
IDegenerate (Critical) Configurations for Camera Resection

Let X = {Xi; i = 1, . . .} be a set of points and P1 6' Pj be two regular (rank-3) cameras.
Then two configurations (P1,X ) and (Pj ,X ) are image-equivalent if

P1Xi ' PjXi for all Xi ∈ X
there is a non-trivial set of other cameras that see the same image{C1C2C1C

Case 4

• importantly: If all calibration points Xi ∈ X lie on a plane
κ then camera resection is non-unique and all
image-equivalent camera centers lie on a spatial line C
with the C∞ = κ ∩ C excluded

this also means we cannot resect if all Xi are infinite

• by adding points Xi ∈ X to C we gain nothing

• there are additional image-equivalent configurations, see
next

proof sketch in [H&Z, Sec. 22.1.2]

Note that if Q, T are suitable homographies then P1 ' QP0T, where P0 is canonical and the

analysis can be made with P̂j ' Q−1Pj

P0 TXi︸ ︷︷ ︸
Yi

' P̂j TXi︸ ︷︷ ︸
Yi

for all Yi ∈ Y
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cont’d (all cases)C C
Case 5 Case 6

• cameras C1, C2 co-located at point C
• points on three optical rays or one optical ray

and one optical plane

• Case 5: camera sees 3 isolated point images

• Case 6: cam. sees a line of points and an isolated pointC C1
C 01C1C2 {C1C2C1C

Case 3 Case 4

• cameras lie on a line C \ {C∞, C′∞}
• points lie on C and

1. on two lines meeting C at C∞, C′∞
2. or on a plane meeting C at C∞

• Case 3: camera sees 2 lines of points

Case 2

CC2
C1C1 • cameras lie on a planar conic C \ {C∞}

not necessarily an ellipse

• points lie on C and an additional line meeting the
conic at C∞

• Case 2: camera sees 2 lines of points

Case 1 CC1 C2 • cameras and points all lie on a twisted cubic C

• Case 1: camera sees a conic
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IThree-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of 3 reference Points.

Problem: Given K and three corresponding pairs
{

(mi, Xi)
}3
i=1

, find R, C by solving

λimi = KR (Xi −C), i = 1, 2, 3

1. Transform vi
def
= K−1mi. Then

λivi = R (Xi −C). (10)

2. Eliminate R by taking rotation preserves length: ‖Rx‖ = ‖x‖

|λi| · ‖vi‖ = ‖Xi −C‖ def
= zi (11)

3. Consider only angles among vi and apply Cosine Law per
triangle (C,Xi,Xj) i, j = 1, 2, 3, i 6= j

d2ij = z2i + z2j − 2 zi zj cij ,

zi = ‖Xi −C‖, dij = ‖Xj −Xi‖, cij = cos(∠vi vj)

configuration w/o rotation in (11)

X3X1 v2
X2z1 v1 v3z2

C
d12

4. Solve system of 3 quadratic eqs in 3 unknowns zi [Fischler & Bolles, 1981]

there may be no real root; there are up to 4 solutions that cannot be ignored (verify on additional points)

5. Compute C by trilateration (3-sphere intersection) from Xi and zi; then λi from (11) and R
from (10)

Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)
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Degenerate (Critical) Configurations for Exterior Orientation

X1X3 X2
C unstable solution

• center of projection C located on the orthogonal circular
cylinder with base circumscribing the three points Xi

unstable: a small change of Xi results in a large change of C
can be detected by error propagation

degenerate

• camera C is coplanar with points (X1, X2, X3) but is not
on the circumscribed circle of (X1, X2, X3) camera sees a

lineX1X3 X2C no solution

1. C cocyclic with (X1, X2, X3) camera sees a line

• additional critical configurations depend on the method to solve the quadratic
equations

[Haralick et al. IJCV 1994]
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IPopulating A Little ZOO of Minimal Geometric Problems in CV

problem given unknown slide

camera resection 6 world–img correspondences
{

(Xi, mi)
}6
i=1

P 64

exterior orientation K, 3 world–img correspondences
{

(Xi, mi)
}3
i=1

R, C 68

• camera resection and exterior orientation are similar problems in a sense:
• we do resectioning when our camera is uncalibrated
• we do orientation when our camera is calibrated

• more problems to come
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Part IV

Computing with a Camera Pair

4.1 Camera Motions Inducing Epipolar Geometry

4.2 Estimating Fundamental Matrix from 7 Correspondences

4.3 Estimating Essential Matrix from 5 Correspondences

4.4 Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by

[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1

[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630–633

additional references

H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293

(5828):133–135, 1981.
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IGeometric Model of a Camera Pair

Epipolar geometry:

• brings constraints necessary for inter-image matching
• its parametric form encapsulates information about the relative pose of two cameras" �2�1 d2d1

e2e1m1
X

C2l1 m2C1 l2b
two-camera setup

Description

• baseline b joins projection centers C1, C2

b = C2 −C1

• epipole ei ∈ πi is the image of Cj :

e1 ' P1C2, e2 ' P2C1

• li ∈ πi is the image of epipolar plane

ε = (C2, X,C1)

• lj is the epipolar line in image πj induced
by mi in image πi

Epipolar constraint: corresponding d2, b, d1 are coplanar a necessary condition, see →87
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Epipolar Geometry Example: Forward Motion
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image 1 image 2

