» Numerical Conditioning

e The equation DX = 0 in (15) may be ill-conditioned for
numerical computation, which results in a poor estimate for X.

Why: on a row of D there are big entries together with small
entries, e.g. of orders projection centers in mm, image points in px

102 0 10% 10°
0o 10® 10® 10°
102 0 10° 10°
0 10® 10® 10°

Quick fix:
1. re-scale the problem by a regular diagonal conditioning matrix S € R**
0=DX=DSS 'X=DX
choose S to make the entries in D all smaller than unity in absolute value:
S = diag(1073,1073,1073,107°) S = diag(1./max(abs(D), 1))

2. solve for X as before B
3. get the final solution as X =S X

e when SVD is used in camera resection, conditioning is essential for success —64
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Algebraic Error vs Reprojection Error

® algebraic error (¢ — camera index, (u®, v®) — image coordinates) from SVD —91
2
2 2 T To\2 - ToN2
f=oi=3 [(u“<p§> X— () X)" + (v X~ (#5) " X) ]
c=1
® reprojection error 2 T 2 T 2
2 _ e (1) 'X e (P3) X
e = Z U T o TX Rl e
c=1 (pS) )—( (pg) X
® algebraic error zero = reprojection error zero o4 = 0 = non-trivial null space
® epipolar constraint satisfied = equivalent results
® in general: minimizing algebraic error is cheap but it gives inferior results
® minimizing reprojection error is expensive but it gives good results
® the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D
® the golden standard method — deferred to —105

® forward camera motion
® error f/50 in image 2, orthogonal to epipolar plane

X — noiseless ground truth position
X, — reprojection error minimizer
X, - algebraic error minimizer
m — measurement (mr with noise in v?)
Cy G m
N m, m, :, —
L i T pepepeup RSy R = . a
e my=m e my
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»We Have Added to The ZOO

continuation from —70

problem given unknown | slide
camera resection 6 world—img correspondences {(Xi, mi)}?zl P 64
exterior orientation | K, 3 world—img correspondences { (X, mi)}?zl R, t 68
fundamental matrix | 7 img—img correspondences {(m, m;)}:zl F 84
relative orientation | K, 5 img—img correspondences {(m, m;)}le R, t 88
triangulation Pi, P2, 1 img-img correspondence (m;, m;) X 89

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems
e have fewer degenerate configurations
e can do with fewer points (good for geometry proposal generators —117)

® algebraic error optimization (with SVD) makes sense in camera resection and triangulation
only

e but it is not the best method; we will now focus on ‘optimizing optimally’
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Part V

Optimization for 3D Vision

@ The Concept of Error for Epipolar Geometry
@ Levenberg-Marquardt's lterative Optimization
@ The Correspondence Problem

@ Optimization by Random Sampling

covered by
[1] [H&Z] Secs: 11.4, 11.6, 4.7
[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM 24(6):381-395, 1981
additional references
P. D. Sampson. Fitting conic sections to ‘very scattered’ data: An iterative refinement of the Bookstein

algorithm. Computer Vision, Graphics, and Image Processing, 18:97-108, 1982.

@ O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In Proc DAGM, LNCS 2781:236-243.
Springer-Verlag, 2003.

@ O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented
epipolar constraint. In Proc ICPR, vol 1:112-115, 2004.
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»The Concept of Error for Epipolar Geometry

Problem: Given at least 8 matched points z; <> y; in a general position, estimate the
most likely (or most probable) fundamental matrix F.

xl:(u'}7 v3)7 y'L:(u’?7 ’U’L2)7 i:1727"'7k7 kzg

image 1 image 2

e detected points (measurements) i, y;

e we introduce matches Z; = (u;,v;,u7,v;) € R, S = {Z;}

=1
. A 5 1 A2 . 5ok
e corrected points &, 7i; Zi = (UF, 0F, 47, 07); S = {Zi}i—l are correspondences

e correspondences satisfy the epipolar geometry exactly 3}? Fx,=0,i=1,...,k
e small correction is more probable
e let e;(-) be the ‘reprojection error’ (vector) per match i,

Xi—)A(i
Yi — Vi

2 def 2 T ~ 2 . 2
le:()II* = el () = lIxi = %ill* + llyi = ¥3ll* = 12 — Zs(F)|

ei(zi,yi | 2,9i, F) = { } =ei(Zi|Z:,F) =Z; — Z;(F)

(16)
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»cont’d

e the total reprojection error (of all data) then is

k k
L(S |5, F) =Y el(zi,yi | #:,0:,F) =Y ei(Zi|Z;,F)
=1 i=1

e and the optimization problem is

k
(S*,F*) = arg min min Z e?(m,—,yi | &4, 0i, F) (17)
F g i=1
rank F = 2 ):’TF’:‘ =0

Three possible approaches

e they differ in how the correspondences &;, ; are obtained:

1. direct optimization of reprojection error over all variables S, F —908

2. Sampson optimal correction = partial correction of Z; towards Z; used in an iterative
minimization over F —99

3. removing &;, §; altogether = marginalization of L(S, S | F) over S followed by
minimization over F not covered, the marginalization is difficult
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Method 1: Geometric Error Optimization

® we need to encode the constraints }:/Z Fx, =0, rankF =2
e idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
® equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

Pi=[1 0], Po=[le),Fteel e (18)

® H3; 2pt: Verify that F is a f.m. of Py, P2. Hint: A is skew symmetric iff x " Ax = 0 for all x.

