
B4M36ESW: Efficient software
Lecture 7: Memory, caches, algorithms

Michal Sojka
michal.sojka@cvut.cz

April 23, 2018

1 / 45

Outline

1 Why is DRAM slow?

2 Caches
Architecture
Memory performance characteristics
Data structures and dynamic memory allocations
Matrix multiplications

3 Caches & memory in multi-processor systems
True and false sharing
NUMA

4 Conclusion

2 / 45

Why is DRAM slow?

Outline

1 Why is DRAM slow?

2 Caches
Architecture
Memory performance characteristics
Data structures and dynamic memory allocations
Matrix multiplications

3 Caches & memory in multi-processor systems
True and false sharing
NUMA

4 Conclusion

3 / 45

Why is DRAM slow?

Types or RAM

Static RAM (SRAM)
Fast but expensive
6 transistors per bit

Dynamic RAM (DRAM)
Capacitor – (Dis)Charging is not instantaneous
Reading discharges capacitor (write after read)
Compromise: capacity/size/power consumption

4 / 45

Why is DRAM slow?

DRAM in the computer

Intel’s P55 platform
Source: ArsTechnica

CPU contains a memory
controller (MC)
MC talks to DRAM chips via
“Memory Bus”, using a
protocol
Details on next slides

5 / 45

Why is DRAM slow?

How DRAM chips work?

Addressing individual cells is
impractical (many wires)
Chip is organized in rows and columns
(and banks), address is multiplexed
In the chip, row and column
multiplexers (green and pink rectangles) select the
lines according to address bits
R/W operations happen in many chips
in parallel to work with the whole data
word (64 bits)
Writing: New value is put on Data
signal after row and column address
were selected (see next slide)

It takes some time to charge the
capacitors

(one bit)

6 / 45

Why is DRAM slow?

SDRAM communication protocol

Access protocol is synchronous
– there is a clock signal
SDRAM (Synchronous DRAM)
CLK provided by memory
controller (FSB frequency – typ.
800–1600 MHz)

Double/Quad-pumped
Max. speed: 64 bit × 8 × 200MHz = 12.8GB/s

Not reachable in reality
DRAM technology requires tRCD and CL delays (they cannot be
shortened)
Data sent in bursts

Size of the burst corresponds to cache-line size
Sending just one word would be very inefficient due to tRCD and CL
delays

7 / 45

Why is DRAM slow?

Timing parameters of standard DDR4 modules

Standard
name

Memory
clock
(MHz)

I/O bus
clock
(MHz)

Data
rate
(MT/s)

Module
name

Peak
transfer
rate
(MB/s)

Timings,
CL-tRCD-
tRP

CAS
latency
(ns)

DDR4-1600J*
DDR4-1600K
DDR4-1600L

200 800 1600 PC4-
12800 12800

10-10-10
11-11-11
12-12-12

12.5
13.75
15

DDR4-1866L*
DDR4-1866M
DDR4-1866N

233.33 933.33 1866.67 PC4-
14900 14933.33

12-12-12
13-13-13
14-14-14

12.857
13.929
15

DDR4-2133N*
DDR4-2133P
DDR4-2133R

266.67 1066.67 2133.33 PC4-
17000 17066.67

14-14-14
15-15-15
16-16-16

13.125
14.063
15

DDR4-2400P*
DDR4-2400R
DDR4-2400U

300 1200 2400 PC4-
19200 19200

15-15-15
16-16-16
18-18-18

12.5
13.33
15

Source: Wikipedia
8 / 45

Caches

Outline

1 Why is DRAM slow?

2 Caches
Architecture
Memory performance characteristics
Data structures and dynamic memory allocations
Matrix multiplications

3 Caches & memory in multi-processor systems
True and false sharing
NUMA

4 Conclusion

9 / 45

Caches

Cache terminology
Spatial locality: accessed memory objects are close to each other

Code: inner loops
Data: structures (reading of one field is often followed by reads of
other fields)

Temporal locality: The same data will be used multiple times in a
short period of time

