs in the family that includes Dirac impulses, sinusoids, step functions, etc.
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3.4 Radon transform inversion (s,tomo,iradon)
s,tomo,iradon

By manipulating the expressions derived in the preceding sections, one can find several methods for inverting the

Radon transform, i.e., for recovering an object f(x, y) from its projections {pϕ(r)}. This section describes three

alternatives: direct Fourier reconstruction based on the Fourier-slice theorem, the backproject-filter (BPF) method

based on the laminogram, and finally the convolve-backproject (CBP) method, also called the filter-backproject (FBP)

method. Each of these methods uses some of the relationships shown in Fig. 3.3.3.

In this section we continue to treat the idealized version of the tomography problem in which the entire continuum

of projections {pϕ(r)} is available. In practical tomography systems, only a discrete set of projections and rays are

available; these sampling considerations will be addressed in §4.3 and §3.5.

3.4.1 Direct Fourier reconstruction
s,tomo,iradon,dfr

The direct Fourier reconstruction method is based directly on the Fourier-slice theorem (3.2.24). To reconstruct

f(x, y) from {pϕ(r)} by the direct Fourier method, one performs the following steps.

• Take the 1D FT of each pϕ(·) to get Pϕ(·) for each ϕ.

• Create a polar representation F◦(ρ, Φ) of the 2D FT of object F (u, v) using the Fourier-slice relationship:

F◦(ρ, ϕ) = Pϕ(ρ) .

• Convert from polar representation F◦(ρ, Φ) to Cartesian coordinates F (u, v). This approach, first proposed in [14],

was “the first applicable method for reconstructing pictures from their projections” [15].

For sampled data, this polar to Cartesian step, often called gridding, requires very careful interpolation. Fig. 3.4.1

illustrates the process. Numerous papers have considered this step in detail, e.g., [7, 10, 16–39]. Of these, the
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NUFFT methods with good interpolation kernels are particularly appealing, e.g., [29, 38, 40]. See Chapter 6 for

related problems.

• Take the inverse 2D FT of F (u, v) to get f(x, y).
In practice this is implemented using the 2D inverse FFT, which requires Cartesian samples, whereas the relation-

ship F◦(ρ, ϕ) = Pϕ(ρ) is intrinsically polar. Hence the need for interpolation.

This method would work perfectly if given noiseless, continuous projections pϕ(r). Practical disadvantages of this

method are that it requires 2D FTs, and gridding can cause interpolation artifacts. An alternative approach uses a

Hankel transform rather than Fourier transforms [41]; this also uses interpolation.

x,tomo,direct Example 3.4.1 Consider the sinogram described by

pϕ(r) = rect

(
r − x0 cosϕ−y0 sinϕ

w

)

.

What is the object f(x, y) that has these projections?

First, taking the 1D FT yields

Pϕ(ν) = w sinc(wν) e−ı2πν(x0 cosϕ +y0 sinϕ) ,
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so by the Fourier-slice theorem the spectrum of f(x, y) is given by

F◦(ρ, Φ) = w sinc(wρ) e−ı2πρ(x0 cosΦ +y0 sinΦ)

or equivalently

F (u, v) = w sinc
(

w
√

u2 + v2
)

e−ı2π(x0u+y0v) .

Because [11, p. 338], w sinc(wρ)
2D FT←→ 1

π
rect(r/w)√
(w/2)2−r2

, the corresponding object is

f(x, y) = rect

(√

(x − x0)2 + (y − y0)2

w

)

1

π
√

(w/2)2 − (x− x0)2 − (y − y0)2
.

In other words, the object that has “flat” projections has a circular singularity. De Man et al. used this relationship

to analyze the deficiencies of simplistic pixel-driven forward projection [42].

3.4.2 The backproject-filter (BPF) method (s,tomo,bpf)
s,tomo,bpf

Another reconstruction method is suggested by the Fourier relationship (3.3.7) between the laminogram and the orig-

inal object. Solving (3.3.7) for the 2D FT of the object yields

F̂ (u, v) =

√
u2 + v2

w(∠π(u, v))
Fb(u, v), (3.4.1)

e,tomo,bpf

where Fb(u, v) denotes the 2D FT of the laminogram, and ∠π was defined in (3.2.14). The filter with frequency

response |ρ| =
√

u2 + v2 is called the cone filter due to its shape. (This method is also called the ρ-filtered layergram

approach [12] [4, p. 153].)

The above relationship suggests the following reconstruction method.

• Choose a nonzero angular weighting function w(ϕ).
• Perform angularly-weighted backprojection of the sinogram pϕ(r) to form the laminogram fb(x, y) using (3.3.1).

• Take the 2D FT of fb(x, y) to get Fb(u, v).
• Apply the angularly-modulated cone filter in the Fourier domain using (3.4.1).

• The cone filter nulls the DC component of f(x, y). This component can be recovered using the volume conservation

property (3.2.22) of the Radon transform. For noisy sinogram data, one can compute such an integral for all

projections and take the average value to estimate the DC component: F̂ (0, 0) = 1
π

∫ π

0

[∫
pϕ(r) dr

]
dϕ .

• Take the inverse 2D FT of F̂ (u, v) to get f̂(x, y).
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This approach is called the backproject-filter (BPF) method because we first backproject the sinograms, and then apply

the cone filter to “deconvolve” the 1/ |ρ| effect of the backprojection.

In practice, using the cone-filter without modification would excessively amplify high-frequency noise. To control

noise, the cone-filter is usually apodized in the frequency domain with a windowing function. Specifically, we replace

(3.4.1) by

F̂ (u, v) = A(u, v)

√
u2 + v2

w(∠π(u, v))
Fb(u, v),

where A(u, v) is an apodizing lowpass filter. In the absence of noise, the resulting reconstructed image satisfies

f̂(x, y) = a(x, y) ∗∗ f(x, y),

where a(x, y) is the inverse 2D FT of A(u, v). (See [43, 44] for early 3D versions of BPF.)

One practical difficulty with the BPF reconstruction method is that the laminogram fb(x, y) has unbounded spatial

support (even for a finite-support object f ) due to the tails of the 1/ |r| response in (3.3.2). In practice the support of

fb(x, y) must be truncated to a finite size for computer storage, and such truncation of tails can cause problems with

the deconvolution step. Furthermore, using 2D FFTs to apply the cone filter results in periodic convolution which can

cause wrap-around effects due to the high-pass nature of the cone filter. To minimize artifacts due to spatial truncation

and periodic convolution, one must evaluate fb(x, y) numerically onto a support grid that is considerably larger than

the support of the object f(x, y). A large support increases the computational costs of both the backprojection step

and the 2D FFT operations used for the cone filter. The FBP reconstruction method, described next, largely overcomes

this limitation. The FBP method has the added benefit of only requiring 1D Fourier transforms, whereas the direct

Fourier and BPF methods require 2D transforms.

x,tomo,bpf,cone,exp Example 3.4.2 For theoretical analysis, a convenient choice for the apodizer is A(ρ) = e−aρ . Using Hankel trans-

forms [11, p. 338] and the Laplacian property (27.3.5):

−4π2r2h(r)
Hankel←→ 1

ρ

d

dρ
H(ρ) +

d2

dρ2 H(ρ),

one can show that that the corresponding impulse response of the apodized cone filter is given by

h(r) = 4π
a2 − 2π2r2

(a2 + 4π2r2)5/2

Hankel←→ ρ e−aρ .

Taking the limit as a→ 0 shows that h(r) = −1/(4π2r3) for r 6= 0, and that h(r) has a singularity at r = 0.

Fig. 3.4.2 illustrates this impulse response for the case a = 1.

x,tomo,bpf,cone,rect Example 3.4.3 If we band-limit the cone filter by choosing A(ρ) = rect
(

ρ
2ρmax

)

, then the resulting impulse response

h(r) has a complicated expression that depends on both Bessel functions and the Struve function [45]. Fig. 3.4.3

illustrates this impulse response for the case ρmax = 1.

3.4.3 The filter-backproject (FBP) method (s,tomo,fbp)
s,tomo,fbp

We have seen that an unfiltered backprojection yields a blurry laminogram that must be deconvolved by a cone filter

to yield the original image. The steps involved look like the following:

f(x, y)→ Projection → pϕ(r)→ Backprojection
︸ ︷︷ ︸

convolution with 1/ |r|

→ fb(x, y)→ Cone filter → f(x, y) .

Because the cascade of the first two operations is linear and shift invariant, as shown in §3.3, in principle we could

move the cone filter to be the first step to obtain the same overall result:

f(x, y)→ Cone filter → f̌(x, y)→ Projection → p̌ϕ(r)→ Backprojection → f(x, y),
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fig˙tomo˙bpf˙cone˙exp

where, assuming w(ϕ) = 1 hereafter, the filtered object f̌(x, y) has the following the spectrum:

F̌ (ρ, Φ) = |ρ|F◦(ρ, Φ) .

Of course in practice we cannot filter the object before acquiring its projections. However, applying the Fourier-slice

theorem to the scenario above, we see that each projection p̌ϕ(r) has the following 1D FT:

p̌ϕ(r)
FT←→ P̌ϕ(ν) = F̌ (ρ, ϕ)

∣
∣
∣
ρ=ν

= |ρ| F◦(ρ, ϕ)
∣
∣
∣
ρ=ν

= |ν|F◦(ν, ϕ) = |ν|Pϕ(ν) .

This relationship implies that we can replace the cone filter above with a set of 1D filters with frequency response

|ν| applied to each projection pϕ(·). This filter is called the ramp filter due to its shape. The block diagram above

becomes:

f(x, y)→ Projection → pϕ(r)→ Ramp filters → p̌ϕ(r)→ Backprojection → f(x, y) .

This reconstruction approach is called the filter-backproject (FBP) method, and is used the most widely in tomography.

