Homography in \mathbb{P}^{2}

> Projective plane \mathbb{P}^{2} : Vector space of dimension 3 excluding the zero vector, $\mathbb{R}^{3} \backslash(0,0,0)$, factorized to linear equivalence classes ('rays')
> including 'points at infinity'

Homography in \mathbb{P}^{2} : Non-singular linear mapping in \mathbb{P}^{2} an analogic definition for \mathbb{P}^{3}

$$
\underline{\mathbf{x}}^{\prime} \simeq \mathbf{H} \underline{\mathbf{x}}, \quad \mathbf{H} \in \mathbb{R}^{3,3} \text { non-singular }
$$

Defining properties

- collinear image points are mapped to collinear image points
lines of points are mapped to lines of points
- concurrent image lines are mapped to concurrent image lines
- and point-line incidence is preserved

$$
\text { concurrent }=\text { intersecting at a point }
$$ e.g. line intersection points mapped to line intersection points

- \mathbf{H} is a 3×3 non-singular matrix, $\lambda \mathbf{H} \simeq \mathbf{H}$ equivalence class, 8 degrees of freedom
- homogeneous matrix representant: $\operatorname{det} \mathbf{H}=1$
- what we call homography here is often called 'projective collineation' in mathematics

- Mapping 2D Points and Lines by Homography

$$
\begin{array}{ll}
\underline{\underline{m}}^{\prime} \simeq \mathbf{H} \underline{\mathbf{m}} & \text { image point } \\
\underline{\mathbf{n}}^{\prime} \simeq \mathbf{H}^{-\top} \underline{\mathbf{n}} & \text { image line }
\end{array} \quad \mathbf{H}^{-\top}=\left(\mathbf{H}^{-1}\right)^{\top}=\left(\mathbf{H}^{\top}\right)^{-1}
$$

- incidence is preserved: $\left(\underline{\mathbf{m}}^{\prime}\right)^{\top} \underline{\mathbf{n}}^{\prime} \simeq \underline{\mathbf{m}}^{\top} \mathbf{H}^{\top} \mathbf{H}^{-\top} \underline{\mathbf{n}}=\underline{\mathbf{m}}^{\top} \underline{\mathbf{n}}=0$

Mapping a finite 2D point $\mathbf{m}=(u, v)$ to $\underline{\mathbf{m}}=\left(u^{\prime}, v^{\prime}\right)$

1. extend the Cartesian (pixel) coordinates to homogeneous coordinates, $\underline{\mathbf{m}}=(u, v, \mathbf{1})$
2. map by homography, $\underline{\mathbf{m}}^{\prime}=\mathbf{H} \underline{\mathbf{m}}$
3. if $m_{3}^{\prime} \neq 0$ convert the result $\underline{\mathbf{m}}^{\prime}=\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right)$ back to Cartesian coordinates (pixels),

$$
u^{\prime}=\frac{m_{1}^{\prime}}{m_{3}^{\prime}} \mathbf{1}, \quad v^{\prime}=\frac{m_{2}^{\prime}}{m_{3}^{\prime}} \mathbf{1}
$$

- note that, typically, $m_{3}^{\prime} \neq 1$
$m_{3}^{\prime}=1$ when \mathbf{H} is affine
- an infinite point ($u, v, 0$) maps the same way

Some Homographic Tasters

Rectification of camera rotation: $\rightarrow 59$ (geometry), $\rightarrow 122$ (homography estimation)

$\mathbf{H} \simeq \mathbf{K} \mathbf{R}^{\top} \mathbf{K}^{-1}$

maps from image plane to facade plane

Homographic Mouse for Visual Odometry: [Mallis 2007]

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

$$
\mathbf{H} \simeq \mathbf{K}\left(\mathbf{R}-\frac{\mathbf{t n}^{\top}}{d}\right) \mathbf{K}^{-1} \quad[\mathbf{H} \& Z, \text { p. 327] }
$$

-Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

- Euclidean mapping (EM): rotation, translation and their combination

$$
\mathbf{H}=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & t_{x} \\
\sin \phi & \cos \phi & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

- eigenvalues $\left(1, e^{-i \phi}, e^{i \phi}\right)$
$\mathrm{EM}=$ The most general homography preserving

1. areas: $\operatorname{det} \mathbf{H}=1 \Rightarrow$ unit Jacobian
2. lengths: Let $\underline{\mathbf{x}}_{i}^{\prime}=\mathbf{H} \underline{\mathbf{x}}_{i}$ (check we can use $=$ instead of \simeq). Let $\left(x_{i}\right)_{3}=1$, Then

$$
\left\|\underline{\mathbf{x}}_{2}^{\prime}-\underline{\mathbf{x}}_{1}^{\prime}\right\|=\left\|\mathbf{H} \underline{\mathbf{x}}_{2}-\mathbf{H} \underline{\mathbf{x}}_{1}\right\|=\left\|\mathbf{H}\left(\underline{\mathbf{x}}_{2}-\underline{\mathbf{x}}_{1}\right)\right\|=\cdots=\left\|\underline{\mathbf{x}}_{2}-\underline{\mathbf{x}}_{1}\right\|
$$

3. angles check the dot-product of normalized differences from a point $(\mathbf{x}-\mathbf{z})^{\top}(\mathbf{y}-\mathbf{z}) \quad$ (Cartesian(!))

- eigenvectors when $\phi \neq k \pi, k=0,1, \ldots$ (columnwise)

$$
\mathbf{e}_{1} \simeq\left[\begin{array}{c}
t_{x}+t_{y} \cot \frac{\phi}{2} \\
t_{y}-t_{x} \cot \frac{\phi}{2} \\
2
\end{array}\right], \quad \mathbf{e}_{2} \simeq\left[\begin{array}{l}
i \\
1 \\
0
\end{array}\right], \quad \mathbf{e}_{3} \simeq\left[\begin{array}{c}
-i \\
1 \\
0
\end{array}\right]
$$

$\mathbf{e}_{2}, \mathbf{e}_{3}$ - circular points, i - imaginary unit
4. circular points: points at infinity $(i, 1,0),(-i, 1,0)$ (preserved even by similarity)

- similarity: scaled Euclidean mapping (does not preserve lengths, areas)

-Homography Subgroups: Affine Mapping

$$
\mathbf{H}=\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{x} \\
a_{21} & a_{22} & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

$\mathrm{AM}=$ The most general homography preserving

- parallelism
- ratio of areas
- ratio of lengths on parallel lines
- linear combinations of vectors (e.g. midpoints)
- convex hull
- line at infinity $\underline{\mathbf{n}}_{\infty}$ (not pointwise)

does not preserve	observe $\mathbf{H}^{\top} \underline{\mathbf{n}}_{\infty} \simeq\left[\begin{array}{ccc}a_{11} & a_{21} & 0 \\ a_{12} & a_{22} & 0 \\ t_{x} & t_{y} & 1\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\underline{\mathbf{n}}_{\infty} \quad \Rightarrow \quad \underline{\mathbf{n}}_{\infty} \simeq \mathbf{H}^{-\top} \underline{\mathbf{n}}_{\infty}$

- angles
- areas
- circular points

Euclidean mappings preserve all properties affine mappings preserve, of course

-Homography Subgroups: General Homography

$$
\mathbf{H}=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]
$$

preserves only

- incidence and concurrency
- collinearity
- cross-ratio on the line $\quad \rightarrow 47$
does not preserve
- lengths
- areas
- parallelism
- ratio of areas
- ratio of lengths
- linear combinations of vectors (midpoints, etc.)
- convex hull
- line at infinity $\underline{\mathbf{n}}_{\infty}$