Code: loops
Data: e.g. digital filter coefficients are accessed every sampling
period

Cache hit: memory request is serviced from the cache, without
going to higher level memory
Cache miss: opposite of cache hit

cold miss, capacity miss, conflict miss
true sharing miss, false sharing miss

Cache line eviction: cache line is removed from the cache to make
space for new data
Cache replacement policy: LRU, pseudo LRU, random

10 / 45

Caches » Architecture

Outline

1 Why is DRAM slow?

2 Caches
Architecture
Memory performance characteristics
Data structures and dynamic memory allocations
Matrix multiplications

3 Caches & memory in multi-processor systems
True and false sharing
NUMA

4 Conclusion

11 / 45

Caches » Architecture

CPU caches – big picture

All loads/stores go through cache
CPU↔ Cache: fast connection
Cache↔Main memory: FSB bus
It is advantage to have separate
caches for instructions and data

12 / 45

Caches » Architecture

Cache associativity

Direct-mapped cache
simple

Fully associative cache
ideal

Set associative cache
compromise

13 / 45

Caches » Architecture

Direct-mapped cache
Address:

Memory

Cache sets

{
64 B

Tag

0
0

0

0

1

1

Each memory location
has just one cache line
associated with it.
Memory locations at
multiples of cache size
always collide!
Besides data, cache
stores the tag

14 / 45

Caches » Architecture

Self-evicting of code

Memory

Cache

{
64 B

outer_func()

inner_func()

void outer_func() {
for (int i = 0; i < 1000; i++)

inner_func();
}
void inner_func() {
// do something

}

Two cache misses every
iteration (instruction
fetches)!
Solution: Improve code
layout by putting related
(and hot) functions
together.

__attribute__((hot)) void outer_func();
__attribute__((hot)) void inner_func();

15 / 45

Caches » Architecture

Cache write policies

Write-back “Common” case. Written data is cached for later reuse.
Write-through Written data bypass the cache and therefore never evicts

other data from the cache. Useful when we know the data
will not be needed soon.
#include <emmintrin.h>
void _mm_stream_si32(int *p, int a);
void _mm_stream_si128(int *p, __m128i a);
void _mm_stream_pd(double *p, __m128d a);
#include <xmmintrin.h>
void _mm_stream_pi(__m64 *p, __m64 a);
void _mm_stream_ps(float *p, __m128 a);
#include <ammintrin.h>
void _mm_stream_sd(double *p, __m128d a);
void _mm_stream_ss(float *p, __m128 a);

Write-Combining All writes to the cache line are combined together and
written at once. This avoids one memory read, because
when the cache line is fully overwritten, there is no point in
reading the old value. Write combining is often used for
frame buffer memory (e.g. filling screen with a color).

16 / 45

Caches » Architecture

Set associative caches

Memory

Cache

{
64 B

Way 0 Way 1 {

S
e
ts

17 / 45

Majority of today’s hardware
Typically 8–16 ways
Cache replacement policy – determines which
way is evicted

Examples: LRU, random, …

Caches » Memory performance characteristics

Outline

1 Why is DRAM slow?

2 Caches
Architecture
Memory performance characteristics
Data structures and dynamic memory allocations
Matrix multiplications

3 Caches & memory in multi-processor systems
True and false sharing
NUMA

4 Conclusion

18 / 45

Caches » Memory performance characteristics

Sequential access

 0

 5

 10

 15

 20

 4 16 64 256 1024 4096 16384

C
y
cl

e
s

WSS [KiB]

Cycles/access

Intel i7-2600
19 / 45

char A[65536*1024];
for (rep = 0; rep < REP; rep++)

for (i = 0; i < WSS; i += 64)
A[i]++;

Caches » Memory performance characteristics

Random access

 0

 50

 100

 150

 200

 250

 1 4 16 64 256 1024 4096 16384

C
y
cl

e
s

WSS [KiB]

