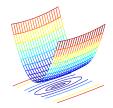
► Numerical Conditioning

• The equation $D\underline{X} = 0$ in (15) may be ill-conditioned for numerical computation, which results in a poor estimate for \underline{X} .

Why: on a row of D there are big entries together with small entries, e.g. of orders projection centers in mm, image points in px

0	10^{3}	10^{6}
10^{3}	10^{3}	$\begin{bmatrix} 10^6\\10^6 \end{bmatrix}$
0	10^{3}	
10^{3}	10^{3}	10^{6}
		$ \begin{array}{ccc} 10^3 & 10^3 \\ 0 & 10^3 \end{array} $



Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix $\mathbf{S} \in \mathbb{R}^{4,4}$

$$\mathbf{0} = \mathbf{D}\,\underline{\mathbf{X}} = \mathbf{D}\,\mathbf{S}\,\mathbf{S}^{-1}\underline{\mathbf{X}} = \bar{\mathbf{D}}\,\underline{\bar{\mathbf{X}}}$$

choose ${\bf S}$ to make the entries in $\hat{{\bf D}}$ all smaller than unity in absolute value:

 $\mathbf{S} = \text{diag}(10^{-3}, 10^{-3}, 10^{-3}, 10^{-6}) \qquad \qquad \mathbf{S} = \text{diag}(1./\text{max}(abs(D), 1))$

- 2. solve for $\overline{\mathbf{X}}$ as before
- 3. get the final solution as $\underline{\mathbf{X}} = \mathbf{S} \, \underline{\bar{\mathbf{X}}}$
- · when SVD is used in camera resection, conditioning is essential for success

 $\rightarrow 64$

Algebraic Error vs Reprojection Error

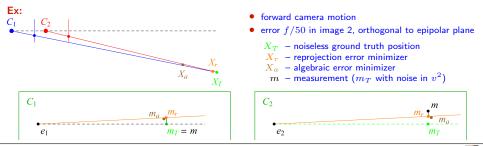
- algebraic error (c camera index, (u^c, v^c) image coordinates) from SVD \rightarrow 91 $\varepsilon^2 = \sigma_4^2 = \sum_{c=1}^2 \left[\left(u^c (\mathbf{p}_3^c)^\top \mathbf{X} - (\mathbf{p}_1^c)^\top \mathbf{X} \right)^2 + \left(v^c (\mathbf{p}_3^c)^\top \mathbf{X} - (\mathbf{p}_2^c)^\top \mathbf{X} \right)^2 \right]$
- reprojection error

$$e^{2} = \sum_{c=1}^{2} \left[\left(u^{c} - \frac{\left(\mathbf{p}_{1}^{c}\right)^{\top} \mathbf{\underline{X}}}{\left(\mathbf{p}_{3}^{c}\right)^{\top} \mathbf{\underline{X}}} \right)^{2} + \left(v^{c} - \frac{\left(\mathbf{p}_{2}^{c}\right)^{\top} \mathbf{\underline{X}}}{\left(\mathbf{p}_{3}^{c}\right)^{\top} \mathbf{\underline{X}}} \right)^{2} \right]$$

• algebraic error zero \Rightarrow reprojection error zero

 $\sigma_4 = 0 \Rightarrow$ non-trivial null space

- epipolar constraint satisfied ⇒ equivalent results
- in general: minimizing algebraic error is cheap but it gives inferior results
- minimizing reprojection error is expensive but it gives good results
- the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D
- the golden standard method deferred to ightarrow 105



3D Computer Vision: IV. Computing with a Camera Pair (p. 93/186) のへへ R. Šára, CMP; rev. 14-Nov-2017 🗓

► We Have Added to The ZOO

continuation from ${\rightarrow}70$

problem	given	unknown	slide
camera resection	6 world–img correspondences $\left\{ (X_i, m_i) ight\}_{i=1}^6$	Р	64
exterior orientation	\mathbf{K} , 3 world–img correspondences $\left\{ \left(X_{i},m_{i} ight) ight\} _{i=1}^{3}$	R, t	68
fundamental matrix	7 img-img correspondences $\left\{(m_i,m_i') ight\}_{i=1}^7$	F	84
relative orientation	K , 5 img-img correspondences $\left\{ \left(m_{i}, m_{i}^{\prime} ight) ight\}_{i=1}^{5}$	R, t	88
triangulation	\mathbf{P}_1 , \mathbf{P}_2 , 1 img-img correspondence (m_i,m_i')	X	89

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems

- have fewer degenerate configurations
- can do with fewer points (good for geometry proposal generators \rightarrow 117)
- algebraic error optimization (with SVD) makes sense in camera resection and triangulation only
- but it is not the best method; we will now focus on 'optimizing optimally'

