Part VI

3D Structure and Camera Motion
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@Reconstructing Camera Systems
®Bundle Adjustment
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» Constructing Cameras from the Fundamental Matrix

Given F, construct some cameras P, P5 such that F is their fundamental matrix.
Solution P, =[I 0 See [H&Z, p. 256]
Py = [[e],F+ev e

where
e v is any 3-vector, e.g. v=e; = null(F), i.e. Fe; =0, to make the camera finite
e A\ #0is a scalar,

e e = null(FT), ie. e F=0

Proof
1. S is skew-symmetric iff x"Sx =0 for all x look-up the proof!
2. we have x ~ PX
3. anon-zero F is a f.m. of (P1, P2) iff P;FPl is skew-symmetric
4. ifPy=[I 0] and Py =[SF e2] then F corresponds to (P1,P2) by Step 3
5. we can write S = [s],,
6. a suitable choice is s = e [Luong96]
7. for the full the class including v, see [H&Z, Sec. 9.5]
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» The Projective Reconstruction Theorem

Observation: Unless P; are constrained, then for any number of cameras i = 1,...,k

m ~P,X=P,H 'HX =P, X
——
P/ X/’

e when P; and X are both determined from correspondences (including calibrations
K;), they are given up to a common 3D homography H
(translation, rotation, scale, shear, pure perspectivity)

mi ma X )¢

e when cameras are internally calibrated (K; known) then H is restricted to a similarity
since it must preserve the calibrations K; [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981]
(translation, rotation, scale)
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» Reconstructing Camera Systems

Problem: Given a set of p decomposed pairwise essential matrices Ei]’ = [fij]XRi]- and

calibration matrices K; reconstruct the camera system P;, i =1,...,k
—81 and —146 on representing E

We construct calibrated camera pairs P;; € R®* 129

—1 S .
Pi; = {KI P,} = {AI AO] e R%*

—1 al
® singletons ¢, j correspond to graph nodes k nodes
® pairs ij correspond to graph edges p edges

P, En P P; Py

P.; are in different coordinate systems but these are related by similarities P;;H;; = P,

I 0 Rij trij R Ri tz‘
{Rz‘j ‘Ez‘j} [OT 52’]} a {RJ ta] (29)
————
R6.4 H,,‘7€R4v4 R6,4

® (29) is a linear system of 24p egs. in Tp 4+ 6k unknowns Tp ~ (tij, Rij, 8:5), 6k ~ (Rs, t;)
e each P; appears on the right side as many times as is the degree of node P; eg. P5 3-times
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»cont’d

L Ri;; | _ [Rs tij |t
Fa. (29) implies [Rini.i] B {Ra] |:Rijtij +.9,-,_,-E1-J B L:j]

e R;; and t;; can be eliminated:

RiRi =R,  Ryti+siyty=t;, s3>0 (30)
® note transformations that do not change these equations assuming no error in Ry
1. R;— R;R, 2. t;— ot; and s — 0555, 3. ti—t;+Rit

o the global frame is fixed, e.g. by selecting

k
R =1, th =0, %ZSU =1 (31)
i=1 W]

® rotation equations are decoupled from translation equations
® in principle, s;; could correct the sign of Eij from essential matrix decomposition —81

but R; cannot correct the a sign in R;;
= therefore make sure all points are in front of cameras and constrain s;; > 0; —83

+ pairwise correspondences are sufficient
— suitable for well-distributed cameras only (dome-like configurations)
otherwise intractable or numerically unstable
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»Solving Eq. (30) by Stepwise Gluing

Given: Calibration matrices K; and tentative correspondences per camera triples.
Initialization
1. initialize camera cluster C with Py, P,

2. find essential matrix E12 and matches
M2 by the 5-point algorithm —88

3. construct camera pair

P,=Ki[I 0], P;=Kz[R t]

4. compute 3D reconstruction {X;} per
match from Mo —105

5. initialize point cloud X with {X;}
satisfying chirality constraint z; > 0
and apical angle constraint |a;| > ar

Attaching camera P; ¢ C
1. select points X from X that have matches to P;
2. estimate P; using X;, RANSAC with the 3-pt alg. (P3P), projection errors e;; in X; —68
3. reconstruct 3D points from all tentative matches from P; to all P}, [ # k that are not in X
4. filter them by the chirality and apical angle constraints and add them to X

5. add P; to C
6. perform bundle adjustment on X and C coming next —137
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Finding The Rotation Component in Eq. (30): A Global Algorithm