Cycles/access
L1 misses
L2 misses
L3 misses

TLB misses

Intel Core i7-2600, (perf counters not in scale)
20 / 45

char A[65536*1024];
WSS = (1<<N)
mask = (1<<N) - 1;
for (rep = 0; rep < REP; rep++) {

addr = ((rep + 523)*253573) & mask;
A[addr]++;

}

Caches » Memory performance characteristics

Translation Lookaside Buffer (TLB)
Caches translation of virtual to physical address
On TLB miss, page walk has to be performed (2 to 5 levels)
Intel i7-2600 has 512 L2 TLBs ⇒ 512×4 kB = 2 MB
Improvement: use so called huge pages (1 page = 2 MB, PS=1)

Linux: in some cases automatically or explicitly via hugetlbfs

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

Directory Ptr

PTE

Linear Address (Virtual address)

Page Table

PDPTE

CR3

39 38

Pointer Table

9
9

40

12
9

40

4-KByte Page

Offset

Physical Addr

PDE with PS=0

Table

011122021

Directory

30 29

Page-Directory-

Page-Directory

PML4

47

9

PML4E

40

40

40

21 / 45

Caches » Memory performance characteristics

Cache-related preemption delay

When a thread is preempted by another thread, the preempting
thread likely evicts some data from the cache.
After preemption ends, the preempted thread continues executing
and experiences a lot of cache misses!
Certain (older) architectures has to flush TLBs when switching
address spaces (processes).

Modern architectures allow tagging TLBs with address space
identifier (ASID, PCID, …)

High-performance software tries to limit preemptions.
Beware – limiting preemption increases response time!

22 / 45

Caches » Data structures and dynamic memory allocations

Outline

1 Why is DRAM slow?

2 Caches
Architecture
Memory performance characteristics
Data structures and dynamic memory allocations
Matrix multiplications

3 Caches & memory in multi-processor systems
True and false sharing
NUMA

4 Conclusion

23 / 45

Caches » Data structures and dynamic memory allocations

Data structures and cache friendliness

Arrays + sequential access – nice
Dynamically allocated linked lists – depends on memory allocator
(probably like random access – bad)
Search trees – random access

For most data structures/algorithms, there exist cache-optimized
variants.
These are more tricky than textbook examples.

24 / 45

Caches » Data structures and dynamic memory allocations

Dynamic memory allocator (malloc(), new)

Memory allocators try to maintain spacial and temporal locality
Spatial locality is hard to achieve when heap is fragmented

after many new/delete operations
Temporal locality – when memory is freed/deleted, subsequent
allocation tries to use that memory because it is cache-hot.

25 / 45

Caches » Matrix multiplications

Outline

1 Why is DRAM slow?

2 Caches
Architecture
Memory performance characteristics
Data structures and dynamic memory allocations
Matrix multiplications

3 Caches & memory in multi-processor systems
True and false sharing
NUMA

4 Conclusion

26 / 45

Caches » Matrix multiplications

Matrix multiplication
Naive implementation

Matrix multiplication: Naive

A mem:8 cache hit:4

×

B mem:8 cache hit:0

=

C mem:8 cache hit:7

Totals: mem:24 cache hits:11 ≅45%

A

B

C

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

for (k = 0; k < N; ++k)
C[i][j] = A[i][k] * B[k][j];

One matrix element: double (8B)
Cache line size: 16B
Fully associative caches
L2 cache: 128B, L1 cache: 32B 27 / 45

Caches » Matrix multiplications

Implementation with transposition
Matrix multiplication: B transposed

A mem:8 cache hit:4

×

B mem:8 cache hit:4

=

C mem:8 cache hit:7

Totals: mem:24 cache hits:15 ≅62%

A

B

C

double B[N][N];
for (i = 0; i < N; ++i)

for (j = 0; j < N; ++j)
B[i][j] = Bsrc[j][i];

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

for (k = 0; k < N; ++k)
C[i][j] = A[i][k] * B[k][j];

