
INumerical Conditioning

• The equation DX = 0 in (15) may be ill-conditioned for
numerical computation, which results in a poor estimate for X.

Why: on a row of D there are big entries together with small
entries, e.g. of orders projection centers in mm, image points in px

103 0 103 106

0 103 103 106

103 0 103 106

0 103 103 106


Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix S ∈ R4,4

0 = DX = DSS−1X = D̄ X̄

choose S to make the entries in D̂ all smaller than unity in absolute value:

S = diag(10−3, 10−3, 10−3, 10−6) S = diag(1./max(abs(D), 1))

2. solve for X̄ as before
3. get the final solution as X = S X̄

• when SVD is used in camera resection, conditioning is essential for success →64
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Algebraic Error vs Reprojection Error

• algebraic error (c – camera index, (uc, vc) – image coordinates) from SVD →91

ε
2

= σ
2
4 =

2∑
c=1

[(
u
c
(p
c
3)
>
X− (p

c
1)
>
X
)2

+
(
v
c
(p
c
3)
>
X− (p

c
2)
>
X
)2
]

• reprojection error
e
2

=
2∑
c=1

[(
u
c − (pc1)>X

(pc3)>X

)2

+

(
v
c − (pc2)>X

(pc3)>X

)2]
• algebraic error zero ⇒ reprojection error zero σ4 = 0⇒ non-trivial null space

• epipolar constraint satisfied ⇒ equivalent results

• in general: minimizing algebraic error is cheap but it gives inferior results

• minimizing reprojection error is expensive but it gives good results

• the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D

• the golden standard method – deferred to →105

Ex: • forward camera motion

• error f/50 in image 2, orthogonal to epipolar plane

XT – noiseless ground truth position
Xr – reprojection error minimizer
Xa – algebraic error minimizer
m – measurement (mT with noise in v2)
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IWe Have Added to The ZOO

continuation from →70

problem given unknown slide

camera resection 6 world–img correspondences
{

(Xi, mi)
}6

i=1
P 64

exterior orientation K, 3 world–img correspondences
{

(Xi, mi)
}3

i=1
R, t 68

fundamental matrix 7 img–img correspondences
{

(mi, m
′
i)
}7

i=1
F 84

relative orientation K, 5 img–img correspondences
{

(mi, m
′
i)
}5

i=1
R, t 88

triangulation P1, P2, 1 img–img correspondence (mi, m
′
i) X 89

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems
• have fewer degenerate configurations
• can do with fewer points (good for geometry proposal generators →117)

• algebraic error optimization (with SVD) makes sense in camera resection and triangulation
only

• but it is not the best method; we will now focus on ‘optimizing optimally’
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Part V

Optimization for 3D Vision

5.1 The Concept of Error for Epipolar Geometry
5.2 Levenberg-Marquardt’s Iterative Optimization
5.3 The Correspondence Problem
5.4 Optimization by Random Sampling

covered by

[1] [H&Z] Secs: 11.4, 11.6, 4.7

[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM 24(6):381–395, 1981

additional references

P. D. Sampson. Fitting conic sections to ‘very scattered’ data: An iterative refinement of the Bookstein

algorithm. Computer Vision, Graphics, and Image Processing, 18:97–108, 1982.

O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In Proc DAGM, LNCS 2781:236–243.

Springer-Verlag, 2003.

O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented

epipolar constraint. In Proc ICPR, vol 1:112–115, 2004.
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IThe Concept of Error for Epipolar Geometry

Problem: Given at least 8 matched points xi ↔ yj in a general position, estimate the
most likely (or most probable) fundamental matrix F.

xi = (u1
i , v

1
i ), yi = (u2

i , v
2
i ), i = 1, 2, . . . , k, k ≥ 8

F

x̂i

ŷi
xi

yi

image 1 image 2

• detected points (measurements) xi, yi

• we introduce matches Zi = (u1
i , v

1
i , u

2
i , v

2
i ) ∈ R4; S =

{
Zi
}k
i=1

• corrected points x̂i, ŷi; Ẑi = (û1
i , v̂

1
i , û

2
i , v̂

2
i ); Ŝ =

{
Ẑi
}k
i=1

are correspondences

• correspondences satisfy the epipolar geometry exactly ŷ>
i
F x̂i = 0, i = 1, . . . , k