• red: correspondences click on the image to see their IDs

• green: epipolar line pairs per correspondence same ID in both images

How high was the camera above the floor?

movement2 1 h=?
3D Computer Vision: IV. Computing with a Camera Pair (p. 75/186) R. Šára, CMP; rev. 31–Oct–2017



ICross Products and Maps by Skew-Symmetric 3× 3 Matrices

• There is an equivalence b×m = [b]×m, where [b]× is a 3× 3 skew-symmetric matrix

[b]× =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 , assuming b =

b1b2
b3


Some properties

1. [b]>× = −[b]× the general antisymmetry property

2. A is skew-symmetric iff x>Ax = 0 for all x skew-sym mtx generalizes cross products

3. [b]3× = −‖b‖2 · [b]×

4. ‖[b]×‖F =
√

2 ‖b‖ Frobenius norm (‖A‖F =
√

tr(A>A) =
√∑

i,j |aij |
2)

5. [b]×b = 0

6. rank [b]× = 2 iff ‖b‖ > 0 check minors of [b]×
7. eigenvalues of [b]× are (0, λ,−λ)

8. for any regular B: [Bz]×B = detB ·B−>[z]× follows from the factoring on →40

9. special case: if RR> = I then [Rb]× = R [b]×R>

• note that if Rb is rotation about b then Rbb = b

• note [b]× is not a homography; it is not a rotation matrix it is a logarithm of a rotation mtx
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IExpressing Epipolar Constraint Algebraically"p"b �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2

Pi =
[
Qi qi

]
= Ki

[
Ri ti

]
, i = 1, 2

R21 – relative camera rotation, R21 = R2R
>
1

t21 – relative camera translation, t21 = t2 −R21t1 = −R2b

b – baseline (world coordinate system)

remember: C = −Q−1q = −R>t →34 and 36

0 = d>2 pε︸︷︷︸
normal of ε

' (Q−1
2 m2)>︸ ︷︷ ︸

optical ray

Q>1 l1︸ ︷︷ ︸
optical plane

= m>2 Q−>2 Q>1 (e1 ×m1)︸ ︷︷ ︸
image of ε in π2

= m>2
(
Q−>2 Q>1 [e1]×

)︸ ︷︷ ︸
fundamental matrix F

m1

Epipolar constraint m>2 Fm1 = 0 is a point-line incidence constraint

• point m2 is incident on epipolar line l2 ' Fm1

• point m1 is incident on epipolar line l1 ' F>m2

• Fe1 = F>e2 = 0 (non-trivially)

• all epipolars meet at the epipole

e1 ' Q1C2 + q1 = Q1C2 −Q1C1 = K1R1b = −K1R1R
>
2 t21 = −K1R

>
21t21

F = Q−>2 Q>1 [e1]× = Q−>2 Q>1 [K1R1b]× =
~ 1· · · ' K−>2 [−t21]×R21K

−1
1 fundamental

E = [−t21]×R21 = [R2b]×︸ ︷︷ ︸
baseline in Cam 2

R21 = R21 [R1b]×︸ ︷︷ ︸
baseline in Cam 1

= R21[−R21t21]× essential
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IThe Structure and the Key Properties of the Fundamental Matrix

F = (Q2Q
−1
1︸ ︷︷ ︸

epipolar homography H

)−>[e1]× = K−>2 R21K
>
1︸ ︷︷ ︸

H−>

[

left epipole︷︸︸︷
e1 ]× ' [

right epipole︷︸︸︷
He1]×H = K−>2 [−t21]×R21︸ ︷︷ ︸

essential matrix E

K−1
1

1. E captures relative camera pose only [Longuet-Higgins 1981]

(the change of the world coordinate system does not change E)[
R′i t′i

]
=
[
Ri ti

]
·
[
R t

0> 1

]
=
[
RiR Rit + ti

]
,

then
R′21 = R′2R

′
1
>

= · · · = R21

t′21 = t′2 −R′21t
′
1 = · · · = t21

2. the translation length t21 is lost since E is homogeneous
3. F maps points to lines and it is not a homography
4. e2 × (e2 × Fm1) ' Fm1, in general F ' [e2]2a× F [e1]2b× for any a, b ∈ N

e2
e2

l2 ≃ Fm1e2 × Fm1

• by point/line ‘transmutation’ (left)

• point e2 does not lie on line e2 (dashed): e>2 e2 6= 0

• application: F>(e2 × l2) ' F>(e2 × Fm1) ' F>m2 ' l1
• F>[e2]× maps epipolar lines to epi. lines but it is not a

homography
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ISome Mappings by the Fundamental Matrix

�2�1 e2e1m1 l1 m2l2
Fm1

0 = m>2 Fm1

e1 ' null(F), e2 ' null(F>)

l2 = Fm1 l1 = F>m2

l2 = F[e1]×l1 l1 = F>[e2]×l2

m⊤
2 Fm1 = 0m1 m2

l1l2

F⊤F

(Q2Q
−1
1 )−⊤ or F [e1]×

(Q1Q
−1
2 )−⊤ or F⊤[e2]×

• l2 ' F [e1]× l1: by ‘transmutation’ →78

• F[e1]× maps lines to lines but it is not a homography

• H = Q2Q−1
1 is the epipolar homography→78

mapping epipolar lines to epipolar lines, hence

H = Q2Q−1
1 = K2R21K−1

1

you have seen this →61
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Thank You
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