A formal derivation of the FBP method uses the Fourier-slice theorem as follows:

f(x, y) =

∫∫

F (u, v) e−ı2π(xu+yv) dudv

=

∫ π

0

∫ ∞

−∞
F (ν cosϕ, ν sinϕ) e−ı2πν(x cosϕ +y sinϕ) |ν| dν dϕ

=

∫ π

0

∫ ∞

−∞
Pϕ(ν) e−ı2πν(x cosϕ +y sinϕ) |ν| dν dϕ

=

∫ π

0

p̌ϕ(x cosϕ+y sinϕ) dϕ,

where we define the filtered projection p̌ϕ(r) as follows:

p̌ϕ(r) =

∫ ∞

−∞
Pϕ(ν) |ν| eı2πνr dν . (3.4.2)

e,tomo,fbp,ramp

The steps of the FBP method are summarized as follows.
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Figure 3.4.3: Impulse response of band-limited cone filter.

fig˙tomo˙bpf˙cone˙rect

• For each projection angle ϕ, compute the 1D FT of the projection pϕ(·) to form Pϕ(ν).

• Multiply Pϕ(ν) by |ν| (ramp filtering).

• For each ϕ, compute the inverse 1D FT of |ν|Pϕ(ν) to get the filtered projection p̌ϕ(r) in (3.4.2). In practice

this filtering is often done using an FFT, which yields periodic convolution. Because the space-domain kernel

corresponding to |ν| is not space limited (see Fig. 3.4.5), periodic convolution can cause “wrap-around” artifacts.

With care, these artifacts can be avoided by zero padding the sinogram. Sampling the ramp filter can also cause

aliasing artifacts. See Example 3.4.6 below for a preferable approach.

• The ramp filter nulls the DC component of each projection. If desired, this can be restored using the volume conser-

vation property (3.2.22). The approach of Example 3.4.6 avoids the need for any such DC correction. Discretizing

the integrals carefully avoids the need for empirical scale factors.

• Backproject the filtered sinogram {p̌ϕ(r)} using (3.3.1) to get f̂(x, y), i.e.

f̂(x, y) =

∫ π

0

p̌ϕ(x cosϕ +y sinϕ) dϕ . (3.4.3)
e,tomo,fbp

In practice usually the pixel-driven backprojection approach of §3.5.3 is used.

With some hindsight, the existence of such an approach seems natural because the Fourier-slice theorem provides a

relationship between the 2D FT in object domain and the 1D FT in projection domain.

3.4.4 Ramp filters and Hilbert transforms
s,tomo,hilbert

It can be useful to relate the ramp filter |ν| to a combination of differentiation and a Hilbert transform.

The Hilbert transform of a 1D function f(t) is defined (using Cauchy principal values) by8 [47, p. 248]:

fHilbert(t) =
1

π

∫ ∞

−∞

1

t− s
f(s) ds =

1

πt
∗ f(t). (3.4.4)

e,tomo,hilbert

Note that this “transform” returns another function of t. The corresponding relationship in the frequency domain is

FHilbert(ν) = −ı sgn(ν)F (ν). (3.4.5)
e,tomo,hilbert,freq

x,tomo,hilbert,rect Example 3.4.4 The Hilbert transform of the rect function rect(t) = 1{|t|≤1/2} is [47, p. 249]: 1
π log

∣
∣
∣
t+1/2
t−1/2

∣
∣
∣ .

8Note that some texts use the opposite sign, e.g., [11, p. 359] [46, p. 194].
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Using the Hilbert transform frequency response (3.4.5), we rewrite the ramp filter |ν| in (3.4.2) as follows:

|ν| = 1

2π
(ı2πν) (−ı sgn(ν)) .

The term (ı2πν) corresponds to differentiation, by the differentiation property of the Fourier transform. Therefore,

another expression for the FBP method (3.4.3) is

f̂(x, y) =
1

2π

∫ π

0

d

dr
pHilbert(r, ϕ)

∣
∣
∣
∣
r=x cosϕ +y sinϕ

dϕ, (3.4.6)
e,tomo,fbp,hilbert

where pHilbert(r, ϕ) denotes the Hilbert transform of pϕ(r) with respect to r. Combining (3.4.4) and (3.4.6) yields

f̂(x, y) =
1

2π2

∫ π

0

∫ ∞

−∞

∂
∂r pϕ(r)

x cosϕ+y sinϕ−r
dr dϕ . (3.4.7)

e,tomo,cbp,radon

This form is closer to Radon’s inversion formula [4, p. 21] [48, 49].

x,tomo,fbp,rect Example 3.4.5 Continuing Example 3.2.6, the spectrum of the projection at angle ϕ of a rectangle object is given by

(3.2.25), so its ramp-filtered projections are given by (for sinϕ 6= 0):

P̌ϕ(ν) = |ν| a sinc(νa cosϕ) b sinc(νb sinϕ)

=
1

π cosϕ sinϕ
sin(πνa cosϕ) sgn(ν)(b sinϕ) sinc(νb sinϕ)

=
1

2π cosϕ sinϕ

(
e−ıπνa cosϕ − eıπνa cosϕ

)
[ı sgn(ν)(b sinϕ) sinc(νb sinϕ)] .

Using the Hilbert transform in Example 3.4.4, the inverse 1D FT of the bracketed term is 1
πb sinϕ log

∣
∣
∣
x− 1

2
b sinϕ

x+ 1

2
b sinϕ

∣
∣
∣ , so

by the shift property of the FT, the filtered projections are:

p̌ϕ(r) =
1

2π2 cosϕ sinϕ
log

∣
∣
∣
∣
∣
∣
∣

r2 −
(

a cosϕ +b sinϕ
2

)2

r2 −
(

a cosϕ−b sinϕ
2

)2

∣
∣
∣
∣
∣
∣
∣

,

cf. [50, eqn. (14)]. Fig. 3.4.4 shows an example of the projection pϕ(r) of a unit square and its filtered version p̌ϕ(r).

The ramp filter causes singularities at each of the points of discontinuity in the projections. (Compare with Fig. 3.3.4.)

For the case sinϕ = 0, see Problem 3.23.

3.4.5 Filtered versus unfiltered backprojection

Recall that an unfiltered backprojection of a sinogram gives an image blurred by 1/ |r|. This blurring is due to the

fact that the (all nonnegative) projection values “pile up” in the laminogram, and there is no destructive interference.

In contrast, after filtering with the ramp filter, the projections have both positive and negative values, so destructive

interference can occur, which is desirable for the parts of the image that are supposed to be zero for example. Fig. 3.3.4

illustrates these concepts.

3.4.6 The convolve-backproject (CBP) method
s,tomo,cbp

The ramp filter amplifies high frequency noise, so in practice one must apodize it by a 1D lowpass filter A(ν), in which

case (3.4.2) is replaced by

p̌ϕ(r) =

∫ ∞

−∞
Pϕ(ν)A(ν) |ν| eı2πνr dν . (3.4.8)

e,tomo,fbp,A(u)

Alternatively, one can perform this filtering operation in the spatial domain by radial convolution:

p̌ϕ(r) = pϕ(r) ∗ ha(r) =

∫

pϕ(r′)ha(r − r′) dr′, (3.4.9)
e,tomo,cbp,conv
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Figure 3.4.4: Projection pϕ(r) of a unit square at angle ϕ = π/9 and its filtered versions p̌ϕ(r) both for ideal ramp

filter |ν| and a band-limited ramp filter with cutoff frequency ν0 = 4.

fig˙tomo˙square˙proj˙filt

where the filter kernel ha(r) is the inverse FT of Ha(ν) = A(ν) |ν| , i.e.,

ha(r) =

∫ ∞

−∞
A(ν) |ν| eı2πνr dν . (3.4.10)

e,tomo,cbp,h

Combining with (3.4.3) and (3.4.9) leads to the following convolve-backproject method:

f̂(x, y) =

∫ π

0

(pϕ ∗ ha)(x cosϕ+y sinϕ) dϕ =

∫ π

0

∫

pϕ(r) ha(x cosϕ +y sinϕ−r) dr dϕ . (3.4.11)
e,tomo,cbp

Although the convolution kernel ha(r) usually is not space-limited, the object (and hence its projections) are

space limited, so space-domain convolution is feasible. On the other hand, the space-domain convolution requires

more computation than a frequency-space implementation using the FFT method, so the FBP approach is often more

attractive than the CBP approach.

x,tomo,fbp,ramp,rect Example 3.4.6 As a concrete example, consider the case of a rectangular band-limiting window

A(ν) = rect

(
ν

2ν0

)

, (3.4.12)
e,tomo,fbp,apod,rect

which is a logical choice when the object (and hence its projections) are band limited to a maximum spatial frequency

u0. In this case, the band-limited ramp filter has the frequency response shown in Fig. 3.4.5. This is called the Ram-Lak

filter [6, p. 83] after [51].

To determine the corresponding convolution kernel, observe that

|ν| rect
(

ν

2ν0

)

= ν0 rect

(
ν

2ν0

)

−ν0 tri

(
ν

ν0

)

where tri(·) was defined in (3.2.12). Thus the convolution kernel is [52]

ha(r) = 2ν2
0 sinc(2ν0r)−ν2

0 sinc2(ν0r), (3.4.13)
e,tomo,cbp,kernel
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Figure 3.4.5: Frequency response of band-limited ramp filter.
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Figure 3.4.6: Convolution kernel for band-limited ramp filter ha(r) with ν0 = 1, and the sample values h[n] =
ha(n/(2ν0)) .

fig˙tomo˙ramp˙bandlimit

as shown in Fig. 3.4.6. The ringing is due to the implicit assumption that the object is band limited. In practice one

usually uses an apodization filter A(ν) that goes to zero gradually to reduce ringing.

In practice, one uses samples of this impulse response. Sampling it using the Nyquist rate yields [5, p. 72]:

h[n] = ha

(
n

2ν0

)

= 2ν2
0 sinc(n)−ν2

0 sinc2(n/2) = ν2
0







1, n = 0
0, n even

−1/(πn/2)2, n odd.
(3.4.14)

e,tomo,fbp,ramp,samples

Rarely is ν0 given in practice, so one assumes that the sampling is adequate, i.e., ν0 = 1/(2∆R), where ∆R is the

radial sample spacing. This approach is preferable to sampling the ramp filter directly in the frequency domain [5,

p. 69] [53].

Although the filter (3.4.14) is infinitely long, given a sinogram with a finite number nR of radial samples, we need

only to evaluate the filtered sinogram p̌ϕ(r) at those same radial sample locations, so it suffices to compute h[n] for

n = −nR, . . . , nR − 1 and to zero pad the sinogram radially with nR zeros before computing the FFTs to perform

the filtering. When using this discrete-space filter h[n] to approximate the convolution (3.4.9), one should include a

scaling factor ∆R to account for dr in the integral.

x,tomo,fbp,rect,proj,filt,apod Example 3.4.7 In Example 3.4.5, Fig. 3.4.4 showed the projections of a square after filtering with an ideal ramp filter.