3D Computer Vision: IV. Computing with a Camera Pair (p. 94/186) のへの R. Šára, CMP; rev. 14-Nov-2017 📴

Part V

Optimization for 3D Vision

The Concept of Error for Epipolar Geometry
 Levenberg-Marquardt's Iterative Optimization
 The Correspondence Problem
 Optimization by Random Sampling

covered by

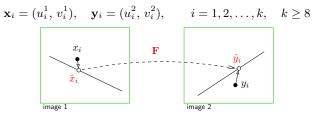
- [1] [H&Z] Secs: 11.4, 11.6, 4.7
- [2] Fischler, M.A. and Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. *Communications of the ACM* 24(6):381–395, 1981

additional references

- P. D. Sampson. Fitting conic sections to 'very scattered' data: An iterative refinement of the Bookstein algorithm. *Computer Vision, Graphics, and Image Processing*, 18:97–108, 1982.
- O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In *Proc DAGM*, LNCS 2781:236–243. Springer-Verlag, 2003.
- O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint. In *Proc ICPR*, vol 1:112–115, 2004.

► The Concept of Error for Epipolar Geometry

Problem: Given at least 8 matched points $x_i \leftrightarrow y_j$ in a general position, estimate the most likely (or most probable) fundamental matrix **F**.



- detected points (measurements) x_i , y_i
- we introduce matches $\mathbf{Z}_i = (u_i^1, v_i^1, u_i^2, v_i^2) \in \mathbb{R}^4$; $S = \{\mathbf{Z}_i\}_{i=1}^k$
- corrected points \hat{x}_i , \hat{y}_i ; $\hat{\mathbf{Z}}_i = (\hat{u}_i^1, \hat{v}_i^1, \hat{u}_i^2, \hat{v}_i^2)$; $\hat{S} = \left\{ \hat{\mathbf{Z}}_i \right\}_{i=1}^k$ are correspondences
- correspondences satisfy the epipolar geometry exactly $\hat{\mathbf{y}}_i^{ op} \mathbf{F} \, \hat{\mathbf{x}}_i = 0$, $i = 1, \dots, k$
- small correction is more probable
- let e_i(·) be the <u>'reprojection error'</u> (vector) per match i,

$$\mathbf{e}_{i}(x_{i}, y_{i} \mid \hat{x}_{i}, \hat{y}_{i}, \mathbf{F}) = \begin{bmatrix} \mathbf{x}_{i} - \hat{\mathbf{x}}_{i} \\ \mathbf{y}_{i} - \hat{\mathbf{y}}_{i} \end{bmatrix} = \mathbf{e}_{i}(\mathbf{Z}_{i} \mid \hat{\mathbf{Z}}_{i}, \mathbf{F}) = \mathbf{Z}_{i} - \hat{\mathbf{Z}}_{i}(\mathbf{F})$$

$$\|\mathbf{e}_{i}(\cdot)\|^{2} \stackrel{\text{def}}{=} \mathbf{e}_{i}^{2}(\cdot) = \|\mathbf{x}_{i} - \hat{\mathbf{x}}_{i}\|^{2} + \|\mathbf{y}_{i} - \hat{\mathbf{y}}_{i}\|^{2} = \|\mathbf{Z}_{i} - \hat{\mathbf{Z}}_{i}(\mathbf{F})\|^{2}$$
(16)

3D Computer Vision: V. Optimization for 3D Vision (p. 96/186) つくや R

▶cont'd

• the total reprojection error (of all data) then is

$$L(S \mid \hat{S}, \mathbf{F}) = \sum_{i=1}^{k} \mathbf{e}_i^2(x_i, y_i \mid \hat{x}_i, \hat{y}_i, \mathbf{F}) = \sum_{i=1}^{k} \mathbf{e}_i^2(\mathbf{Z}_i \mid \hat{\mathbf{Z}}_i, \mathbf{F})$$

and the optimization problem is

$$\hat{S}^*, \mathbf{F}^*) = \arg\min_{\substack{\mathbf{F} \\ \text{rank } \mathbf{F} = 2}} \min_{\substack{\hat{y}_i^\top \mathbf{F} \hat{\mathbf{x}}_i = 0}} \sum_{i=1}^k \mathbf{e}_i^2(x_i, y_i \mid \hat{x}_i, \hat{y}_i, \mathbf{F})$$
(17)