Task: Solve RijR; =R, i,j € V, (i,j) € E where R are a 3 x 3 rotation matrix each.
Per columns ¢ =/1, 2,3 of R;:

U f. f Riri —rS=0, foralli,j (32)
e fix ¢ and denote r¢ = [I‘i, rs,..., I‘H T sth columns of all rotation matrices stacked; r® € R3F
e then (32) becomes Dr¢ =0 D € R37:3F
e 3p equations for 3k unknowns — p > k in a 1-connected graph we have to fix r{ = [1,0, 0]
Ex: (k=p=23)
Rur(j — r§ =0 R12 —I 0 I'lf
— Rosr5 —r5 =0 — Dr°= 0 Ros —1I r3| =0
A - c
Risri —r5=0 Ris 0 —I]I™
<
e must hold for any ¢ r
Idea: [Martinec & Pajdla CVPR 2007]
1. find the space of all r¢ € R3F that solve (32) D is sparse, use [V,E] = eigs(D’*D,3,0); (Matlab)
2. choose 3 unit orthogonal vectors in this space 3 smallest eigenvectors
3. find closest rotation matrices per cam. using SVD  because ||r®|| = 1 is necessary but insufficient

L . R; =UV', where R; = UDV "
o global world rotation is arbitrary '
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Finding The Translation Component in Eq. (30)
From (30) and (31):

d < 3 — rank of camera center set, p — #pairs, k — # cameras
k
Rijti + Sijf]ij —t; = 0, Zti =0, ZSW’ =Dp, Sij > 0, t, € Rd
\ <//;_/———/
e inrank d: d-p+d+ 1 équations for d- k 4+ p unknowns — p > % def
Ex: Chains and circuits

(d, k)
construction from sticks of known orientation and unknown length?
p=k—1 k=p=4

k=p>4
o
f‘\

O/O

k < 2 for any d

3 > d > 2: non-collinear ok 3 > d > 3: non-planar ok 32>d >k — 1: impossible

e equations insufficient for chains, trees, or when d = 1 collinear cameras
e 3-connectivity implies sufficient equations for d = 3 cams. in general pos. in 3D
— s-connected graph has p > [%] edges for s > 2, hence p > [%] > Q(3,k) = 32k -2
e 4-connectivity implies sufficient eqns. for any k when d = 2
— since p > [2k] > Q(2,k) =2k —3
— maximal planar tringulated graphs have p = 3k — 6
and give a solution for k > 3

coplanar cams

maximal planar triangulated graph example:
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cont’d

Linear equations in (30) and (31) can be rewritten to
Dt =0,  t=[t]{, b3, ..,t], s12, .-, 85, -]
ford=3: teR3**P, D € R3"3%*P s sparse

t"=argmint D' Dt
t,s;;>0

e this is a quadratic programming problem (mind the constraints!)

z
t

zeros (3*k+p,1);
quadprog(D.’*D, z, diag([zeros(3+*k,1); -ones(p,1)]), z);

e but check the rank first!
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»Bundle Adjustment

Given: Required:
1.) set of 3D points {X;}?_, 1. corrected 3D points {X;}_,
set of cameras {P;}j_; 2. corrected cameras {P}}5_;

3. fixed tentative projections Latent:

X 1. visibility decision v;; € {0,1} per m;;

e for simplicity, X, m are considered Cartesian (not homogeneous)
e we have projection error e;;(X;,Pj) = x; — m; per image feature, where x; = P;X;
e for simplicity, we will work with scalar error e;; = ||e;;||
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Robust Objective Function for Bundle Adjustment

The data model is constructed by marginalization, as in Robust Matching Model —113

s [ Px= [T TT (- Romles | X0P)) + Pum(ess | X))

pts:i=1cams:j=1

marginalized negative log-density is (—114) 2 (x r,
u

Q= ~lospfe} | {PX) =33 ~log(e T +t) « ZZVU (Xi,P)

pe3; (X, P;j)) = v (X, Pj)

® ¢;; is the projection error (not Sampson error)
® v;; is a 'robust’ error fcn.; it is non-robust (v;; = e;;) when t =0 10
e p(-) is a ‘robustification function’ we often find in M-estimation
e the L;; in Levenberg-Marquardt changes to vector

al/ij 1 1 1 8322]' (9)