Fig. 3.4.4 also shows those same projections when filtered with the rectangularly apodized ramp filter described in

Example 3.4.6.

x,tomo,fbp,ramp,limit Example 3.4.8 For theoretical analysis, an alternative to the rectangular apodization considered in Example 3.4.6

is to use exponential apodization A(ν) = e−ε|ν| , for some small ε > 0. One can verify the following FT pair [54,

p. 127]:

ha(r) =
2(ε2 − 4π2r2)

(ε2 + 4π2r2)2
FT←→ Ha(ν) = e−ε|ν| |ν| .
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Fig. 3.4.7 shows examples of this impulse response. Taking the limit as ε→ 0, yields the following expression for the

ramp filter for r 6= 0:

h∗(r) =
−1

2π2r2
, (3.4.15)

e,tomo,fbp,ramp,hr

and a singularity at r = 0. (See [55] for rigorous treatment of Fourier transforms of such functions.) This ramp filter

satisfies the following scaling property:

h∗(r) = α2 h∗(αr) . (3.4.16)
e,tomo,fbp,ramp,scale

This is also known as the homogeneity property [56].
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Figure 3.4.7: Impulse response ha(r) of ramp filter with exponential apodization.

fig˙tomo˙fbp˙ramp˙exp

3.4.7 PSF of the FBP method (s,tomo,fbp,psf)
s,tomo,fbp,psf

Apodizing the ramp filter will reduce amplification of high frequency noise, but will also degrade spatial resolution

in the reconstructed object. To analyze the effects of apodization, we again turn to the Fourier-slice theorem (3.2.24).

By that theorem, multiplying the 1D FT Pϕ(ν) of each projection by A(ν) is equivalent9 to pre-multiplying the object

spectrum by A(ρ), i.e.,

F (u, v) 7→ A(
√

u2 + v2)F (u, v) .

Thus, the reconstructed object f̂(x, y) is a blurred version of the original:

f̂(x, y) = f(x, y) ∗∗ h(x, y), (3.4.17)
e,tomo,fbp,psf

where

h(x, y)
2D FT←→ H(u, v) , A(

√

u2 + v2). (3.4.18)
e,tomo,fbp,psf,hankel

Because H is circularly symmetric, so is h; thus h(r) is simply the Hankel transform of H(ρ) = A(ρ).

9Note that for this simple relationship to hold, it is essential that the same apodizer be used for every projection angle ϕ.
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x,tomo,psf,rect Example 3.4.9 For the rectangular apodizing window A(ν) = rect
(

ν
2ν0

)

, the corresponding PSF in the image

domain would be

h(r) = ν2
0 jinc(ν0r) .

Thus the image would be blurred by a jinc function, which has large sidelobes that would cause undesirable “ringing.”

x,tomo,psf,gauss Example 3.4.10 A popular choice in nuclear medicine is a gaussian window: A(ν) = exp
(
−π(ν/ν0)

2
)
. The half-

amplitude cutoff frequency ν1/2 for this window, i.e., the point where A(ν1/2) = A(0)/2, is ν1/2 = ν0

√
log 2

π ≈
ν0

2 0.9394 ≈ ν0

2 . Because the Hankel transform of a gaussian is gaussian, in the image domain the PSF is

h(r) = ν2
0 exp

(
−π(ν0r)

2
)
.

To find the FWHM of this gaussian, find r such that h(r) = h(0)/2, or exp
(
−π(ν0r)

2
)

= 1/2 so π(ν0r)
2 = log 2.

Thus

FWHM =
2

ν0

√

log 2

π
≈ 0.9394

ν0
≈ 1

ν0
≈ 1

2ν1/2
.

So for a 5mm FWHM PSF, we would use ν0 = 1/5 = 0.2 cycles/cm.

x,tomo,fbp,other Example 3.4.11 Other popular window functions include the following.

• Hann or Hanning: A(ν) = [12 + 1
2 cos(πν/ν0)] rect

(
ν

2ν0

)

• Hamming: A(ν) = [0.54 + 0.46 cos(πν/ν0)] rect
(

ν
2ν0

)

• Generalized Hamming: A(ν) = [α + (1− α) cos(πν/ν0)] rect
(

ν
2ν0

)

, for α ∈ [0, 1]

• Butterworth: A(ν) =
1

√

1 + (ν/ν0)2n
, for n ≥ 0

• Parzen: A(ν) =







1− 6(ν/ν0)
2 (1− |ν| /ν0) |ν| ≤ ν0/2

2 (1− |ν| /ν0)
3

ν0/2 ≤ |ν| ≤ ν0

0, otherwise

• Shepp Logan [57]: A(ν) =
∣
∣
∣sinc

(
ν

2ν0

)∣
∣
∣ or

∣
∣
∣sinc

(
ν

2ν0

)∣
∣
∣

3

• Modified Shepp Logan: A(ν) = sinc
(

ν
2ν0

)

[0.4− 0.6 cos(πν/ν0)]

It is not always easy to find a closed-form expression for the PSF h that results from apodization. But the general

rule of thumb, FWHM ≈ 1/(2ν1/2), is usually pretty close.

In light of the result (3.4.17), one might wonder why we apply the window A(ν) to the projections rather than just

smooth (post-filter) the reconstructed image? The main reason is that we have to apply the ramp filter anyway, so we

can include A(ν) essentially for free. In contrast, post-smoothing would require either an “expensive” convolution

or a pair of 2D FFTs. However, if one wants to experiment with several different amounts of smoothing, then it is

preferable to smooth after a (ramp-filtered) backprojection so that only one backprojection operation is needed.

Summary

We have described three methods for inverting the Radon transform, i.e., for reconstructing a 2D object f(x, y) from

its projections {pϕ(r)}:
• direct Fourier reconstruction (gridding),

• the backproject-filter (BPF) method (cone filter),

• the filter-backproject (FBP) method (ramp filter), and its cousin the convolve-backproject (CBP) method.

The derivations of these methods all used the Fourier-slice theorem. These methods would yield identical results for

noiseless continuous-space data, but are based on different manipulations of the formulas so they lead to different

ways of discretizing and implementing the equations, yielding very different numerical algorithms in practice.

We also analyzed the PSF due to windowing the ramp filter. In practice one must choose the apodizing window to

make a suitable compromise between spatial resolution and noise.
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Recently, other inversion formulas for the 2D Radon transform have been discovered for objects with compact

support, e.g., [58]. These methods include user-selectable parameters that allow one to avoid corrupted or missing

regions of the sinogram. An interesting open problem is to determine whether the methods could be extended to

include some type of statistical weighting.

3.5 Practical backprojection (s,tomo,prac)s,tomo,prac

In the preceding sections, we have considered the idealized case where there is a continuum of projection views. In

practice, sinograms have only a finite number of angular samples, so each of the reconstruction methods described in

§3.4 requires modification for practical implementations.

A critical step in both the BPF and FBP reconstruction methods is the backprojection operation (3.3.1). Given only

a finite number nϕ of projection angles, we must approximate the integral in (3.3.1). Usually the projection angles are

uniformly spaced over the interval [0, π), i.e.,

ϕi =

(
i− 1

nϕ

)

π, i = 1, . . . , nϕ.

In such cases, the usual approach is to use the following Riemann sum approximation to (3.3.1):

fb(x, y) ≈ π

nϕ

nϕ∑

i=1

pϕi
(x cosϕi +y sinϕi). (3.5.1)

e,tomo,prac,back

Whether more sophisticated approximations to this integral would be beneficial is an open problem.

There are at least three distinct approaches to implementing (3.5.1): rotation-based backprojection, ray-driven

backprojection, and pixel-driven backprojection. If the available projections were continuous functions of the radial

argument, then these formulations would be identical. In practice, not only are the projection angles discrete, but

also we only have discrete radial samples of pϕ(r), as described in (4.3.1). Ignoring noise and blur, we are given the

discrete sinogram

yi[n] = pϕ(r)
∣
∣
∣
ϕ=ϕi, r=rc[n]

, i = 1, . . . , nϕ, n = 0, . . . , nR − 1, (3.5.2)
e,tomo,prac,sample

where the radial sample locations are given by

rc[n] = (n− n0)∆R (3.5.3)
e,tomo,prac,rcn

and typically n0 = nR/2 or n0 = (nR − 1)/2. For such sinograms, the various backprojection methods can produce

different results because they differ in how the equations are discretized.

If the true object f true can be assumed to be appropriately band limited, then its projections will also be band

limited (by the Fourier slice theorem), so in principle we could recover pϕi
from {yi[·]} using sinc interpolation:

pϕi
(r) =

∞∑

n=−∞
yi[n] sinc

(
r − rc[n]

∆R

)

.

In practice this interpolation is inappropriate because: real objects are space limited so they cannot be band limited, sinc

interpolation expects an infinite number of samples whereas practical sinograms have only a finite number of samples,

and sinc interpolation is computationally impractical. Thus, simpler interpolation methods are used in practice, such

as linear interpolation or spline interpolation [59], perhaps combined with oversampling of the FFT used for the ramp

filter.

3.5.1 Rotation-based backprojection

We can rewrite the backprojection formula (3.5.1) as follows:

fb(x, y) =
π

nϕ

nϕ∑

i=1

bi(x, y), (3.5.4)
e,tomo,prac,back,ray
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where the backprojection of the ith view is given by:

bi(x, y) = pϕi
(x cosϕi +y sinϕi).

We can also write bi = P
∗
ϕi

pϕi
, where P

∗
ϕi

is defined in (4.2.4). This adjoint maps the ith 1D projection back

into a 2D object by “smearing” that projection along the angle ϕi. In this approach, we form temporary images by

backprojecting each view and accumulating the sum of those temporary images.

To better understand bi(x, y), note that when i = 1 we have ϕ = 0, so

b1(x, y) = p0(x),

which is just a 2D version of the function p0(x).
Mat For radially-sampled sinograms, implementing P

∗
0 is trivial10 (e.g., in MATLAB), simply replicate the first row of the

sinogram (a vector) to make a matrix. For other angles, perform the following steps.