Three possible approaches

- they differ in how the correspondences \hat{x}_i , \hat{y}_i are obtained:
 - 1. direct optimization of reprojection error over all variables \hat{S} , F ightarrow 98
 - 2. Sampson optimal correction = partial correction of \mathbf{Z}_i towards $\hat{\mathbf{Z}}_i$ used in an iterative minimization over \mathbf{F} \rightarrow 99
 - 3. removing \hat{x}_i , \hat{y}_i altogether = marginalization of $L(S, \hat{S} | \mathbf{F})$ over \hat{S} followed by minimization over \mathbf{F} not covered, the marginalization is difficult

Method 1: Geometric Error Optimization

- we need to encode the constraints $\hat{\mathbf{y}}_i \mathbf{F} \hat{\mathbf{x}}_i = 0$, rank $\mathbf{F} = 2$
- idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
- equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

$$\mathbf{P}_{1} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}, \quad \mathbf{P}_{2} = \begin{bmatrix} \begin{bmatrix} \mathbf{e}_{2} \end{bmatrix}_{\times} \mathbf{F} + \mathbf{e}_{2} \mathbf{e}_{1}^{\top} & \mathbf{e}_{2} \end{bmatrix}$$
(18)

 \rightarrow 140

 \rightarrow 132

 \circledast H3; 2pt: Verify that F is a f.m. of \mathbf{P}_1 , \mathbf{P}_2 . Hint: A is skew symmetric iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 0$ for all \mathbf{x} .

- 1. compute $\mathbf{F}^{(0)}$ by the 7-point algorithm \rightarrow 84; construct camera $\mathbf{P}_2^{(0)}$ from $\mathbf{F}^{(0)}$ using (18)
- 2. triangulate 3D points $\hat{\mathbf{X}}_i^{(0)}$ from matches (x_i,y_i) for all $i=1,\ldots,k$ o89
- 3. starting from $\mathbf{P}_2^{(0)}$, $\hat{\mathbf{X}}^{(0)}$ minimize the reprojection error (16)

$$(\hat{\mathbf{X}}^*, \mathbf{P}_2^*) = \arg \min_{\mathbf{P}_2, \hat{\mathbf{X}}} \sum_{i=1}^{\kappa} \mathbf{e}_i^2(\mathbf{Z}_i \mid \hat{\mathbf{Z}}_i(\hat{\mathbf{X}}_i, \mathbf{P}_2))$$

where

$$\hat{\mathbf{Z}}_i = (\hat{\mathbf{x}}_i, \hat{\mathbf{y}}_i)$$
 (Cartesian), $\hat{\mathbf{x}}_i \simeq \mathbf{P}_1 \underline{\hat{\mathbf{X}}}_i, \ \hat{\mathbf{y}}_i \simeq \mathbf{P}_2 \, \underline{\hat{\mathbf{X}}}_i$ (homogeneous)

Non-linear, non-convex problem

- 4. compute **F** from \mathbf{P}_1 , \mathbf{P}_2^*
- 3k + 12 parameters to be found: latent: $\mathbf{\hat{X}}_i$, for all *i* (correspondences!), non-latent: \mathbf{P}_2

• minimal representation: 3k + 7 parameters, $\mathbf{P}_2 = \mathbf{P}_2(\mathbf{F})$

• there are pitfalls; this is essentially bundle adjustment; we will return to this later

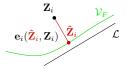
3D Computer Vision: V. Optimization for 3D Vision (p. 98/186) → A ↔ R. Šára, CMP; rev. 14-Nov-2017 🜆

► Method 2: First-Order Error Approximation

An elegant method for solving problems like (17):

- we will get rid of the latent parameters \hat{X} needed for obtaining the correction
 - [H&Z, p. 287], [Sampson 1982]

- we will recycle the algebraic error $\boldsymbol{\varepsilon} = \underline{\mathbf{y}}^{\top} \mathbf{F} \, \underline{\mathbf{x}}$ from $\rightarrow 84$
- consider matches \mathbf{Z}_i , correspondences $\hat{\mathbf{Z}}_i$, and reprojection error $\mathbf{e}_i = \|\mathbf{Z}_i \hat{\mathbf{Z}}_i\|^2$
- correspondences satisfy $\mathbf{\hat{y}}_i^{\top} \mathbf{F} \, \mathbf{\hat{x}}_i = 0$, $\mathbf{\hat{x}}_i = (\hat{u}^1, \hat{v}^1, 1), \ \mathbf{\hat{y}}_i = (\hat{u}^2, \hat{v}^2, 1)$
- this is a manifold $\mathcal{V}_F \in \mathbb{R}^4$: a set of points $\mathbf{\hat{Z}} = (\hat{u}^1, \, \hat{v}^1, \, \hat{u}^2, \, \hat{v}^2)$ consistent with \mathbf{F}
- algebraic error vanishes for $\hat{\mathbf{Z}}_i$: $\mathbf{0} = \boldsymbol{\varepsilon}_i(\hat{\mathbf{Z}}_i) = \hat{\underline{\mathbf{y}}}_i^\top \mathbf{F} \hat{\underline{\mathbf{x}}}_i$



