Part II

Perspective Camera

- ²¹Basic Entities: Points, Lines
- 22Homography: Mapping Acting on Points and Lines
- 23Canonical Perspective Camera
- Ochanging the Outer and Inner Reference Frames
- ²⁹Projection Matrix Decomposition
- 20 Anatomy of Linear Perspective Camera
- **20**Vanishing Points and Lines
- covered by

[H&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, Example: 2.19

Basic Geometric Entities, their Representation, and Notation

- entities have names and representations
- names and their components:

entity	in 2-space	in 3-space
point	m = (u, v)	X = (x, y, z)
line	n	0
plane		π , $arphi$

associated vector representations

$$\mathbf{m} = \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u, v \end{bmatrix}^{\top}, \quad \mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{n}$$

will also be written in an 'in-line' form as $\mathbf{m} = (u, v)$, $\mathbf{X} = (x, y, z)$, etc.

- vectors are always meant to be columns $\mathbf{x} \in \mathbb{R}^{n,1}$
- associated homogeneous representations

$$\underline{\mathbf{m}} = [m_1, m_2, m_3]^{\top}, \quad \underline{\mathbf{X}} = [x_1, x_2, x_3, x_4]^{\top}, \quad \underline{\mathbf{n}}$$

'in-line' forms: $\underline{\mathbf{m}} = (m_1, m_2, m_3), \ \underline{\mathbf{X}} = (x_1, x_2, x_3, x_4),$ etc.

- matrices are $\mathbf{Q} \in \mathbb{R}^{m,n}$, linear map of a $\mathbb{R}^{n,1}$ vector is $\mathbf{y} = \mathbf{Q}\mathbf{x}$
- *j*-th element of vector \mathbf{m}_i is $(\mathbf{m}_i)_j$; element i, j of matrix \mathbf{P} is \mathbf{P}_{ij}

►Image Line (in 2D)

a finite line in the 2D (u, v) plane

corresponds to a (homogeneous) vector

and there is an equivalence class for $\lambda \in \mathbb{R}, \, \lambda \neq 0$ $(\lambda a, \, \lambda b, \, \lambda c) \simeq (a, \, b, \, c)$

'Finite' lines

• standard representative for <u>finite</u> $\underline{\mathbf{n}} = (n_1, n_2, n_3)$ is $\lambda \underline{\mathbf{n}}$, where $\lambda = \frac{1}{\sqrt{n_1^2 + n_2^2}}$ assuming $n_1^2 + n_2^2 \neq 0$; 1 is the unit, usually $\mathbf{1} = 1$

'Infinite' line

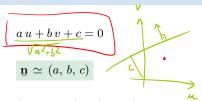
we augment the set of lines for a special entity called the Ideal Line (line at infinity)

 $\underline{\mathbf{n}}_{\infty} \simeq (0, 0, 1)$ (standard representative)

• the set of equivalence classes of vectors in $\mathbb{R}^3\setminus(0,0,0)$ forms the projective space \mathbb{P}^2

a set of rays \rightarrow 22

- line at infinity is a proper member of \mathbb{P}^2 $\lambda \not \simeq \gamma \not \simeq \gamma \not \simeq \lambda \downarrow \lambda \not = \lambda \downarrow \lambda \not = 0$
- I may sometimes wrongly use = instead of \simeq , if you are in doubt, ask me



►Image Point

Finite point $\mathbf{m} = (u, v)$ is incident on a finite line $\underline{\mathbf{n}} = (a, b, c)$ iff $\mathbf{m} = \mathbf{works}$ either way!

$$a\,u + b\,v + c = 0$$

can be rewritten as (with scalar product): $(u, v, \mathbf{1}) \cdot (a, b, c) = \underbrace{\mathbf{\underline{m}}^\top \mathbf{\underline{n}} = 0}_{\lambda (\mathcal{A}, \mathcal{V}, \mathbf{1})} \quad \lambda \neq o$

- a finite point is also represented by a homogeneous vector $\mathbf{\underline{m}}\simeq(u,v,\mathbf{1})$

- the equivalence class for $\lambda \in \mathbb{R}, \, \lambda \neq 0$ is $(m_1, \, m_2, \, m_3) = \lambda \, \underline{\mathbf{m}} \simeq \underline{\mathbf{m}}$
- the standard representative for <u>finite</u> point <u>m</u> is $\lambda \underline{m}$, where $\lambda = \frac{1}{m_3}$ assuming $m_3 \neq 0$
- when $\mathbf{1} = 1$ then units are pixels and $\lambda \mathbf{\underline{m}} = (u, v, 1)$
- when $\mathbf{1} = f$ then all components have a similar magnitude, $f \sim$ image diagonal use $\mathbf{1} = 1$ unless you know what you are doing; all entities participating in a formula must be expressed in the same units

'Infinite' points

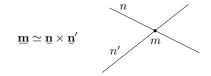
• we augment for Ideal Points (points at infinity) $\underline{\mathbf{m}}_{\infty} \simeq (m_1, m_2, 0)$

proper members of \mathbb{P}^2

• all such points lie on the ideal line (line at infinity) $\underline{\mathbf{n}}_{\infty} \simeq (0, 0, 1)$, i.e. $\underline{\mathbf{m}}_{\infty}^{\top} \underline{\mathbf{n}}_{\infty} = 0$

► Line Intersection and Point Join

The point of **intersection** m of image lines n and n', $n \not\simeq n'$ is



proof: If $\underline{\mathbf{m}} = \underline{\mathbf{n}} \times \underline{\mathbf{n}}'$ is the intersection point, it must be incident on both lines. Indeed, using known equivalences from vector algebra

$$\underline{\mathbf{n}}^{\top} \underbrace{(\underline{\mathbf{n}} \times \underline{\mathbf{n}}')}_{\underline{\mathbf{m}}} \equiv \underline{\mathbf{n}}'^{\top} \underbrace{(\underline{\mathbf{n}} \times \underline{\mathbf{n}}')}_{\underline{\mathbf{m}}} \equiv 0$$

The join n of two image points m and $m',\,m\not\simeq m'$ is $\mathbf{\underline{n}}\simeq\mathbf{\underline{m}}\times\mathbf{\underline{m}}'$

Paralel lines intersect (somewhere) on the line at infinity $\mathbf{n}_{\infty} \simeq (0, 0, 1)$

$$a u + b v + c = 0,$$

 $a u + b v + d = 0,$
 $(a, b, c) \times (a, b, d) \simeq (b, -a, 0)$
 $d \neq c$

- $\bullet\,$ all such intersections lie on \underline{n}_∞
- line at infinity represents a set of directions in the plane
- Matlab: m = cross(n, n_prime);

Thank You