• Replicate the ith sinogram row to make an image, as if it were the ϕ = 0 case

• Use imrotate to rotate that image counter clockwise by ϕ. This rotation will require an interpolation method,

such as bilinear interpolation or a more precise spline approach [60].

• Accumulate these rotated images over all angles, as described in (3.5.4).

In this approach, the “outer loop” is over projection angles. The first step (replication) inherently “accounts” for

discrete radial samples.

The rotation approach is easily implemented but can be somewhat slow because rotation is a fairly expensive

operation.

3.5.2 Ray-driven backprojection

For ray-driven backprojection, one loops through all the rays and for each ray one interpolates yi[n] onto the pixels

whose centers are nearest to the ray L(rc[n], ϕi), as defined in (3.2.2). Although this approach is somewhat popular

for forward projection, it can produce significant artifacts when used for back projection, so will not be considered

further here. Fig. 3.3.1 somewhat illustrates the approach.

When radial sample spacing equals image sample spacing, ray-driven backprojection is equivalent to rotation-

based backprojection [61].

3.5.3 Pixel-driven backprojection
s,tomo,prac,back,pixel

For image display, we need to compute fb(x, y) only on a finite grid of pixel coordinate pairs {(xj , yj) : j = 1, . . . , np}.
For pixel-driven backprojection, we loop over the (xj , yj) pairs of interest and evaluate (3.5.1) for each of the grid

points, thereby filling up an image matrix. To implement, the outer loop is over pixel index j and the inner loop is

over angles ϕi. In essence, for each pixel we are summing along the corresponding sinusoid (illustrated in Fig. 3.2.4)

in the sinogram.

However, the radial argument xj cosϕi +yj sinϕi in (3.5.1) rarely exactly equals one of the radial sample locations

rc[n] shown in (3.5.2). Therefore, radial interpolation is required for pixel-driven backprojection. The usual approach

is linear interpolation which is equivalent mathematically to the following approximation:

pϕi
(r) ≈

∑

n

yi[n] tri

(
r − rc[n]

∆R

)

, (3.5.5)
e,tomo,prac,interp1

where the unit triangle function is denoted:

tri(t) =

{
1− |t|, |t| ≤ 1,
0, otherwise.

Although (3.5.5) is mathematically correct and is useful for theoretical analysis, it poorly conveys how one would

implement linear interpolation in practice. Because support of the function tri(t) is two sample units, for any given r,

10This method assumes that n0 = (nR − 1)/2, i.e., that the center of the image projects onto the center of each projection. It furthermore

assumes that the desired pixel size equals ∆R. Otherwise a more complicated approach is needed.
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only two terms in the sum in (3.5.5) are possibly nonzero. An alternative expression is

pϕi
(r) ≈ yi[n(r)] tri

(
r − rc[n(r)]

∆R

)

+yi[n(r) + 1] tri

(
r − rc[n(r) + 1]

∆R

)

= yi[n(r)]

(

1− r − rc[n(r)]

∆R

)

+ yi[n(r) + 1]

(
r − rc[n(r)]

∆R

)

,

where we define

n(r) , ⌊r/∆R + n0⌋ .
Other interpolators, such as an oversampled FFT or spline functions are also used [59].

3.5.4 Interpolation effects
s,tomo,prac,interp

Generalizing (3.5.5), suppose that we use an interpolation method of the form:

p̂ϕi
(r) =

∑

n

yi[n] h

(
r − rc[n]

∆R

)

for some interpolation kernel h(·). Suppose furthermore that pϕ(r) is band limited with maximum frequency less than
1

2∆R
. Then it follows from (3.5.2) and the sampling theorem that (ignoring noise):

P̂ϕi
(ν) =

{
Pϕi

(ν) H(ν), |ν| < 1
2∆R

0, otherwise.

For example, when h is the linear interpolator in (3.5.5), we have H(ν) = ∆R sinc2(∆Rν), which is strictly positive

for |ν| < 1
2∆R

. Therefore, while we are applying the ramp filter |ν| in the discretized version of (3.4.2), we can also

apply the inverse filter 1/H(ν) to compensate for the effects of interpolation [62, eqn. (45)] [59, 63].

Summary

Pixel-driven, rotation-based, and ray-driven backprojection are all used in practice, depending on number of samples,

sample spacing, etc. The formulations are exactly identical in continuous space, but can yield slightly different results

when discretized.

3.6 Sinogram restoration (s,tomo,restore)
s,tomo,restore

Because a sinogram pϕ(r) has two coordinates (r and ϕ), one can display it as a 2D picture or even treat it as a 2D

“image” and apply any number of image processing methods to it. Numerous linear and nonlinear filters have been

applied to sinograms in an attempt to reduce noise [64–84] to extrapolate missing data [85–88] and to compensate

for detector blur [89–96] and/or SPECT attenuation [97–100]. Some of these methods can even be called “statistical”

methods because they include measurement noise models. Problem 3.12 explores an approach based on B-splines.

A typical linear approach for a system with shift-invariant blur having frequency response B(ν) would be to use a

Wiener filter as the apodizing filter A(ν) in (3.4.8) as follows

A(ν) =
B∗(ν)

|B(ν)|2 + Sp(ν)
,

where Sp(ν) is some model for the power spectral density of pϕ(r) under the (questionable) assumption that pϕ(r) is

a WSS random process.

Nonlinear sinogram preprocessing methods, including classical methods based on view-adaptive Wiener filters

[101] and contemporary approaches like wavelet-based denoising [102], have the potential to reduce noise more than

linear methods with less degradation of spatial resolution. However, when a nonlinear sinogram filtering method is

combined with the linear FBP reconstruction method the resulting spatial resolution properties can be quite unusual.

It is the author’s view that nonlinear processing is more safely performed in the image domain, e.g., by nonquadratic

edge-preserving regularization, instead of in the sinogram domain.
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3.7 Sampling considerations (s,tomo,samp)s,tomo,samp

In practice one can only acquire a finite number of radial and angular samples, due to constraints such as cost and

time. This section describes considerations in choosing the radial and angular sampling.

3.7.1 Radial sampling

The radial sample spacing, ∆R, should be determined by the spatial resolution (in the radial direction) of the tomo-

graphic scanning instrument. The FWHM of the system radial resolution is a function of the detector width, the

source size in X-ray imaging, etc. The radial detector response (e.g., a rectangular function for square detector el-

ements) generally is not exactly band-limited, so Nyquist sampling theory can provide only general guidance. A

practical rule-of-thumb is to choose (if possible): ∆R = FWHM/2. Then the number of radial samples should be

determined to cover the desired FOV by choosing: nR = FOV/∆R. See §4.3.9 for Fourier analysis of aliasing due to

radial sampling.

3.7.2 Angular sampling
s,tomo,samp,ang

For a given FOV and radial sampling, what should the angular sampling ∆ϕ be? If we have nR radial samples

spaced by ∆R, then in the Fourier domain (of the 2D DFT), the corresponding spatial frequencies are spaced by

∆ν = 1/(nR∆R). It is natural to choose the angular sampling so as to ensure that all samples in the 2D Fourier

domain are separated by no more than this amount.

u

v

∆ν

∆ϕ

1/(2∆R)

Figure 3.7.1: Angular sampling considerations.

fig,tomo,ang,sample

Considering Fig. 3.7.1, the appropriate angular spacing is ∆ϕ =
∆ν

1/(2∆R)
= 2/nR. So the total number of angles

over 180◦ should be

nϕ =
π

∆ϕ
=

π

2
nR.

In practice often somewhat fewer angular samples are used, but usually nϕ ≈ nR. The reason for using fewer than

πnR/2 angular samples is that often in real systems there is blur in the radial direction so the spatial resolution is

somewhat lower than that implied by just the radial sampling, i.e., the radial sampling may be a little finer than

necessary from a strict Nyquist perspective. However, we rarely use Nyquist (sinc) reconstruction, but rather only

linear interpolation, so a little “oversampling” is reasonable. Inadequate angular sampling can lead to significant

aliasing artifacts. On the other hand, for the FBP reconstruction method, the computation time is directly proportional

to the number of angles.

x,tomo,undersample Example 3.7.1 Fig. 3.7.2 illustrates the effects of angular undersampling.
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Original 2 angles 4 angles

32 angles 64 angles 128 angles

Figure 3.7.2: Illustration of the effects of angular undersampling on image quality for FBP reconstruction. The image

is 128 × 128, and the true values of the digital phantom are 1 in the background disk and 8 in the small disks. The

grayscale display is windowed from 0.5 to 1.5 to enhance the visibility of the artifacts.

fig˙tomo˙sample

3.8 Linogram reconstruction (s,tomo,lino)
s,tomo,lino

For tomographic imaging systems with certain geometries involving flat detectors, it can be convenient to use an

alternative coordinate system of the form

pEW(s, β) =
1

√

1 + β2
parctan(β)

(

s
√

1 + β2

)

pNS(s, β) =
1

√

1 + β2
pπ/2+arctan(β)

(

s
√

1 + β2

)

, (3.8.1)
e,tomo,lino,def

for |β| ≤ 1. This is called a linogram [7, 37, 103–105], because in this coordinate system the projection of a point

source is a straight line.

Taking the 1D Fourier transform of pEW(s, β) and pNS(s, β) along s and applying the Fourier slice theorem yields

the Fourier relationships:

P EW

ϕ (ν) =
√

1 + β2 Parctan(β)

(√

1 + β2ν
)

= F (ν, βν)

PNS

ϕ (ν) =
√

1 + β2 Pπ/2+arctan(β)

(√

1 + β2ν
)

= F (−βν, ν) . (3.8.2)
e,tomo,lino,Pub

So the 1D Fourier transform of linogram data corresponds to samples of the object spectrum F (u, v) along lines

with slope β or 1/β. In particular, for a projection at slope β, if the linogram data has nS equally spaced samples

along s with spacing ∆S, then the corresponding samples of the object spectrum F (u, v) in 2D Fourier space along

the line at slope β are spaced by
√

1 + β2/(nS∆S), corresponding to the pseudo-polar grid shown in Fig. 3.8.1.

Using this sampling pattern, one can develop direct Fourier reconstruction methods for linogram data akin to §3.4.1,

e.g., [106,107]. See Chapter 6 for more options. The linogram concept has been generalized to higher dimension data,

called planogram reconstruction [108–111].