Sampson's idea: Linearize the algebraic error $\varepsilon(\mathbf{Z})$ at \mathbf{Z}_i (where it is non-zero) and evaluate the resulting linear function at $\mathbf{\hat{Z}}_i$ (where it is zero). The zero-crossing replaces \mathcal{V}_F by a linear manifold \mathcal{L} . The point on \mathcal{V}_F closest to \mathbf{Z}_i is replaced by the closest point on \mathcal{L} .

$$oldsymbol{arepsilon}_i(\mathbf{\hat{Z}}_i) \ pprox \ oldsymbol{arepsilon}_i(\mathbf{Z}_i) + rac{\partial oldsymbol{arepsilon}_i(\mathbf{Z}_i)}{\partial \mathbf{Z}_i} \left(\mathbf{\hat{Z}}_i - \mathbf{Z}_i
ight)$$

Sampson's Approximation of Reprojection Error

• linearize $marepsilon(\mathbf{Z})$ at match \mathbf{Z}_i , evaluate it at correspondence $\mathbf{\hat{Z}}_i$

$$0 = \varepsilon_i(\hat{\mathbf{Z}}_i) \approx \varepsilon_i(\mathbf{Z}_i) + \underbrace{\frac{\partial \varepsilon_i(\mathbf{Z}_i)}{\partial \mathbf{Z}_i}}_{\mathbf{J}_i(\mathbf{Z}_i)} \underbrace{(\hat{\mathbf{Z}}_i - \mathbf{Z}_i)}_{\mathbf{e}_i(\hat{\mathbf{Z}}_i, \mathbf{Z}_i)} \stackrel{\text{def}}{=} \varepsilon_i(\mathbf{Z}_i) + \mathbf{J}_i(\mathbf{Z}_i) \mathbf{e}_i(\hat{\mathbf{Z}}_i, \mathbf{Z}_i)$$

- goal: compute $\mathbf{e}_i(\hat{\mathbf{Z}}_i, \mathbf{Z}_i)$ from $\boldsymbol{\varepsilon}_i(\mathbf{Z}_i)$, where $\mathbf{e}_i(\cdot)$ is the distance of $\hat{\mathbf{Z}}_i$ from \mathbf{Z}_i
- we have a linear underconstrained equation for $\mathbf{e}_i(\mathbf{\hat{Z}}_i, \mathbf{Z}_i)$
- we look for a minimal $\mathbf{e}_i(\mathbf{\hat{Z}}_i, \mathbf{Z}_i) \stackrel{\text{def}}{=} \mathbf{e}_i$ per match i

$$\mathbf{e}_{i}^{*} = \arg\min_{\mathbf{e}_{i}} \|\mathbf{e}_{i}\|^{2}$$
 subject to $\boldsymbol{\varepsilon}_{i} + \mathbf{J}_{i} \, \mathbf{e}_{i} = 0$

• which has a closed-form solution note that J_i is not invertible! \circledast P1; 1pt: derive e_i^*

$$\mathbf{e}_{i}^{*} = -\mathbf{J}_{i}^{\top} (\mathbf{J}_{i} \mathbf{J}_{i}^{\top})^{-1} \boldsymbol{\varepsilon}_{i}$$

$$\|\mathbf{e}_{i}^{*}\|^{2} = \boldsymbol{\varepsilon}_{i}^{\top} (\mathbf{J}_{i} \mathbf{J}_{i}^{\top})^{-1} \boldsymbol{\varepsilon}_{i}$$
(19)

- this maps $oldsymbol{arepsilon}_i(\cdot)$ to an estimate of $\mathbf{e}_i(\cdot)$ per correspondence
- we often do not need \mathbf{e}_i , just $\|\mathbf{e}_i\|^2$ exception: triangulation ightarrow 105
- the unknown parameters \mathbf{F} are inside: $\mathbf{e}_i = \mathbf{e}_i(\mathbf{F})$, $\boldsymbol{\varepsilon}_i = \boldsymbol{\varepsilon}_i(\mathbf{F})$, $\mathbf{J}_i = \mathbf{J}_i(\mathbf{F})$

Example: Fitting A Circle To Scattered Points

Problem: Fit a zero-centered circle C to a set of 2D points $\{x_i\}_{i=1}^k$, C: $\|\mathbf{x}\|^2 - r^2 = 0$.