Elementary Decomposition of a Homography

Unique decompositions: $\quad \mathbf{H}=\mathbf{H}_{S} \mathbf{H}_{A} \mathbf{H}_{P} \quad\left(=\mathbf{H}_{P}^{\prime} \mathbf{H}_{A}^{\prime} \mathbf{H}_{S}^{\prime}\right)$

$$
\begin{array}{rlr}
\mathbf{H}_{S} & =\left[\begin{array}{cc}
s \mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right] & \text { similarity (scaled EM) } \\
\mathbf{H}_{A} & =\left[\begin{array}{cc}
\mathbf{K} & \mathbf{0} \\
\mathbf{0}^{\top} & 1
\end{array}\right] & \text { special affine } \\
\mathbf{H}_{P} & =\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{v}^{\top} & w
\end{array}\right] & \text { special projective }
\end{array}
$$

\mathbf{K} - upper triangular matrix with positive diagonal entries
\mathbf{R} - orthogonal, $\mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \operatorname{det} \mathbf{R}=1$
$s, w \in \mathbb{R}, s>0, w \neq 0$

$$
\mathbf{H}=\left[\begin{array}{cc}
s \mathbf{R K}+\mathbf{t} \mathbf{v}^{\top} & w \mathbf{t} \\
\mathbf{v}^{\top} & w
\end{array}\right]
$$

- must use 'thin' QR decomposition, which is unique [Golub \& van Loan 2013, Sec. 5.2.6]
- $\mathbf{H}_{S}, \mathbf{H}_{A}, \mathbf{H}_{P}$ are homography subgroups (in the sense of group theory) (eg. $\mathbf{K}=\mathbf{K}_{1} \mathbf{K}_{2}, \mathbf{K}^{-1}, \mathbf{I}$ are all upper triangular with unit determinant, associativity holds)

Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

1. in this picture we are looking 'down the street'
2. right-handed canonical coordinate system (x, y, z) with unit vectors $\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}$
3. origin $=$ center of projection C
4. image plane π at unit distance from C
5. optical axis O is perpendicular to π
6. principal point x_{p} : intersection of O and π
7. perspective camera is given by C and π

projected point in the natural image coordinate system:

$$
\frac{y^{\prime}}{1}=y^{\prime}=\frac{y}{1+z-1}=\frac{y}{z}, \quad x^{\prime}=\frac{x}{z}
$$

- Natural and Canonical Image Coordinate Systems

$$
\begin{aligned}
& \text { projected point in canonical camera }(z \neq 0) \\
& \qquad\left(x^{\prime}, y^{\prime}, 1\right)=\left(\frac{x}{z}, \frac{y}{z}, 1\right)=\frac{1}{z}(x, y, z) \simeq \underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{P}_{0}} \cdot\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\mathbf{P}_{0} \underline{\mathbf{X}}
\end{aligned}
$$

projected point in scanned image

scale by f and translate to $\left(u_{0}, v_{0}\right)$

$$
\begin{aligned}
& u=f \frac{x}{z}+u_{0} \\
& \frac{1}{z}\left[\begin{array}{c}
f x+z u_{0} \\
f y+z v_{0} \\
z
\end{array}\right] \simeq\left[\begin{array}{ccc}
f & 0 & u_{0} \\
0 & f & v_{0} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0} \underline{\mathbf{X}}=\mathbf{P} \underline{\mathbf{X}}
\end{aligned}
$$

- 'calibration' matrix \mathbf{K} transforms canonical \mathbf{P}_{0} to standard perspective camera \mathbf{P}

- Computing with Perspective Camera Projection Matrix

$$
\begin{gathered}
\underline{\mathbf{m}}=\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{llll}
f & 0 & u_{0} & 0 \\
0 & f & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{P}}\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right] \simeq\left[\begin{array}{c}
f x+u_{0} z \\
f y+v_{0} z \\
z
\end{array}\right] \quad \underbrace{\left[\begin{array}{c}
x+\frac{z}{f} u_{0} \\
y+\frac{z}{f} v_{0} \\
\frac{z}{f}
\end{array}\right]}_{(a)} \\
\frac{m_{1}}{m_{3}}=\frac{f x}{z}+u_{0}=u, \quad \frac{m_{2}}{m_{3}}=\frac{f y}{z}+v_{0}=v \quad \text { when } \quad m_{3} \neq 0
\end{gathered}
$$

f - 'focal length' - converts length ratios to pixels, $\quad[f]=\mathrm{px}, \quad f>0$
$\left(u_{0}, v_{0}\right)$ - principal point in pixels