Performance (execution time): naive: 100%, transposed: 23,4% 28 / 45

Caches » Matrix multiplications

Tiled implementation
Matrix multiplication: Tiled, B transposed

A mem:128 cache hit:112

×

B mem:128 cache hit:112

=

C mem:128 cache hit:120

Totals: mem:384 cache hits:344 ≅89%

A

B

C

for (k1 = 0; k1 < N; k += tile)
for (j1 = 0; j1 < N; j += tile)

for (i1 = 0; i1 < N; i += tile)
for (i = i1; i < i1 + tile; ++i)

for (j = j1; j < j1 + tile; ++j)
for (k = k1; k < k1 + tile; ++k)
C[i][j] += A[i][k] * B[k][j];

Each “tile” fits into the cache
Performance: 17.3% of naive
implementation (9.5% with
vectorized (SIMD) operations)

29 / 45

Caches » Matrix multiplications

Tiled implementation and L1 cache
Matrix multiplication: Tiled, B transposed

A mem:126 L1 hit:110 L2 hit:0

×

B mem:126 L1 hit:63 L2 hit:47

=

C mem:126 L1 hit:110 L2 hit:8

Totals: mem:378 L1 hits:283 ≅74% L2 hits:55 ≅14% cache hits:338 ≅89%

A

B

C

for (k1 = 0; k1 < N; k += tile)
for (j1 = 0; j1 < N; j += tile)

for (i1 = 0; i1 < N; i += tile)
for (i = i1; i < i1 + tile; ++i)

for (j = j1; j < j1 + tile; ++j)
for (k = k1; k < k1 + tile; ++k)
C[i][j] += A[i][k] * B[k][j];

No temporal L1 cache hit in B
75% L1 hits (in total)

30 / 45

Caches » Matrix multiplications

Two-level tiled implementation
Matrix multiplication: 2-level tiled, B transposed

A mem:126 L1 hit:94 L2 hit:16

×

B mem:126 L1 hit:94 L2 hit:16

=

C mem:126 L1 hit:110 L2 hit:8

Totals: mem:378 L1 hits:298 ≅78% L2 hits:40 ≅10% cache hits:338 ≅89%

A

B

C

for (k2 = 0; k2 < N; k2 += tile2)
for (j2 = 0; j2 < N; j2 += tile2)

for (i2 = 0; i2 < N; i2 += tile2)
for (k1 = k2; k1 < k2 + tile2; k += tile1)

for (j1 = j2; j1 < j2 + tile2; j += tile1)
for (i1 = i2; i1 < i2 + tile2; i += tile1)

for (i = i1; i < i1 + tile1; ++i)
for (j = j1; j < j1 + tile1; ++j)

for (k = k1; k < k1 + tile1; ++k)
C[i][j] += A[i][k] * B[k][j];

79% L2 hits

31 / 45

Caches » Matrix multiplications

Recursive matrix multiplication

Generalization to arbitrary number of cache levels
N×N multiplication = 8 multiply-add of (N/2)×(N/2) multiplications[

C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

]
×
[
B11 B12

B21 B22

]
=[

A11B11 A11B12

A21B11 A21B12

]
×
[
A12B21 A12B22

A22B21 A22B22

]

32 / 45

Caches & memory in multi-processor systems

Outline

1 Why is DRAM slow?

2 Caches
Architecture
Memory performance characteristics
Data structures and dynamic memory allocations
Matrix multiplications

3 Caches & memory in multi-processor systems
True and false sharing
NUMA

4 Conclusion

33 / 45

Caches & memory in multi-processor systems

Cache coherency

In symmetric multi-processor (SMP) systems, caches of the CPUs
cannot work independently from each other.

Maintaining of uniform view of memory for all processor is called
“cache coherency”
If some processor writes to a cache line, other processors have to
clean the corresponding cache line from their caches.

Remember: inter-core (inter-socket) communication is “slow”
Cache synchronization protocol: MESI(F)

A dirty cache line is not present in any other processor’s cache.
Clean copies of the same cache line can reside in arbitrarily many
caches.