- 1. consider radial error as the 'algebraic error' $arepsilon(\mathbf{x}) = \|\mathbf{x}\|^2 r^2$
- 2. linearize it at $\hat{\mathbf{x}}$

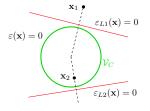
we are dropping i in ε_i , \mathbf{e}_i etc for clarity

$$\boldsymbol{\varepsilon}(\mathbf{\hat{x}}) \approx \boldsymbol{\varepsilon}(\mathbf{x}) + \underbrace{\frac{\partial \boldsymbol{\varepsilon}(\mathbf{x})}{\partial \mathbf{x}}}_{\mathbf{J}(\mathbf{x})=2\mathbf{x}^{\top}} \underbrace{(\mathbf{\hat{x}}-\mathbf{x})}_{\mathbf{e}(\mathbf{\hat{x}},\mathbf{x})} = \cdots = 2 \mathbf{x}^{\top} \mathbf{\hat{x}} - (r^2 + \|\mathbf{x}\|^2) \stackrel{\text{def}}{=} \boldsymbol{\varepsilon}_L(\mathbf{\hat{x}})$$

 $\varepsilon_L(\hat{\mathbf{x}}) = 0$ is a line with normal $\frac{\mathbf{x}}{\|\mathbf{x}\|}$ and intercept $\frac{r^2 + \|\mathbf{x}\|^2}{2\|\mathbf{x}\|}$ not tangent to C, outside! 3. using (19), express error approximation \mathbf{e}^* as

$$\|\mathbf{e}^*\|^2 = \boldsymbol{\varepsilon}^\top (\mathbf{J}\mathbf{J}^\top)^{-1} \boldsymbol{\varepsilon} = \frac{(\|\mathbf{x}\|^2 - \boldsymbol{r}^2)^2}{4\|\mathbf{x}\|^2}$$

4. fit circle



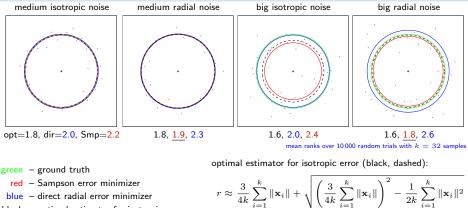
$$r^* = \arg\min_r \sum_{i=1}^k \frac{(\|\mathbf{x}_i\|^2 - r^2)^2}{4\|\mathbf{x}_i\|^2} = \dots = \left(\frac{1}{k} \sum_{i=1}^k \frac{1}{\|\mathbf{x}_i\|^2}\right)^{-\frac{1}{2}}$$

• this example results in a convex quadratic optimization problem

note that $\arg\min_{r} \sum_{i=1}^{k} (\|\mathbf{x}_i\|^2 - r^2)^2 = \left(\frac{1}{k} \sum_{i=1}^{k} \|\mathbf{x}_i\|^2\right)^{\frac{1}{2}}$

3D Computer Vision: V. Optimization for 3D Vision (p. 101/186) つへへ R. Šára, CMP; rev. 14-Nov-2017 🔮

Circle Fitting: Some Results



black – optimal estimator for isotropic error

which method is better?

- error should model noise, radial noise and isotropic noise behave differently
- ground truth: Normally distributed isotropic error, Gamma-distributed radial error
- Sampson: better for the radial distribution model; Direct: better for the isotropic model
- no matter how corrected, the algebraic error minimizer is not an unbiased parameter estimator K Cramér-Rao bound tells us how close one can get with unbiased estimator and given k

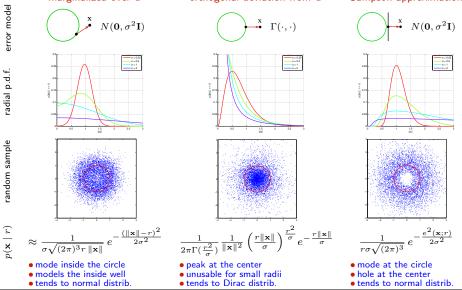
3D Computer Vision: V. Optimization for 3D Vision (p. 102/186) つへへ R. Šára, CMP; rev. 14-Nov-2017 📴

Discussion: On The Art of Probabilistic Model Design...

a few models for fitting zero-centered circle C of radius r to points in \mathbb{R}^2 ٠ marginalized over C

orthogonal deviation from C

Sampson approximation



3D Computer Vision: V. Optimization for 3D Vision (p. 103/186) のへや

R. Šára, CMP: rev. 14-Nov-2017

Thank You