Perspective Camera:

1. dimension reduction
2. nonlinear unit change $\mathbf{1} \mapsto \mathbf{1} \cdot z / f$, see (a)
for convenience we use $P_{11}=P_{22}=f$ rather than $P_{33}=1 / f$ and the u_{0}, v_{0} in relative units
3. $m_{3}=0$ represents points at infinity in image plane π
i.e. points with $z=0$

Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera coordinate system:

$$
\mathbf{X}_{c}=\mathbf{R} \mathbf{X}_{w}+\mathbf{t}
$$

\mathbf{R} - camera rotation matrix
world orientation in the camera coordinate frame \mathcal{F}_{c}
t - camera translation vector
 world origin in the camera coordinate frame \mathcal{F}_{c}

$$
\mathbf{P} \underline{\mathbf{X}}_{c}=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{X}_{c} \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{R} \mathbf{X}_{w}+\mathbf{t} \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0} \underbrace{\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]}_{\mathbf{T}}\left[\begin{array}{c}
\mathbf{X}_{w} \\
1
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \underline{\mathbf{X}}_{w}
$$

\mathbf{P}_{0} (a $3 \times 4 \mathrm{mtx}$) selects the first 3 rows of \mathbf{T} and discards the last row

- \mathbf{R} is rotation, $\mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \operatorname{det} \mathbf{R}=+1$
$\mathbf{I} \in \mathbb{R}^{3,3}$ identity matrix
- 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components
- alternative, often used, camera representations

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

C - camera position in the world reference frame \mathcal{F}_{w}
\mathbf{r}_{3}^{\top} - optical axis in the world reference frame \mathcal{F}_{w}
third row of $\mathbf{R}: \mathbf{r}_{3}=\mathbf{R}^{\mathbf{t}}[=-\mathbf{R} \mathbf{C}$

- we can save some conversion and computation by noting that $\mathbf{K R}[\mathbf{I} \quad-\mathbf{C}] \underline{\mathbf{X}}=\mathbf{K R}(\mathbf{X}-\mathbf{C})$

Changing the Inner (Image) Reference Frame

The general form of calibration matrix \mathbf{K} includes

- skew angle θ of the digitization raster
- pixel aspect ratio a

$$
\begin{aligned}
& \mathbf{K}=\left[\begin{array}{ccc}
f & -f \cot \theta & u_{0} \\
0 & f /(a \sin \theta) & v_{0} \\
0 & 0 & 1
\end{array}\right] \\
& \text { units: }[f]=\mathrm{px},\left[u_{0}\right]=\mathrm{px},\left[v_{0}\right]=\mathrm{px},[a]=1
\end{aligned}
$$

\circledast H1; 2pt: Verify this K. Hints: (1) Map first by skew then by sampling scale then shift by u_{0}, v_{0}; (2) Skew: express point x as $\mathbf{x}=u^{\prime} \mathbf{e}_{u^{\prime}}+v^{\prime} \mathbf{e}_{v^{\prime}}=u \mathbf{e}_{u}+v \mathbf{e}_{v}, \mathbf{e}_{u}, \mathbf{e}_{v}$ etc. are unit basis vectors, \mathbf{K} maps from an orthogonal system to a skewed system $\left[w^{\prime} u^{\prime}, w^{\prime} v^{\prime}, w^{\prime}\right]^{\top}=\mathbf{K}[u, v, 1]^{\top} ;$
general finite perspective camera has 11 parameters:

- 5 intrinsic parameters: $f, u_{0}, v_{0}, a, \theta$
finite camera: $\operatorname{det} \mathbf{K} \neq 0$
- 6 extrinsic parameters: $\mathbf{t}, \mathbf{R}(\alpha, \beta, \gamma)$

$$
\underline{\mathbf{m}} \simeq \mathbf{P} \underline{\mathbf{X}}, \quad \mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right] \quad \text { a recipe for filling } \mathbf{P}
$$

Representation Theorem: The set of projection matrices \mathbf{P} of finite perspective cameras is isomorphic to the set of homogeneous 3×4 matrices with the left 3×3 submatrix \mathbf{Q} non-singular.

-Projection Matrix Decomposition

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right] \quad \longrightarrow \quad \mathbf{K R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

$\mathbf{Q} \in \mathbb{R}^{3,3}$
full rank
(if finite perspective camera)
$\mathbf{K} \in \mathbb{R}^{3,3}$
$\mathbf{R} \in \mathbb{R}^{3,3}$ upper triangular with positive diagonal entries rotation: $\quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}$ and $\operatorname{det} \mathbf{R}=+1$

1. $\left[\begin{array}{ll}\mathbf{Q} & \mathbf{q}\end{array}\right]=\mathbf{Q}\left[\begin{array}{ll}\mathbf{I} & \mathbf{Q}^{-1} \mathbf{q}\end{array}\right]=\mathbf{K R}\left[\begin{array}{ll}\mathbf{I} & -\mathbf{C}\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & -\mathbf{R C}\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right] \quad$ also $\rightarrow 36$
2. RQ decomposition of $\mathbf{Q}=\mathbf{K R}$ using three Givens rotations
[H\&Z, p. 579]

$$
\mathbf{K}=\mathbf{Q} \underbrace{\mathbf{R}_{32} \mathbf{R}_{31} \mathbf{R}_{21}}_{\mathbf{R}^{-1}}
$$

$\mathbf{R}_{i j}$ zeroes element $i j$ in \mathbf{Q} affecting only columns i and j and the sequence preserves previously zeroed elements, e.g. (see next slide for derivation details)

$$
\mathbf{R}_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c & -s \\
0 & s & c
\end{array}\right] \text { gives } \begin{gathered}
c^{2}+s^{2}=1 \\
0=k_{32}=c q_{32}+s q_{33}
\end{gathered} \Rightarrow c=\frac{q_{33}}{\sqrt{q_{32}^{2}+q_{33}^{2}}} \quad s=\frac{-q_{32}}{\sqrt{q_{32}^{2}+q_{33}^{2}}}
$$

\circledast P1; 1pt: Multiply known matrices \mathbf{K}, \mathbf{R} and then decompose back; discuss numerical errors

- RQ decomposition nonuniqueness: $\mathbf{K R}=\mathbf{K} \mathbf{T}^{-1} \mathbf{T R}$, where $\mathbf{T}=\operatorname{diag}(-1,-1,1)$ is also a rotation, we must correct the result so that the diagonal elements of \mathbf{K} are all positive 'thin' RQ decomposition
- care must be taken to avoid overflow, see [Golub \& van Loan 2013, sec. 5.2]

IRQ Decomposition Step

```
Q = Array [ q q#1,#2 &, {3, 3}];
R32 ={{1, 0, 0},{0,c,-s},{0,s,c}};R32 // MatrixForm
```

$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c\end{array}\right)$

```
Q1 = Q.R32 ; Q1 // MatrixForm
```

$\left(\begin{array}{lll}q_{1,1} & c & q_{1,2}+s q_{1,3}-s q_{1,2}+c \\ q_{2,1} & c & q_{2,2}+s \\ q_{2,3} & -s q_{2,2}+c & q_{2,3} \\ q_{3,1} & c & q_{3,2}+s q_{3,3}-s q_{3,2}+c \\ q_{3,3}\end{array}\right)$

```
s1 = Solve [{Q1[[3]][[2]]=0, c^2 + s^^2=1},{c, s}][[2]]
```