By equating ϕ with arctan(β) or π + /2 + arctan(β), one can show that
√

1 + β2 = 1
max(|cosϕ|,|sinϕ|) . Therefore

the radial sample spacing in (3.8.1) is the same as that of Mojette sampling described in §25.2.6. The primary difference

between linogram and Mojette sampling is in the angular sampling.
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u

v

Figure 3.8.1: Illustration of pseudo-polar grid in 2D Fourier space associated with linogram sampling. The cross

marks and circles correspond to the P EW

ϕ (ν) samples and the PNS

ϕ (ν) samples respectively.

fig˙tomo˙lino˙pseudo

3.9 2D fan beam tomography (s,tomo,fan)
s,tomo,fan

The preceding sections have focused on case of 2D parallel-beam projections. Although 1st-generation X-ray CT

scanners did correspond to that geometry, many contemporary tomographic imaging systems have fan beam geome-

tries, including commercial X-ray CT scanners and some collimators for SPECT systems. For hypothetical continuous

measurements, one could transform fan-beam projections into parallel-beam projections by a simple change of vari-

ables. For discrete, noisy measurements, rebinning fan-beam measurements into parallel-beam projections requires

an interpolation operation that could degrade spatial resolution. To avoid such rebinning, one can derive analytical

reconstruction methods directly in terms of the fan-beam coordinates, as described below.

Fig. 3.9.1 illustrates the fan-beam geometry that will be considered here. Because it can be challenging mechani-

cally to ensure that the line between the X-ray source and the midpoint of the detector passes through the exact center

of rotation, we allow an offset roff between that line and the center [112]. Let P denote the point along that line that

intersects the circle of radius roff centered at the rotation isocenter. D0d denotes the distance from the point P to the

detector, Ds0 denotes the distance from the X-ray source to P , and Dfs denotes the distance from the focal point of the

detector arc to the X-ray source. Define Dsd , D0d + Ds0 to be the total distance from the X-ray source to the center

of the detector. This formulation allows the detector focal point to differ from the X-ray source location to encompass

a variety of system configurations. For flat detectors, Dfs =∞. For third-generation X-ray CT systems, Dfs = 0. For

fourth generation X-ray CT systems, Dfs = −Ds0.

In our notation, the distances D0d and Ds0 are constants, rather than being functions of angle β. Generalizations

exist to allow non-circular source trajectories [113].

Let s ∈ [−smax, smax] denote the (signed) arc length along the detector, with s = 0 corresponding the detector

center. Arc length is the natural parameterization for detector elements that are spaced equally along the detector. (For

a flat detector with Dfs = ∞, the arc length s is simply the position along the detector.) The various angles have the

following relationships:

α(s) =
s

Dfd
, γ(s) = arctan

(
Dfd sin α(s)

Dfd cosα(s) −Dfs

)

, (3.9.1)
e,tomo,fan,alf,gam

where Dfd , Dfs + Dsd. The two most important cases are

γ(s) =

{
s/Dsd, Dfs = 0 (equiangular)

arctan(s/Dsd), Dfs =∞ (equidistant).
(3.9.2)
e,tomo,fan,tan,gam
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X−ray Source

Focal Point
ϕ

α

β

β

γ

r
s

s = 0

roff

P

Dfs

Ds0

D0d

Figure 3.9.1: Illustration of fan beam geometry.

fig,tomo,fan,offset

The function γ(s) is anti-symmetric and increasing and the (inverse) relationship between γ and s is:

s =

{

Dfd

[

γ − arcsin
(

Dfs

Dfd
sin γ

)]

, 0 ≤ Dfs <∞
Dsd tan γ, Dfs =∞.

(3.9.3)
e,tomo,fan,gam,inv

The ray corresponding to angle β and detector element s is

L(s, β) = {(x, y) : x cos ϕ(s, β) + y sin ϕ(s, β) = r(s)} , (3.9.4)
e,tomo,fan,Ray

where

ϕ(s, β) , β + γ(s)

r(s) , Ds0 sinγ(s) + roff cos γ(s)

=
√

D2
s0 + r2

off sin(γ(s) + βoff), (3.9.5)
e,tomo,fan,r,ang

where we define βoff , ∠(Ds0, roff). Unlike in our analysis of parallel-beam tomography, here the range of r is

limited inherently by the position of the X-ray source and the extent of the detector:

|r(s)| ≤ rmax , Ds0 sin γmax, (3.9.6)
e,tomo,fan,rmax

where γmax , γ(smax) and smax is half of the total arc length of the detector. The radius rmax defines the circular

field of view of the imaging system: the subset of the plane that is measured completely. (We assume that D0d ≥ rmax,

because otherwise even the detector center would limit the field of view.) The angle 2γmax is called the fan angle. A

typical clinical CT scanner has Dsd ≈ 95 cm, smax ≈ 45 cm, so γmax ≈ π/6.

Fig. 3.9.2 illustrates the sampling (3.9.5) associated with the fan-beam geometry, before and after the values of

(r, ϕ) are collapsed to the range described in (3.2.8).

The line-integral projection p(s, β) of f along L(s, β) is11:

p(s, β) =

∫

L(s,β)

f(x, y) dℓ

=

∫∫

f(x, y) δ(x cosϕ(s, β)+y sinϕ(s, β)−r(s)) dx dy, (3.9.7)
e,tomo,fan,psb

11Practically speaking, the integral should be restricted to the field of view:
p

x2 + y2 ≤ rmax, but this restriction would complicate analysis

by introducing a shift variance into the problem, so we ignore it.
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Figure 3.9.2: Left: (r, ϕ) coordinates for equiangular fan-beam samples based directly on (3.9.5). The fan angle is

2γmax = π/3. Right: after converting ϕ to the range [0, π) using the periodicity property (3.2.19). Top: for equally

spaced samples in s symmetrical around s = 0. Bottom: for equally spaced samples in s with quarter-detector offset.

The samples for one particular value of β are circled for illustration.

fig˙tomo˙fan˙sample

for |s| ≤ smax and 0 ≤ β < βmax. We assume βmax ≥ π +2γmax to ensure complete sampling. By (3.9.5), fan-beam

projections satisfy the following general symmetry property:

p
(
γ−1(−γ(s)− 2βoff) , β ± π + 2γ(s) + 2βoff

)
= p(s, β) . (3.9.8)

e,tomo,fan,sym

In particular, if Dfs = 0, then

p(−s− 2Dsdβoff , β ± π + 2s/Dsd + 2βoff) = p(s, β) . (3.9.9)
e,tomo,fan,sym,Dfs=0

Alternatively, if βoff = 0, then

p(−s, β ± π + 2γ(s)) = p(s, β) . (3.9.10)
e,tomo,fan,sym,boff=0

The reconstruction problem is to estimate f from the fan-beam projections {p(s, β)}.

3.9.1 Fan-parallel rebinning methods (s,tomo,fan,rebin)
s,tomo,fan,rebin

In continuous space, to rebin from fan-beam to parallel-beam coordinates requires a simple change of variables based

on (3.9.5). In the usual case where roff = 0, we can express the parallel-beam projections in terms of the fan-beam

projections using the following relationship:

pϕ(r) = p(s, β)
∣
∣
∣
s=s(r), β=β(r,φ)

= p
(
γ−1(arcsin(r/Ds0)) , φ− arcsin(r/Ds0)

)
, (3.9.11)

e,tomo,fan,rebin
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where γ−1 is defined by (3.9.3). For sampled measurements, usually one first performs 1D interpolation along the

source position using the relationship φ = β + γ. Then one performs 1D interpolation along the detector by relating r
and s. When the s samples include a quarter detector offset, then the radial sampling can be improved by a factor of

two, at least for 360◦ scans, as illustrated in Fig. 3.9.2.

IRT See rebin_fan2par.m.

3.9.2 The filter-backproject (FBP) approach for 360◦ scans (s,tomo,fan,fbp)
s,tomo,fan,fbp

This section derives filter-backproject methods for the fan-beam geometry shown in Fig. 3.9.1, including the case of

displaced center of rotation [112]. We focus on the case of 360◦ rotation of the X-ray source and detector [5, p. 77].

We start by rewriting the parallel-ray FBP formula (3.4.11) for the case of 360◦ rotation:

f(x, y) =
1

2

∫ 2π

0

∫

pϕ(r) h∗(x cosϕ+y sinϕ−r) dr dϕ, (3.9.12)
e,tomo,fan,fbp,360

where h∗(·) denotes the ramp filter in (3.4.15) with 1D Fourier transform H∗(ν) = |ν|.
Now change to fan-beam coordinates by making the transformation of variables r = r(s), ϕ = ϕ(s, β), defined

in (3.9.5). The Jacobian matrix is

[
∂
∂sr(s) ∂

∂β r(s)
∂
∂sϕ(s, β) ∂

∂β ϕ(s, β)

]

=

[
[Ds0 cos γ(s)− roff sin γ(s)] γ̇(s) 0

γ̇(s) 1

]

, (3.9.13)
e,tomo,fan,J

the determinant of which is

J(s) , |Ds0 cos γ(s)− roff sin γ(s)| |γ̇(s)| . (3.9.14)
e,tomo,fan,detJ

The reconstruction formula becomes

f(x, y) =
1

2

∫ 2π

0

∫

p(s, β) h∗(x cosϕ(s, β) + y sin ϕ(s, β) − r(s)) J(s) ds dβ

=
1

2

∫ 2π

0

∫

p(s, β) J(s)h∗(x cos(β + γ(s)) + y sin(β + γ(s))−Ds0 sin γ(s)− roff cos γ(s)) ds dβ .

Although this expression is a fan-beam reconstruction formula, it is inconvenient for practical use; the challenge is to

manipulate it so that it has a filter-backproject form.