Li) = - : : R 33
(Lish 90 14 1.5 @/C0D) vy(6) 07 06, (33)
——

6=1,t=0.02

2

2
€ (

X)=X

small for big e; ; % -2 0 2 4
but the LM method stays the same as before —+107-108

e outliers: almost no impact on ds in normal equations because the red term in (33) scales
contributions to both sums down for the particular 1]

- Z Ll vij (0 (Z L] )
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»Sparsity in Bundle Adjustment

We have ¢ = 3p + 11k parameters: 0 = (X1, Xo,...,X,; P1,Pa,...,Pk) points, cameras
We will use a running index r =1,...,2, z=p-k. Then  each r corresponds to some i, j

0" = arg mginz1 1/3(9), 0°t=0°+d,, — ZILTTW(GS) — (Zl L'L, + ) diag LILT> d;
r= r= r=

The block form of L, in Levenberg-Marquardt (—107) is zero except in columns ¢ and j:

r-th error term is 12 = p(e?j(Xi,Pj))

i j r = (i,7) blocks:
L= mmmmoer 11 0:X;,1x3
E:Pj,1x 11

blocks: . 3p
D:X¢7X¢,3><3 T _

D:Xi—Pj,finl ZLTLT_
O:P;,—P,, 11x11 =1

e ‘“points first, then cameras” scheme
e standard bundle adjustment eliminates points and solves cameras, then back-substitutes
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»Choleski Decomposition for B. A.
The most expensive computation in B A. is solving the normal egs:

find d such that Z L] v (0°) = (Z L L, + A diag LILr>dS
This is a linear set of equations Ax = b, where !

e A is very large approx. 3 - 10% x 3 - 10% for a small problem of 10000 points and 5 cameras
e A is sparse and symmetric, A1 s dense direct matrix inversion is prohibitive

Choleski: Every symmetric positive definite matrix A can be decomposed to
A =LLT, where L is lower triangular. If A is sparse then L is sparse, too.

1. decompose A = LL" transforms the problem to solving LL x = b
i : Le=b ¢
2. solve for x in two passes: ~ LTY =¢
Lc=b c; = L;l (bi — Z LijCj) forwarca substitution, 7 =1,...
j<i ¢ = Ly L.,1 ¢ = (u (L (_Q 1>
L'x=c X; 1= L;l (ci — Z LjiX]‘) back—subst|tut|on
J>i

® Choleski decomposition is fast (does not touch zero blocks)

non-zero elements are 9p + 121k 4 66pk ~ 3.4 - 10%; ca. 250% fewer than all elements
® it can be computed on single elements or on entire blocks
® use profile Choleski for sparse A and diagonal pivoting for semi-definite A [Triggs et al. 1999]
® )\ controls the definiteness
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Profile Choleski Decomposition is Simple

function L = pchol(A)
%
% PCHOL profile Choleski factorization,

% L = PCHOL(A) returns lower-triangular sparse L such that A = LxL’
% for sparse square symmetric positive definite matrix A,
% especially useful for arrowhead sparse matrices.

% (c) 2010 Radim Sara (sara@cmp.felk.cvut.cz)

[p,q]l = size(A);
if p "= q, error ’Matrix must be square’; end

L = sparse(q,q);
F = ones(q,1);
for i=1:q
F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
for j = F(i):i-1
k = max(F(i),F(j));
a=A®i,j) - L,k (G-1))*L(G,k: (j-1))7;
L(i,j) = a/L(j,j);
end
a = A(i,i) - sum(full(L(i,F(i):(i-1)))."2);
if a < 0, error ’Matrix A must be positive definite’; end
L(i,i) = sqrt(a);
end
end

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 141/186) ©QC  R. Sara, CMP; rev. 5-Dec-2017 <@l



»Gauge Freedom

1. The external frame is not fixed: See Projective Reconstruction Theorem —130
m; ~ P;X; = P,;H 'HX,; = P/X]
2. Some representations are not minimal, e.g.
e P is 12 numbers for 11 parameters

e we may represent P in decomposed form K, R, t
e but R is 9 numbers representing the 3 parameters of rotation

As a result

e there is no unique solution
e matrix >, L, L, is singular

Solutions

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints

2a. either imposing constraints on projective entities

e cameras, e.g. P34 =1 this excludes affine cameras

e points, e.g. || X;||* =1 this way we can represent points at infinity
2b. or using minimal representations

e points in their Euclidean representation X; but finite points may be an unrealistic model

e rotation matrix can be represented by axis-angle or the Cayley transform  see next
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Thank You
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