Q1 /. s1 // Simplify // MatrixForm

$$
\left(\begin{array}{cc}
q_{1,1} & \frac{-q_{1,3} q_{3,2}+q_{1,2} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}}
\end{array} \frac{q_{1,2} q_{3,2}+q_{1,3} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}}\left(\begin{array}{cc}
q_{2,1} \frac{-q_{2,3} q_{3,2}+q_{2,2} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} & \frac{q_{2,2} q_{3,2+q_{2,3} q_{3,3}}^{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}}}{} \\
q_{3,1} & 0
\end{array} \sqrt{q_{3,2}^{2}+q_{3,3}^{2}}, ~\right)\right.
$$

－Center of Projection

Observation：finite \mathbf{P} has a non－trivial right null－space

Theorem

Let there be $\underline{\mathbf{B}} \neq \mathbf{0}$ s．t． $\mathbf{P} \underline{\mathbf{B}}=\mathbf{0}$ ．Then $\underline{\mathbf{B}}$ is equal to the projection center $\underline{\mathbf{C}}$（in world coordinate frame）．

Proof．
1．Consider spatial line $A B$（ B is given）．We can write

$$
\underline{\mathbf{X}}(\lambda) \simeq \lambda \underline{\mathbf{A}}+(1-\lambda) \underline{\mathbf{B}}, \quad \lambda \in \mathbb{R}
$$

2．it projects to

$$
\mathbf{P} \underline{\mathbf{X}}(\lambda) \simeq \lambda \mathbf{P} \underline{\mathbf{A}}+(1-\lambda) \mathbf{P} \underline{\mathbf{B}} \simeq \mathbf{P} \underline{\mathbf{A}}
$$

－the entire line projects to a single point \Rightarrow it must pass through the optical center of \mathbf{P}
－this holds for all choices of $A \Rightarrow$ the only common point of the lines is the C ，i．e．$\underline{\mathbf{B}} \simeq \underline{\mathbf{C}}$
Hence

$$
\mathbf{0}=\mathbf{P} \underline{\mathbf{C}}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{C} \\
1
\end{array}\right]=\mathbf{Q} \mathbf{C}+\mathbf{q} \Rightarrow \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}
$$

$\underline{\mathbf{C}}=\left(c_{j}\right)$ ，where $c_{j}=(-1)^{j} \operatorname{det} \mathbf{P}^{(j)}$ ，in which $\mathbf{P}^{(j)}$ is \mathbf{P} with column j dropped Matlab：C＿homo＝null（P）；or C＝－Q\q；

-Optical Ray

Optical ray: Spatial line that projects to a single image point.

1. consider line
d unit line direction vector, $\|\mathbf{d}\|=1, \lambda \in \mathbb{R}$, Cartesian representation

$$
\mathbf{X}=\mathbf{C}+\lambda \mathbf{d}
$$

2. the projection of the (finite) point X is

$$
\begin{aligned}
\underline{\mathbf{m}} & \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]=\mathbf{Q}(\mathbf{C}+\lambda \mathbf{d})+\mathbf{q}=\lambda \mathbf{Q} \mathbf{d}= \\
& =\lambda\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{d} \\
0
\end{array}\right]
\end{aligned}
$$

\ldots which is also the image of a point at infinity in \mathbb{P}^{3}

- optical ray line corresponding to image point m is

$$
\mathbf{X}=\mathbf{C}+(\lambda \mathbf{Q})^{-1} \underline{\mathbf{m}}, \quad \lambda \in \mathbb{R}
$$

- optical ray may be represented by a point at infinity $(\mathbf{d}, 0)$ in \mathbb{P}^{3}

-Optical Axis

Optical axis: Optical ray that is perpendicular to image plane π

1. a line parallel to π projects to line at infinity in π :

$$
\left[\begin{array}{l}
u \\
v \\
0
\end{array}\right] \simeq \mathbf{P} \underline{\mathbf{X}}=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
$$