• small correction is more probable
• let ei(·) be the ‘reprojection error’ (vector) per match i,

ei(xi, yi | x̂i, ŷi,F) =

[
xi − x̂i
yi − ŷi

]
= ei(Zi | Ẑi,F) = Zi − Ẑi(F)

‖ei(·)‖2
def
= e2

i (·) = ‖xi − x̂i‖2 + ‖yi − ŷi‖2 = ‖Zi − Ẑi(F)‖2
(16)
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Icont’d

• the total reprojection error (of all data) then is

L(S | Ŝ,F) =

k∑
i=1

e2
i (xi, yi | x̂i, ŷi,F) =

k∑
i=1

e2
i (Zi | Ẑi,F)

• and the optimization problem is

(Ŝ∗,F∗) = arg min
F

rank F = 2

min
Ŝ

ŷ>
i
F x̂i = 0

k∑
i=1

e2
i (xi, yi | x̂i, ŷi,F) (17)

Three possible approaches

• they differ in how the correspondences x̂i, ŷi are obtained:

1. direct optimization of reprojection error over all variables Ŝ, F →98

2. Sampson optimal correction = partial correction of Zi towards Ẑi used in an iterative
minimization over F →99

3. removing x̂i, ŷi altogether = marginalization of L(S, Ŝ | F) over Ŝ followed by
minimization over F not covered, the marginalization is difficult
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Method 1: Geometric Error Optimization

• we need to encode the constraints ŷ
i
F x̂i = 0, rank F = 2

• idea: reconstruct 3D point via equivalent projection matrices and use reprojection error

• equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

P1 =
[
I 0

]
, P2 =

[
[e2]×F + e2e>1 e2

]
(18)

~ H3; 2pt: Verify that F is a f.m. of P1, P2. Hint: A is skew symmetric iff x>Ax = 0 for all x.

1. compute F(0) by the 7-point algorithm →84; construct camera P
(0)
2 from F(0) using (18)

2. triangulate 3D points X̂
(0)
i from matches (xi, yi) for all i = 1, . . . , k →89

3. starting from P
(0)
2 , X̂(0) minimize the reprojection error (16)

(X̂∗,P∗2) = arg min
P2, X̂

k∑
i=1

e2
i (Zi | Ẑi(X̂i,P2))

where
Ẑi = (x̂i, ŷi) (Cartesian), x̂i ' P1X̂i, ŷi ' P2 X̂i (homogeneous)

Non-linear, non-convex problem

4. compute F from P1, P∗2

• 3k + 12 parameters to be found: latent: X̂i, for all i (correspondences!), non-latent: P2

• minimal representation: 3k + 7 parameters, P2 = P2(F) →140

• there are pitfalls; this is essentially bundle adjustment; we will return to this later →132
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IMethod 2: First-Order Error Approximation

An elegant method for solving problems like (17):

• we will get rid of the latent parameters X̂ needed for obtaining the correction
[H&Z, p. 287], [Sampson 1982]

• we will recycle the algebraic error ε = y>F x from →84

• consider matches Zi, correspondences Ẑi, and reprojection error ei = ‖Zi − Ẑi‖2

• correspondences satisfy ŷi
>F x̂i = 0, x̂i = (û1, v̂1, 1), ŷi = (û2, v̂2, 1)

• this is a manifold VF ∈ R4: a set of points Ẑ = (û1, v̂1, û2, v̂2) consistent with F

• algebraic error vanishes for Ẑi: 0 = εi(Ẑi) = ŷi
>F x̂i

L

VF

ei(Ẑi,Zi)
Ẑi

Zi Sampson’s idea: Linearize the algebraic error ε(Z) at Zi (where it is

non-zero) and evaluate the resulting linear function at Ẑi (where it is
zero). The zero-crossing replaces VF by a linear manifold L. The
point on VF closest to Zi is replaced by the closest point on L.