Using trigonometric identities, one can simplify the argument of h∗ above as follows:

x cos(β + γ)+y sin(β + γ)−Ds0 sin γ − roff cos γ = L(x, y, β) sin(γ′(x, y, β)−γ), (3.9.15)
e,tomo,fan,fbp,h,arg

where

xβ , x cos β + y sin β

yβ , −x sin β + y cosβ

L(x, y, β) ,

√

(Ds0 − yβ)2 + (xβ − roff)2

γ′(x, y, β) , tan−1

(
xβ − roff

Ds0 − yβ

)

. (3.9.16)
e,tomo,fan,L,gam

Defining s′ by γ′ = γ(s′), using (3.9.15), and applying the scaling property of the ideal ramp filter12 (3.4.16) leads to

the following form for the fan-beam reconstruction formula:

f(x, y) =
1

2

∫ 2π

0

∫

p(s, β)J(s)h∗(L(x, y, β) sin(γ′(x, y, β)−γ(s))) ds dβ

=
1

2

∫ 2π

0

∫

p(s, β)J(s)

(
s′(x, y, β)−s

L(x, y, β) sin(γ′(x, y, β)−γ(s))

)2

h∗(s
′(x, y, β)−s) ds dβ .

12Zeng et al. note that using this property leads to nonuniform image noise variance in practice [56] and propose an alternative approach based

on Hilbert transforms [114].
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For certain special fan-beam geometries, we can express the sin term above as follows:

sin(γ′(x, y, β)−γ(s)) = W2(x, y, β)W1(s)W0(s
′(x, y, β)−s), (3.9.17)

e,tomo,fan,fbp,sin

for some geometry-dependentweighting functions W0, W1, and W2. For such geometries, the fan-beam reconstruction

formula simplifies as follows:

f(x, y) =
1

2

∫ 2π

0

1

W 2
2 (x, y, β) L2(x, y, β)

[∫

p(s, β)
J(s)

W 2
1 (s)

g(s′(x, y, β)−s) ds

]

dβ,

where we define the following modified ramp filter:

g(s) ,

(
s

W0(s)

)2

h∗(s) . (3.9.18)
e,tomo,fan,ramp,gen

Thus, the fan-beam FBP method uses the following three steps.

• Step 1. Compute weighted projections:

p̃(s, β) , p(s, β)
J(s)

W 2
1 (s)

. (3.9.19)
e,tomo,fan,psb,weight

• Step 2. Filter those weighted projections using the modified ramp filter:

p̌(s, β) , p̃(s, β) ∗g(s), ∀β.

• Step 3. Perform a weighted backprojection of those filtered projections:

f(x, y) =
1

2

∫ 2π

0

1

W 2
2 (x, y, β)L2(x, y, β)

p̌(s′(x, y, β), β) dβ . (3.9.20)
e,tomo,fan,fbp,wtd,back

This three-step procedure is quite practical and has been used routinely in commercial X-ray CT systems.

The existence of this efficient FBP approach hinges on whether a factorization of the form (3.9.17) exists. Besson

has shown that there are exactly four fan-beam geometries for which this is possible [113]. Fortunately, two of the four

cases are the important ones described in (3.9.2). Somewhat unfortunately, the 4th generation CT scanner geometry is

not one of the four cases, although most commercial CT scanners are 3rd generation.

3.9.2.1 Equiangular case

The case where Dfs = 0 corresponds to 3rd-generation X-ray CT systems using an arc detector, called the equiangular

case [115]. In this case, γ(s) = s/Dsd, so we factor the sin term in (3.9.17) as follows:

sin(γ′(x, y, β)−γ(s)) = W2 W0(s
′(x, y, β)−s),

where W2 =
1

Dsd
, W0(s) = Dsd sin

(
s

Dsd

)

, s′(x, y, β) = Dsd γ′(x, y, β),

with W1 = 1. Thus the modified ramp filter (3.9.18) is

g(s) =

(
s/Dsd

sin(s/Dsd)

)2

h∗(s) . (3.9.21)
e,tomo,fan,ramp,ea

Because γ̇(s) = 1/Dsd, the projection weighting in (3.9.19) simplifies to

J(s)

W 2
1

= J(s) =
1

Dsd

∣
∣
∣
∣
Ds0 cos

s

Dsd
− roff sin

s

Dsd

∣
∣
∣
∣
≈ Ds0

Dsd
cos

s

Dsd
, (3.9.22)

e,tomo,fan,J˙w1w1,ea

and the backprojection weighting in (3.9.20) is

1

W 2
2 L2(x, y, β)

=
D2

sd

L2(x, y, β)
=

D2
sd

(Ds0 − yβ)2 + (xβ − roff)2
. (3.9.23)

e,tomo,fan,fbp,w2,ea
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Note that as Ds0 → ∞, i.e., as the rays become more parallel, the modified ramp filter approaches the usual ramp

filter, and the projection and backprojection weightings approach unity, as expected for the parallel-ray case.

For practical implementation the filter must be band-limited and sampled. Combining (3.9.21) with (3.4.14) for

ha(r), the necessary filter samples are

h[n] =







1

4∆2
s

, n = 0

0, n even
−1

[πDsd sin(n∆s/Dsd)]
2 , n odd,

(3.9.24)
e,tomo,fan,ramp,ea,sample

where ∆s denotes the detector element spacing. (Note that there is an error in [5, eqn. (96)].)

There is a subtle issue in the above derivation [56, 114]. We first applied the scaling property of the ramp filter,

continued the derivation, and then eventually considered a band-limited ramp filter (3.9.24). If we had considered

the band-limiting effect first, which might be more appropriate for sampled data, then the scaling property would not

hold exactly. It has been stated that this practice “results in a nonstationary cutoff frequency in the image” [56, 114].

Nevertheless, it is used widely.

IRT See fbp_ramp.m.

IRT See fbp_fan_arc.m.

3.9.2.2 Equidistant case
s,tomo,fan,ea

The case where Dfs = ∞ corresponds to a flat detector, called the equidistant case [116]. In this case, γ(s) =
arctan(s/Dsd) and (with some trigonometric identities) we factor the sin term in (3.9.17) as follows:

sin(γ′ − γ) = sinγ′ cos γ − sin γ cos γ′ = cos γ′ cos γ (tan γ′ − tan γ) = cos γ′ Dsd
√

D2
sd + s2

s′ − s

Dsd
,

where s′(x, y, β) = Dsd tan γ′(x, y, β), or equivalently:

W2 =
cos γ′(x, y, β)

Dsd
, W1 =

Dsd
√

D2
sd + s2

, W0(s) = s.

Because W0(s) = s, we can use the usual ramp filter (3.4.14) without modification. Because γ̇(s) = (cos2 γ(s))/Dsd =
W 2

1 (s) /Dsd here, the projection weighting in (3.9.19) becomes

J(s)

W 2
1

=
1

Dsd
|Ds0 cos γ(s)− roff sin γ(s)| ≈ Ds0

√

D2
sd + s2

, (3.9.25)
e,tomo,fan,J˙w1w1,ed

and the backprojection weighting in (3.9.20) is

1

W 2
2 L2(x, y, β)

=
D2

sd

[cos γ′(x, y, β)L(x, y, β)]2
=

D2
sd

[Ds0 − yβ ]2
. (3.9.26)

e,tomo,fan,wtb,ed

Note that as Ds0 →∞, the projection and backprojection weightings again approach unity.

IRT See fbp_fan_flat.m.

The preceding derivation started with the parallel-ray FBP formula. Other formulations are possible, e.g., [117].

3.9.3 FBP for short scans (s,tomo,fan,short)
s,tomo,fan,short

The preceding analyses have assumed a full 360◦ rotation. For a 360◦ rotation, every ray is sampled exactly twice,

leading to the 1/2 factor in (3.9.12). There are also fan-beam reconstruction methods that use a short scan with less

than a full rotation. A standard short scan uses βmax = π + 2γmax, so that every point in the equivalent parallel-

beam sinogram is sampled at least once. As illustrated in Fig. 3.9.3, some areas of the sinogram are sampled twice, so

these methods require appropriate weighting, sometimes called Parker weighting [118]. In particular, by the symmetry

property (3.9.10), fan-beam sinogram data where 0 < β < 2(γmax−γ(s)) correspond to the same rays as π−2γ(s) <
β < π + 2γmax.
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One can compensate for this sampling by applying an additional weighting w(s, β) to the ramp-filtered fan-beam

sinogram p̌(s, β) prior to backprojection, such as the following weighting:

w(s, β) =







q
(

β
2(γmax−γ)

)

, 0 ≤ β ≤ 2(γmax − γ)

1, 2(γmax − γ) < β < π − 2γ

q
(

π+2γmax−β
2(γmax+γ)

)

, π − 2γ ≤ β ≤ π + 2γmax,

(3.9.27)
e,tomo,fan,short,wsb

where q(x) = sin2
(

π
2 x
)

and γ = γ(s). Note that [118, eqn. (12)] has a typo.

IRT See fbp_fan_short_wt.m.

π
π − γmax

3γmax

γmax
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ϕ Parker weighting
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Figure 3.9.3: For short scan with βmax = π + 2γmax, the left figure above illustrates (by darker shading) the areas

of a sinogram (in φ, γ space) that are sampled twice. The other areas are sampled once. The right figure shows the

fan-beam sinogram Parker weighting (3.9.27).

fig˙tomo˙fan˙short

Amazingly, one can also reconstruct an image from less than a short scan [119]. Of course one can apply iterative

reconstruction methods to arbitrary geometries. The relative performance of iterative methods and analytical methods

for the “less than a short scan” cases is an interesting open problem.

3.9.4 The backproject-filter (BPF) approach (s,tomo,fan,bpf)
s,tomo,fan,bpf

Although the filter-backproject approach is used most widely for fan-beam reconstruction, it is also possible to use

backproject-filter (BPF) methods for fan-beam tomography [13].

Given fan-beam projections p(s, β) as defined in (3.9.7), for β ∈ [0, βmax], and given a weighting function w(s, β),
the weighted backprojection is given by

b(x, y) =

∫ smax

−smax

∫ βmax

0

δ(x cosϕ(s, β) +y sinϕ(s, β)−r(s)) p(s, β)w(s, β) ds dβ .

We now analyze the impulse response of the sequence of linear operations f(x, y) → p(s, β) → b(x, y), by con-

sidering an object f(x, y) that is a Dirac impulse at (x0, y0), for which the fan-beam projections are given by p(s, β) =
δ(x0 cosϕ(s, β) +y0 sinϕ(s, β)−r(s)) . The overall impulse response of the weighted projection/backprojection op-

eration is thus:

h(x, y; x0, y0) =

∫ βmax

0

∫ smax

−smax

δ(x cosϕ(s, β) +y sinϕ(s, β)−r(s))

δ(x0 cosϕ(s, β)+y0 sinϕ(s, β)−r(s)) w(s, β) ds dβ .