1. compute F(9) by the 7-point algorithm —84; construct camera Pé()) from F(O using (18)

N

. triangulate 3D points XEO) from matches (z;,y;) foralli=1,... k —89

w

starting from Pgo), X () minimize the reprojection error (16)
k
(X*,P3) =arg min Y e7(Z; | Zi(X;, P2))
P2, X i=1

where

Z; = (%i,¥i) (Cartesian), %; =~ Ple’, Ji = Ps X; (homogeneous)
Non-linear, non-convex problem

4. compute F from Py, P

® 3k + 12 parameters to be found: latent: X, for all i (correspondences!), non-latent: Py

® minimal representation: 3k + 7 parameters, P> = P (F) —140
® there are pitfalls; this is essentially bundle adjustment; we will return to this later —132
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»Method 2: First-Order Error Approximation

An elegant method for solving problems like (17):

o we will get rid of the latent parameters X needed for obtaining the correction
[H&Z, p. 287], [Sampson 1982]

e we will recycle the algebraic error € = y ' F x from —84

e consider matches Z;, correspondences Z;, and reprojection error e; = ||Z; — Zi||2

c= (a0, 1), g = (a7, 0%,1)
2

I 4>

e correspondences satisfy )};TF %, =0,

e this is a manifold Vr € R*: a set of points Z = (a!, 0%, 42, %) consistent with F

e algebraic error vanishes for Zi: 0= sz(Z) = YL-TF X

Sampson’s idea: Linearize the algebraic error €(Z) at Z; (where it is
non-zero) and evaluate the resulting linear function at Z; (where it is
zero). The zero-crossing replaces Vg by a linear manifold £. The
point on Vg closest to Z; is replaced by the closest point on L.
(7)) ~ exzi) + 25%) (5, _ 7,
0Z;
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»Sampson’s Approximation of Reprojection Error

o linearize e(Z) at match Z;, evaluate it at correspondence Z;

0ei(Z:) 5 def

EoL) (7 - Zi) &
oz, | )

——
Ji(Z:)  ei(Z;,Z;)

0= ei(zi) ~ &;(Z;)+ ei(Z;) + Ji(Z;) ei(zi, Z;)

e goal: compute e;(Z;,Z;) from &;(Z;), where e;(-) is the distance of Z; from Z;
e we have a linear underconstrained equation for ei(Zi, Z;)

. - def .
e we look for a minimal e;(Z;, Z;) = e; per match %

e; = argmin||e;||> subjectto e; 4+ Jie; =0
€
e which has a closed-form solution note that J; is not invertible! ® P1; 1pt: derive e}
T(1.1T\-1
w2 _ Ty 7Ty -1 (19)
leill” =€ (J:J: ) &

e this maps &;(-) to an estimate of e;(-) per correspondence

e we often do not need e;, just |le;||? exception: triangulation —105

e the unknown parameters F' are inside: e; = e;(F), &; = &;(F), J; = J;(F)
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»Example: Fitting A Circle To Scattered Points

Problem: Fit a zero-centered circle C to a set of 2D points {z;}f_;, C: ||x||> —r* = 0.
1. consider radial error as the ‘algebraic error’ e(x) = ||x||*> — r?
2. linearize it at x we are dropping i in €;, e; etc for clarity
. Oe(x) . - -
e~ et + B (xox) == o x— (P 4 ) en®)
——

J(x)=2xT e(&,x)

2 2
4]

not tangent to C, outside!
2]x]| &

er (%) =0 is a line with normal ﬁ and intercept
3. using (19), express error approximation e as
. - (lx[* —7*)
le"||* =" (3IT) e = S
Af|x|J>

4. fit circle

Ve ® this example results in a convex quadratic optimization problem

® note that

/\‘{X):U argmlnz:HXIH2 r ( Z||X22>
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Circle Fitting: Some Results

medium isotropic noise medium radial noise big isotropic noise big radial noise

opt=1.8, dir=2.0, Smp=2.2 18,19 23 1.6, 2.0, 2.4 16,138, 26

mean ranks over 10000 random trials with k = 32 samples

optimal estimator for isotropic error (black, dashed):
green — ground truth

red — Sampson error minimizer 3 3 2
blue — direct radial error minimizer rs 1k 4 Z [l Il + ik Z [l |l - 5% Z [I%: 12
black — optimal estimator for isotropic error =t =t
which method is better?

e error should model noise, radial noise and isotropic noise behave differently

e ground truth: Normally distributed isotropic error, Gamma-distributed radial error

e Sampson: better for the radial distribution model; Direct: better for the isotropic model

® no matter how corrected, the algebraic error minimizer is not an unbiased parameter estimator
Cramér-Rao bound tells us how close one can get with unbiased estimator and given k
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Discussion: On The Art of Probabilistic Model Design. ..

e a few models for fitting zero-centered circle C' of radius 7 to points in R?

marginalized over C orthogonal deviation from C' Sampson approximation
S
o X 2 x x 2
E * N(0,071) « T(,0) + N(0,07°T)
)
b}
e
o
o
=
o
o
<
=3 of
€
©
® |
€ ,
S
T
2 B
o
PN
& _m2 2 2 (5.
= 1 _ Al 2r) 1 1 rlxl\ & — rllxl 1 _e (xér)
" N —————2c 20 — ) e o B —— 20
RJ) v/ (2m)3 7 ||x|| 270 (22 lIxl o rov/(2m)3
= 2
e mode inside the circle e peak at the center e mode at the circle
e models the inside well e unusable for small radii @ hole at the center
e tends to normal distrib. e tends to Dirac distrib. e tends to normal distrib.
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Thank You
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€] mp=m
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