34 / 45

Caches & memory in multi-processor systems » True and false sharing

Outline

1 Why is DRAM slow?

2 Caches
Architecture
Memory performance characteristics
Data structures and dynamic memory allocations
Matrix multiplications

3 Caches & memory in multi-processor systems
True and false sharing
NUMA

4 Conclusion

35 / 45

Caches & memory in multi-processor systems » True and false sharing

True sharing

Program is slow because cache line with shared data travel from
one core to another.
Typically example of true sharing: each mutex is shared between
CPUs.
When that is a problem (too much contention):

make locking more fine-grained,
or change your data structure (e.g. per-CPU data),
and/or algorithms to be more cache friendly.

std::atomic_int32_t counter;

void thread_cpu0() {
while (true)
counter++;

}

void thread_cpu1() {
while (true)

counter++;
}

36 / 45

Caches & memory in multi-processor systems » True and false sharing

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

All CPUs executing atomic increment of global variable

37 / 45

Caches & memory in multi-processor systems » True and false sharing

False sharing

Data accessed from different CPUs is not shared but happen to be
stored in a single cache line.

// Per-CPU counters (FIXME: Do not hardcode cache line size)
std::atomic_int32_t counter_cpu0 __attribute__((align(64)));
std::atomic_int32_t counter_cpu1 __attribute__((align(64)));

void thread_cpu0() {
while (true)
counter_cpu0++;

}

void thread_cpu1() {
while (true)

counter_cpu1++;
}

Linux: How to determine cache size at run time:
sysconf(_SC_LEVEL1_DCACHE_LINESIZE);

38 / 45

Caches & memory in multi-processor systems » NUMA

Outline

1 Why is DRAM slow?

2 Caches
Architecture
Memory performance characteristics
Data structures and dynamic memory allocations
Matrix multiplications

3 Caches & memory in multi-processor systems
True and false sharing
NUMA

4 Conclusion

39 / 45

Caches & memory in multi-processor systems » NUMA

Non-Uniform Memory Access (NUMA)

40 / 45

Caches & memory in multi-processor systems » NUMA

Thread migrations between cores

OSes tend to do load balancing
By default threads are automatically migrated from overloaded to
underloaded cores
Migrated threads loose their cache footprint (cache-related migration
delay)
Migrated threads loose their NUMA locality

If you do your own load balancing in the application, pin the threads
to CPUs (set their CPU affinity):
cpu_set_t cpuset;
pthread_t thread;
thread = pthread_self();
/* Set affinity mask to include only CPU 2 */
CPU_ZERO(&cpuset);
CPU_SET(2, &cpuset);
s = pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);

41 / 45

Caches & memory in multi-processor systems » NUMA

libnuma (Linux)
#include <numa.h>

int numa_available(void);

int numa_max_possible_node(void);
int numa_num_possible_nodes();

int numa_max_node(void);
//...
int numa_preferred(void);
void numa_set_preferred(int node);
void numa_set_interleave_mask(struct bitmask *nodemask);
//...
void numa_bind(struct bitmask *nodemask);
void numa_set_localalloc(void);
void numa_set_membind(struct bitmask *nodemask);

42 / 45

Conclusion

Outline

1 Why is DRAM slow?

2 Caches
Architecture
Memory performance characteristics
Data structures and dynamic memory allocations
Matrix multiplications

3 Caches & memory in multi-processor systems
True and false sharing
NUMA

4 Conclusion

43 / 45

Conclusion

Size matters

Even though we have terabytes of memory, size and layout of the
data structures still matters.
Only few kilobytes of memory is fast, the rest is slow!

44 / 45

Conclusion

References

Ulrich Drepper, “What Every Programmer Should Know About
Memory”, 2007/11 [online],
http://people.redhat.com/drepper/cpumemory.pdf

45 / 45

http://people.redhat.com/drepper/cpumemory.pdf

	Why is DRAM slow?
	Caches
	Architecture
	Memory performance characteristics
	Data structures and dynamic memory allocations
	Matrix multiplications

	Caches & memory in multi-processor systems
	True and false sharing
	NUMA

	Conclusion