Now make the change of variables defined in (3.9.5). the Jacobian determinant of which is given in (3.9.14). Assume

that the weighting term w(s, β) consists of two terms:

• a term that compensates for the Jacobian determinant in (3.9.14) [13],

• a term that ensures that for any (r, ϕ) pair that gets contributions from more than one (s, β) pair, these (s, β) pairs

are appropriately weighted [5, p. 98] [120]. (No such weighting is needed for a full rotation where βmax = 2π.)
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Assume furthermore that βmax ≥ π + 2γmax, so that there is complete sampling. Then after making the above change

of variables, the impulse response expression simplifies to

h(x, y; x0, y0) =

∫ π

0

∫ rmax

−rmax

δ(x cosϕ+y sinϕ−r) δ(x0 cosϕ+y0 sinϕ−r) dr dϕ

=

∫ π

0

δ((x− x0) cosϕ+(y − y0) sinϕ) 1{|x0 cosϕ +y0 sinϕ|≤rmax} dϕ

=

∫ π

0

δ(r±(x− x0, y − y0) cos(ϕ− ∠π(x− x0, y − y0))) 1{|x0 cosϕ +y0 sinϕ|≤rmax} dϕ

=
1

|r±(x− x0, y − y0)|
1{|x0 cosϕ +y0 sinϕ|≤rmax}

∣
∣
∣
ϕ=∠π(x−x0,y−y0)±π/2

,

where rmax was defined in (3.9.6). Thus, within the field of view, the composition of projection with appropriately

weighted backprojection is linear and shift invariant, and similarly to Theorem 3.3.1, in polar coordinates the impulse

response is [121]: h(r) = 1
|r| . Using this “restricted” shift invariance, one can formulate an approximate BPF recon-

struction method [13]. However, the practical problems described in §3.4.2 are exacerbated here by the inherently

finite field of view of the fan-beam geometry.

3.9.5 Cone-beam reconstruction (s,3d,cone)
s,3d,cone

A particularly challenging problem for analytical reconstruction methods is that of reconstructing a 3D object from

cone-beam projection views. As X-ray detectors have evolved from 1D to 2D arrays, the practical importance of this

problem has increased. The literature on this problem is extensive, and includes both exact and approximate methods,

for various types of X-ray source trajectories and detector configurations.

For the case of a circular X-ray source trajectory, the most popular method is the Feldkamp cone-beam algorithm or

FDK approach [122]. This approach extends the fan-beam reconstruction formula to the cone-beam case and matches

the fan-beam formula in the plane of the circular source trajectory, but is inexact (due to missing data) away from that

plane.

Recently, Katsevich [123] developed a “theoretically exact” FBP type of reconstruction method for cone-beam

reconstruction from a helical source trajectory, a significant breakthrough in that field. As a result, this topic is evolving

rapidly, e.g., [124]. Versions of the Fourier-slice theorem have even been proposed for fan-beam and cone-beam

geometries [125]. In practice, usually “approximate” algorithms are often used rather than the exact methods to save

computation. A typical approximate algorithm involves some rebinning, ramp filtering, and weighted backprojection

steps, e.g., [126]. Here, we summarize only the classical FDK method for a circular trajectory.

The basic idea of the FDK method is to filter the data measured along each row of the detector as if it were part

of a 2D fan-beam acquisition, and then to perform 3D backprojection. With this approximation, the central slice

is reconstructed exactly as it would be by conventional 2D fan-beam methods, whereas the non-central slices have

artifacts that increase with distance from the central slice.

3.9.5.1 Equidistant case (flat detector)

Source

Ds0 D0d

xβyβ

z

s

t

Figure 3.9.4: Cone-beam flat-detector geometry.

fig˙tomo˙cone
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Fig. 3.9.4 illustrates the flat-detector cone-beam geometry, where the rotated coordinates (xβ , yβ) were defined

in (3.9.16). As in Fig. 3.9.1 we let β denote the angle of the source point counter-clockwise from the y axis. The

cone-beam projections are given by

p(s, t; β) =

∫

L(s,t,β)

f(x, y, z) dℓ,

where

~p0 = (−Ds0 sin β, Ds0 cosβ, 0) (3.9.28)

~p1 = (s cosβ + D0d sin β, s sin β −D0d cosβ, t) (3.9.29)

L(s, t, β) =

{

~p0 + α
~p1 − ~p0

‖~p1 − ~p0‖
: α ∈ R

}

. (3.9.30)
e,3d,cone,Lstb

Note that ~p1 − ~p0 = (s cosβ + Dsd sin β, s sin β −Dsd cosβ, t) and ‖~p1 − ~p0‖ =
√

D2
sd + s2 + t2.

Consider one row of the measured projection at angle β and vertical position t. That row forms a tilted fan with

the source point, with modified distances

D′
s0 = Ds0

√

1 + (t/Dsd)2

D′
sd = Dsd

√

1 + (t/Dsd)2.

Following §3.9.2.2 we apply the projection weighting given in (3.9.25) but with Ds0 and Dsd replaced by D′
s0 and

D′
sd respectively, i.e.,

D′
s0

√
(D′

sd)2 + s2
=

Ds0

√

1 + (t/Dsd)2
√

D2
sd + s2 + t2

. (3.9.31)
e,3d,cone,wtp

Then, we apply the usual ramp filter (3.4.14) to the measurements from each row of the detector. Then we perform

3D cone-beam backprojection using the image-domain weighting given in (3.9.26). No modifications of (3.9.26) are

needed because all quantities therein are “magnified” by the same factor
√

1 + (t/Dsd)2 when considering the tilted

fan, so the scaling factor cancels out. To summarize, the FDK algorithm consists of the following steps.

• Step 1. Compute weighted projections

p̃(s, t; β) = w1(s, t) p(s, t; β), w1(s, t) =
Ds0

√

1 + (t/Dsd)2
√

D2
sd + s2 + t2

. (3.9.32)
e,3d,cone,pst,w1

• Step 2. Filter each row of those projections using the ordinary ramp filter:

p̌(s, t; β) = p̃(s, t; β) ∗ h(s), (3.9.33)
e,3d,cone,pst,filter

where h(s) denotes the ramp filter given in (3.4.13) or (3.4.14).

• Step 3. Perform weighted cone-beam backprojection of those filtered projections:

f̂(x, y, z) =
1

2

∫ 2π

0

w2(x, y, β) p̌

(
Dsd

Ds0 − yβ
xβ ,

Dsd

Ds0 − yβ
z; β

)

dβ, w2(x, y, β) =
D2

sd

(Ds0 − yβ)2
.

(3.9.34)
e,3d,cone,back

(The factor Dsd

Ds0−yβ
is a magnification factor.)

3.9.5.2 Equiangular case (3rd generation multi-slice CT)

For a 3rd-generation multi-slice CT scanner, the FDK algorithm has the same basic steps as above, except that the 1D

weighting in (3.9.32) is replaced by:

w1(s, t) =
D′

s0

D′
sd

cos
s

D′
sd

=
Ds0

Dsd
cos

s

Dsd

√

1 + (t/Dsd)2
, (3.9.35)

e,3d,cone,pst,w1,arc

the filtering in (3.9.33) uses the modified ramp filter (3.9.21) or (3.9.24), and the 2D weighting in (3.9.34) is replaced

by (3.9.23).
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3.10 Summary (s,tomo,summ)
s,tomo,summ

This chapter has reviewed analytical methods for tomographic image reconstruction. We have considered the parallel-

beam geometry, fan-beam geometries for both flat and curved detectors, and the cone-beam geometry with a flat

detector. For analytical methods, each geometry requires its own derivation. In contrast, for iterative image recon-

struction, the basic formulations are the same for any geometry.

Interestingly, even though the topics in this chapter have been studied for decades, advances continue to be made.

For example, recently the subject of reconstructing regions of interest (from truncated sinogram data) has had break-

throughs [58, 127–129]. And there is ongoing progress on image reconstruction from the exponential Radon trans-

form [130–132].

Because of the shift invariance of (parallel-beam) projection and backprojection, the primary tool for understanding

these methods is Fourier analysis. It is something of a leap from the Fourier focus of this chapter to the linear algebra

focus of subsequent chapters; the next chapter attempts to partly bridge these approaches by using operators, the

continuous-space analog of matrices.

3.11 Problems (s,tomo,prob)
s,tomo,prob

p,tomo,ex,1-r2 Problem 3.1 Determine the Radon transform of the 2D function [133] f◦(r) =
(
1− r2

)
rect(r/2) .

p,tomo,ex,sqrt Problem 3.2 Determine the Radon transform of the 2D function f◦(r) = 2
√

1− r2 1{|r|≤1}.

p,tomo,separable Problem 3.3 Use the Fourier-slice theorem to show that the Radon transform of any separable function f(x, y) =
a(x) b(y) is given by

pϕ(r) =
1

|cosϕ| a
(

r

cosϕ

)

∗ 1

|sinϕ|b
(

r

sinϕ

)

.

Problem 3.4 Show that the Radon transform of the function f(x, y) = sinc(x) sinc(y) is given by

pϕ(r) =
1

max(|cosϕ| , |sinϕ|) sinc

(
r

max(|cosϕ| , |sinϕ|)

)

.

p,tomo,star Problem 3.5 Consider the following “star function” [12]:

star(r, ϕ) ,
1

|r|

N∑

n=1

δ((ϕ− ϕn)mod π) .

Show that the 2D FT of this function is star(ρ, Φ± π/2) .

Problem 3.6 Prove each of the Radon transform properties in §3.2.3.

Problem 3.7 Find a Radon transform property for an affine transformation of the object f(x, y), i.e.,

f(a11x + a12y + b1, a21x + a22y + b2)

with a11a22 − a12a21 6= 0.

Problem 3.8 Show that if 0 < a ≤ b then

1

a
rect

(x

a

)

∗1
b

rect
(x

b

)

=
b + a

2ba
tri

(
2x

b + a

)

−b− a

2ba
tri

(
2x

b− a

)

,

where tri was defined in (3.2.12).