2. therefore the set of points X is parallel to π iff

$$
\mathbf{q}_{3}^{\top} \mathbf{X}+q_{34}=0
$$

3. this is a plane with $\pm \mathbf{q}_{3}$ as the normal vector
4. optical axis direction: substitution $\mathbf{P} \mapsto \lambda \mathbf{P}$ must not change the direction
5. we select (assuming $\operatorname{det}(\mathbf{R})>0$)

$$
\mathbf{o}=\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3}
$$

$$
\text { if } \mathbf{P} \mapsto \lambda \mathbf{P} \text { then } \operatorname{det}(\mathbf{Q}) \mapsto \lambda^{3} \operatorname{det}(\mathbf{Q}) \quad \text { and } \quad \mathbf{q}_{3} \mapsto \lambda \mathbf{q}_{3}
$$

-Principal Point

Principal point: The intersection of image plane and the optical axis

1. as we saw, \mathbf{q}_{3} is the directional vector of optical axis
2. we take point at infinity on the optical axis that must project to principal point m_{0}
3. then

$$
\underline{\mathbf{m}}_{0} \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{q}_{3} \\
0
\end{array}\right]=\mathbf{Q} \mathbf{q}_{3}
$$

$$
\text { principal point: } \quad \underline{\mathbf{m}}_{0} \simeq \mathbf{Q} \mathbf{q}_{3}
$$

- principal point is also the center of radial distortion

-Optical Plane

A spatial plane with normal p passing through optical center C and a given image line n.

hence, $0=\mathbf{p}^{\top}(\mathbf{X}-\mathbf{C})=\underline{\mathbf{n}}^{\top} \underbrace{\mathbf{Q}(\mathbf{X}-\mathbf{C})}_{\rightarrow 32}=\underline{\mathbf{n}}^{\top} \mathbf{P} \underline{\mathbf{X}}=\left(\mathbf{P}^{\top} \underline{\mathbf{n}}\right)^{\top} \underline{\mathbf{X}}$ for every X in plane ρ
optical plane is given by $n: \quad \boldsymbol{\rho} \simeq \mathbf{P}^{\top} \underline{\mathbf{n}} \quad \rho_{1} x+\rho_{2} y+\rho_{3} z+\rho_{4}=0$

Cross－Check：Optical Ray as Optical Plane Intersection

optical plane normal given by n

$$
\text { optical plane normal given by } n^{\prime}
$$

$$
\begin{aligned}
\mathbf{p} & =\mathbf{Q}^{\top} \underline{\mathbf{n}} \\
\mathbf{p}^{\prime} & =\mathbf{Q}^{\top} \underline{\mathbf{n}^{\prime}}
\end{aligned}
$$

$$
\mathbf{d}=\mathbf{p} \times \mathbf{p}^{\prime}=\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}\right) \times\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1}\left(\underline{\mathbf{n}} \times \underline{\underline{n}}^{\prime}\right)=\mathbf{Q}^{-1} \underline{\mathbf{m}}
$$

-Summary: Optical Center, Ray, Axis, Plane

General finite camera

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

$\underline{\mathbf{C}} \simeq \operatorname{rnull}(\mathbf{P})$

$$
\mathbf{d}=\mathbf{Q}^{-1} \underline{\mathbf{m}}
$$

$\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3}$
Q \mathbf{q}_{3}

$$
\boldsymbol{\rho}=\mathbf{P}^{\top} \underline{\mathbf{n}}
$$

$$
\mathbf{K}=\left[\begin{array}{ccc}
f & -f \cot \theta & u_{0} \\
0 & f /(a \sin \theta) & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

R
t
optical center (world coords.)
optical ray direction (world coords.) outward optical axis (world coords.) principal point (in image plane) optical plane (world coords.) camera (calibration) matrix (f, u_{0}, v_{0} in pixels) camera rotation matrix (cam coords.) camera translation vector (cam coords.)

Thank You