εi(Ẑi) ≈ εi(Zi) +
∂εi(Zi)

∂Zi
(Ẑi − Zi)
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ISampson’s Approximation of Reprojection Error

• linearize ε(Z) at match Zi, evaluate it at correspondence Ẑi

0 = εi(Ẑi) ≈ εi(Zi) +
∂εi(Zi)

∂Zi︸ ︷︷ ︸
Ji(Zi)

(Ẑi − Zi)︸ ︷︷ ︸
ei(Ẑi,Zi)

def
= εi(Zi) + Ji(Zi) ei(Ẑi,Zi)

• goal: compute ei(Ẑi,Zi) from εi(Zi), where ei(·) is the distance of Ẑi from Zi
• we have a linear underconstrained equation for ei(Ẑi,Zi)

• we look for a minimal ei(Ẑi,Zi)
def
= ei per match i

e∗i = arg min
ei
‖ei‖2 subject to εi + Ji ei = 0

• which has a closed-form solution note that Ji is not invertible! ~ P1; 1pt: derive e∗i

e∗i = −J>i (JiJ
>
i )−1εi

‖e∗i ‖2 = ε>i (JiJ
>
i )−1εi

(19)

• this maps εi(·) to an estimate of ei(·) per correspondence

• we often do not need ei, just ‖ei‖2 exception: triangulation →105

• the unknown parameters F are inside: ei = ei(F), εi = εi(F), Ji = Ji(F)
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IExample: Fitting A Circle To Scattered Points

Problem: Fit a zero-centered circle C to a set of 2D points {xi}ki=1, C : ‖x‖2 − r2 = 0.

1. consider radial error as the ‘algebraic error’ ε(x) = ‖x‖2 − r2

2. linearize it at x̂ we are dropping i in εi, ei etc for clarity

ε(x̂) ≈ ε(x) +
∂ε(x)

∂x︸ ︷︷ ︸
J(x)=2x>

(x̂− x)︸ ︷︷ ︸
e(x̂,x)

= · · · = 2x>x̂− (r2 + ‖x‖2)
def
= εL(x̂)

εL(x̂) = 0 is a line with normal x
‖x‖ and intercept r2+‖x‖2

2‖x‖ not tangent to C, outside!

3. using (19), express error approximation e∗ as

‖e∗‖2 = ε>(JJ>)−1ε =
(‖x‖2 − r2)2

4‖x‖2
4. fit circle

x2

x1

ε(x) = 0

VC

εL1(x) = 0

εL2(x) = 0

r∗ = arg min
r

k∑
i=1

(‖xi‖2 − r2)2

4‖xi‖2
= · · · =

(
1

k

k∑
i=1

1

‖xi‖2

)− 1
2

• this example results in a convex quadratic optimization problem

• note that

arg min
r

k∑
i=1

(‖xi‖2 − r2)2 =

(
1

k

k∑
i=1

‖xi‖2
) 1

2
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Circle Fitting: Some Results

medium isotropic noise medium radial noise big isotropic noise big radial noise

opt=1.8, dir=2.0, Smp=2.2 1.8, 1.9, 2.3 1.6, 2.0, 2.4 1.6, 1.8, 2.6
mean ranks over 10 000 random trials with k = 32 samples

green – ground truth

red – Sampson error minimizer

blue – direct radial error minimizer

black – optimal estimator for isotropic error

optimal estimator for isotropic error (black, dashed):

r ≈ 3

4k

k∑
i=1

‖xi‖+

√√√√( 3

4k

k∑
i=1

‖xi‖
)2

− 1

2k

k∑
i=1

‖xi‖2

which method is better?

• error should model noise, radial noise and isotropic noise behave differently

• ground truth: Normally distributed isotropic error, Gamma-distributed radial error

• Sampson: better for the radial distribution model; Direct: better for the isotropic model

• no matter how corrected, the algebraic error minimizer is not an unbiased parameter estimator
Cramér-Rao bound tells us how close one can get with unbiased estimator and given k
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Discussion: On The Art of Probabilistic Model Design. . .

• a few models for fitting zero-centered circle C of radius r to points in R2

marginalized over C orthogonal deviation from C Sampson approximation

er
ro

r
m

o
d

el x
N(0, σ2I)

x
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2
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σ
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r‖x‖
σ 1

rσ
√
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− e
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2σ2

•mode inside the circle • peak at the center •mode at the circle
•models the inside well • unusable for small radii • hole at the center
• tends to normal distrib. • tends to Dirac distrib. • tends to normal distrib.
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Thank You
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3D Computer Vision: enlarged figures R. Šára, CMP; rev. 14–Nov–2017
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