Problem 3.9 Derive the projections of a square as given in (3.2.11). (Need typed.)
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p,radon,flat Problem 3.10 Find a nonzero object f(x, y) (other than a Dirac impulse) whose projections have the property that

they depend only on ϕ over their support, i.e.,

pϕ(r) =

{
gϕ, rmin(ϕ) ≤ r ≤ rmax(ϕ)
0, otherwise,

for some functions gϕ, rmin(ϕ), and rmax(ϕ) that depend on f(x, y).

Generalize to the case of fan-beam projections, i.e., find the object f(x, y) for which p(s, β) = rect
(

s
2s0

)

, where

s0 ≤ smax. (Assume roff = 0 for simplicity.)

Problem 3.11 Let pϕ(r) denote the Radon transform of a disk object as considered in Example 3.2.1. Determine

(analytically) p̌ϕ(r), the corresponding ramp-filtered projections, and plot. (Need typed.)

p,tomo,spline Problem 3.12 Given noisy, blurred, samples of the Radon transform of an object, one interesting reconstruction

approach is to first fit 1D spline functions to each projection view, and then filter those continuous-space fitted

projections using analytical expressions, and then backproject [134]. In other words, we make the approximation

pϕ(r) =
∑∞

n=−∞ cnb(r/∆R − n), where the coefficients cn are determined from the sampled projections by filter-

ing [135]. The ramp-filtered projections p̌ϕ(r) have the form p̌ϕ(r) =
∑∞

n=−∞ cnb̌(r/∆R − n). Find an analytical

expression for b̌(·) when b(·) is a cubic B-spline.

p,tomo,freq,dis Problem 3.13 An interesting property of the Radon transform is the frequency-distance relation or frequency-distance

principle that describes the characteristics of the 2D Fourier transform of a sinogram [97, 98, 136, 137].

• Consider f(x, y) = δ(x− x0, y − y0) and take the 2D FT of its sinogram to see where it is nonzero.

• Analyze the impulse response in the sinogram domain of such an apodization.

• Analyze how much noise reduction could be achieved with such method.

• Take the 2D sinogram of an image (over 360◦ for simplicity), compute its 2D DFT, and set to zero the coefficients

outside the bowtie region described in the papers cited above, then inverse transform and reconstruct the image by

FBP. Observe the effects.

Problem 3.14 §3.3 is missing an example where the laminogram fb(x, y) can be found analytically. Find an object

f(x, y) whose projections (pϕ(r) or Pϕ(ν)) and laminogram fb(x, y) have simple analytical expressions. Hint: [11,

p. 338] may be useful.

p,tomo,back,general Problem 3.15 Prove the general back-projection relationship (3.15).

Problem 3.16 §3.4.6 described how it is preferable to sample the (band-limited) ramp filter in the space domain for

the FBP method. For the BPF method, would it be advantageous to find the impulse response h(r) of the (band-limited)

cone filter and then sample it instead of sampling the cone directly? Discuss.

Problem 3.17 Some tomographic imaging systems cannot measure the projection views at every projection angle.

Such angularly incomplete data is known as limited angle tomography and is notoriously challenging.

One way to model the effects of such missing projection views is to set w(ϕ) to zero in the backprojection formula

(3.3.1) for angles ϕ that are missing, and to unity otherwise. Suppose we apply this idea to a system that only records

projection views where ϕ ∈ [0, 7π/8].
Sketch the support of the spectrum of the laminogram, i.e., Fb(u, v) in this case.

Explain why this is called the “missing wedge” problem (in 2D) or the “missing cone” in such 3D problems.

Explain why the BPF method cannot work in this case. (Need typed.)

Problem 3.18 Let bϕ(x, y) = pϕ(x cosϕ+y sinϕ) denote the image formed by backprojection of a projection at angle

ϕ, and let Bϕ(u, v) denote its 2D Fourier transform. Relate Bϕ(u, v) to F (u, v).
Hint: relate B0(u, v) to F (u, 0) δ(v) . (Need typed.)

Problem 3.19 The set (3.9.4) is too large to be realistic for a practical system like that illustrated in Fig. 3.9.1. Find

a more realistic expression for L(s, β).

p,tomo,artifact Problem 3.20 Each of the images in Fig. 3.11.1 exhibits some type of artifact due to data limitations or errors. Match

the figure with the corresponding problem in the following list.



c© J. Fessler. November 19, 2009 3.40

1. Limited projection angular range (less than 180◦).

2. Under-sampled projection view angles.

3. Single detector channel with miscalibrated gain.

4. Misaligned detector (radial shift).

5. Projection views over [0, 180◦] instead of [0, 180◦ nA−1
nA

]
6. Fan-beam data into parallel-beam reconstructor

fd

a c

e

b

Figure 3.11.1: Illustration of common artifacts for Problem 3.20.

fig˙tomo˙artifact

Problem 3.21 Modify (3.3.2) and (3.3.5) to consider the case of a 360◦ rotation. Show that the impulse response is

given by h(r, ϕ) = 1
|r| [w(ϕ + π/2)+ w(ϕ + 3π/2)] for ϕ ∈ [−π/2, π/2] and the frequency response is H(ρ, Φ) =

1
|ρ| [w(Φ)+ w(Φ + π)] . These relations are useful for analyzing 360◦ SPECT scans. (Need typed.)

Problem 3.22 Find a relationship between P̌ϕ(ν) and Fb(u, v) or Fb(ρ, Φ) to complete the bottom link in Fig. 3.3.3.

p,tomo,fbp,rect Problem 3.23 Find P̌ϕ(ν) and p̌ϕ(r) in Example 3.4.5 when ϕ = 0.

p,tomo,ramp,gauss Problem 3.24 Suppose the ideal ramp filter is applied to the projections pϕ(r) of a gaussian object f(x, y) =

w−2 e−π(r/w)2 . Determine analytically the resulting filtered projections p̌ϕ(r) and plot.

p,tomo,ramp,apod,gauss Problem 3.25 Suppose the ideal ramp filter |ν| is apodized by a gaussian A(ν) = e−πν2

instead of by the discontin-

uous rect function (3.4.12). Determine the resulting impulse response ha(r) of the apodized ramp filter.

p,tomo,ramp,apod,hann Problem 3.26 Suppose that a Hanning window is applied to the ramp filter, i.e.,

A(ν) = rect

(
ν

2ν0

)
1 + cos(πν/ν0)

2

in (3.4.10). Using Fourier transform properties, find analytically the impulse response ha(r) of the apodized ramp

filter, and plot it. Compare to Fig. 3.4.6 and comment on the advantages and disadvantages of this choice.
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p,tomo,ramp,apod,tri Problem 3.27 Suppose the ramp filter is apodized using a triangular window function A(ν) = tri(ν/νc) . Find an

analytical expression for the impulse response ha(r) of the resulting apodized ramp filter using symbolic integration.

p,tomo,fbp,apod,exp Problem 3.28 Suppose the apodizer A(ν) = e−a|ν| is used in the FBP method. Find the resulting image PSF h(r).

Problem 3.29 Real tomographs can be aligned imprecisely, leading to offset projections: qϕ(r) = pϕ(r − τ) for

some offset center of rotation τ . Determine the PSF of such an imaging system when the FBP method is applied to

qϕ(r). (Solve?)

Problem 3.30 Would the inverse filter approach of §3.5.4 work if we used nearest-neighbor interpolation, i.e., h(r) =
rect(r/∆R)? Explain why or why not.

Problem 3.31 A PET scanner measures line integrals along chords connecting detector pairs typically arranged

around a circle. The natural measurement model would be g(ϕ1, ϕ2) =
∫

L(ϕ1,ϕ2)
f(x, y) dℓ, whereL(ϕ1, ϕ2) denotes

the set of points along the chord connecting the point (r0, ϕ1) with the point (r0, ϕ2) (in polar coordinates), where

r0 is the radius of the system. Following §3.9, derive a BPF method for this geometry. It may be easier to use the

transformed parameterization: ϕ = (ϕ1 + ϕ2)/2, γ = (ϕ2 − ϕ1)/2..

Problem 3.32 Using (3.2.10) and (3.2.20), determine the Radon transform of an ellipse object centered at (cx, cy)
with major axes of half lengths rx, ry , tilted at an angle χ with respect to the horizontal axis. Assume the function is

unity within the ellipse and zero outside. Generalize to the case of fan-beam projections.

p,tomo,lambda Problem 3.33 The method called lambda tomography is a local tomography approach where one back-projects the

second derivative ∂2

∂r2 pϕ(r) of the projections [138–141]. Show that the frequency-domain relationship between the

resulting backprojected image and the original image is

B(u, v) = −2πΛ(ρ)F (u, v),

where Λ(ρ) = 2π |ρ| is the square root of −∆, the positive Laplace operator. In 2D, the positive Laplace operator is

−∆ = d
2

dx2 + d
2

dy2 , cf. (2.4.1), which has Fourier transform ∆̂(ρ) = (2πρ)2.

p,tomo,hilbert Problem 3.34 A disadvantage of the ramp filter in (3.4.2) and the Hilbert transform in (3.4.6) is that they both depend

on pϕ(r) for all r ∈ R. Therefore, if the projection data are truncated, meaning available only for r in a finite interval

[rmin, rmax], then FBP methods based on the ramp filter will produce very large artifacts.

Following [127], consider what happens if we simply differentiate each projection and then back project:

b(x, y) ,
−1

2π

∫ π

0

d

dr
pϕ(r)

∣
∣
∣
∣
r=x cosϕ +y sinϕ

dϕ . (3.11.1)
e,tomo,back,deriv

• Using (3.3.8) show that

B(u, v) = −ı sgn(v)F (u, v) .

In other words, for each x, b(x, y) is the Hilbert transform of f(x, y) along the y-direction.

• Determine b(x, y) analytically for the case f(x, y) = ◦r/r0. Hint: use Example 3.4.4, and see Fig. 3.11.2.

• Sample the solution in the previous part (ala Fig. 3.11.2) and apply a FFT-based inverse Hilbert transform method

to recover f [n, m] (approximately) from b[n, m]. Hint: use mirror end conditions along the y direction to avoid

artifacts due to discontinuities at the image edge.

• todo: try it in matlab

todo: compare the FFT-based inverse Hilbert transform approach to the finite Hilbert inverse described in [142]

[127] [143].
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