－Degenerate（Critical）Configurations for Camera Resection

Let $\mathcal{X}=\left\{X_{i} ; i=1, \ldots\right\}$ be a set of points and $\mathbf{P}_{1} \not \not \mathbf{P}_{j}$ be two regular（rank－3）cameras． Then two configurations $\left(\mathbf{P}_{1}, \mathcal{X}\right)$ and $\left(\mathbf{P}_{j}, \mathcal{X}\right)$ are image－equivalent if

$$
\mathbf{P}_{1} \underline{\mathbf{X}}_{i} \simeq \mathbf{P}_{j} \underline{\mathbf{X}}_{i} \quad \text { for all } \quad X_{i} \in \mathcal{X}
$$

there is a non－trivial set of other cameras that see the same image

Case 4
－importantly：If all calibration points $X_{i} \in \mathcal{X}$ lie on a plane \varkappa then camera resection is non－unique and all image－equivalent camera centers lie on a spatial line \mathcal{C} with the $C_{\infty}=\varkappa \cap \mathcal{C}$ excluded
this also means we cannot resect if all X_{i} are infinite
－by adding points $X_{i} \in \mathcal{X}$ to \mathcal{C} we gain nothing
－there are additional image－equivalent configurations，see next
proof sketch in［H\＆Z，Sec．22．1．2］

Note that if \mathbf{Q}, \mathbf{T} are suitable homographies then $\mathbf{P}_{1} \simeq \mathbf{Q} \mathbf{P}_{0} \mathbf{T}$ ，where \mathbf{P}_{0} is canonical and the analysis can be made with $\hat{\mathbf{P}}_{j} \simeq \mathbf{Q}^{-1} \mathbf{P}_{j}$

$$
\mathbf{P}_{0} \underbrace{\mathbf{T} \underline{\mathbf{X}}_{i}}_{\underline{\mathbf{Y}}_{i}} \simeq \hat{\mathbf{P}}_{j} \underbrace{\mathbf{T} \underline{\mathbf{X}}_{i}}_{\underline{\mathbf{Y}}_{i}} \text { for all } \quad Y_{i} \in \mathcal{Y}
$$

cont'd (all cases)

cameras C_{1}, C_{2} co-located at point C
points on three optical rays or one optical ray
and one optical plane

1. on two lines meeting C at $C_{\infty}, C_{\infty}^{\prime}$
or on a plane meeting C at C_{∞}

- cameras lie on a planar conic $\mathcal{C} \backslash\left\{C_{\infty}\right\}$
not necessarily an ellipse
- points lie on \mathcal{C} and an additional line meeting the conic at C_{∞}
- Case 2: camera sees 2 lines of points
- cameras and points all lie on a twisted cubic \mathcal{C}
- Case 1: camera sees a conic

- Three-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of $\underline{3}$ reference $\underline{\text { Points. }}$ Problem: Given \mathbf{K} and three corresponding pairs $\left\{\left(m_{i}, X_{i}\right)\right\}_{i=1}^{3}$, find \mathbf{R}, \mathbf{C} by solving

$$
\lambda_{i} \underline{\mathbf{m}}_{i}=\mathbf{K R}\left(\mathbf{X}_{i}-\mathbf{C}\right), \quad i=1,2,3 \quad R^{\top} \mathrm{R}=I
$$

1. Transform $\underline{\mathbf{v}}_{i} \stackrel{\text { def }}{=} \mathbf{K}^{-1} \underline{\mathbf{m}}_{i}$. Then
configuration w/o rotation in (11)

$$
\begin{equation*}
\lambda_{i} \underline{\mathbf{v}}_{i}=\mathbf{R}\left(\mathbf{X}_{i}-\mathbf{C}\right) . \tag{10}
\end{equation*}
$$

2. Eliminate \mathbf{R} by taking rotation preserves length: $\|\mathbf{R x}\|=\|\mathbf{x}\|$

$$
\begin{equation*}
\left|\lambda_{i}\right| \cdot\left\|\underline{\mathbf{v}}_{i}\right\|=\left\|\mathbf{X}_{i}-\mathbf{C}\right\| \stackrel{\text { def }}{=} z_{i} \tag{11}
\end{equation*}
$$

3. Consider only angles among $\underline{\mathbf{v}}_{i}$ and apply Cosine Law per triangle $\left(\mathbf{C}, \mathbf{X}_{i}, \mathbf{X}_{j}\right) i, j=1,2,3, i \neq j$

$$
\begin{gathered}
d_{i j}^{2}=z_{i}^{2}+z_{j}^{2}-2 z_{i} z_{j} c_{i j} \\
z_{i}=\left\|\mathbf{X}_{i}-\mathbf{C}\right\|, \quad d_{i j}=\left\|\mathbf{X}_{j}-\mathbf{X}_{i}\right\|, \quad c_{i j}=\cos \left(\angle \underline{\mathbf{v}}_{i} \underline{\mathbf{v}}_{j}\right)
\end{gathered}
$$

4. Solve system of 3 quadratic eqs in 3 unknowns z_{i}
[Fischler \& Bolles, 1981] there may be no real root; there are up to 4 solutions that cannot be ignored (verify on additional points)
5. Compute \mathbf{C} by trilateration (3-sphere intersection) from \mathbf{X}_{i} and z_{i}; then λ_{i} from (11) and \mathbf{R} from (10)

Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)

Degenerate (Critical) Configurations for Exterior Orientation

unstable solution

- center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_{i}
unstable: a small change of X_{i} results in a large change of C can be detected by error propagation
degenerate
- camera C is coplanar with points $\left(X_{1}, X_{2}, X_{3}\right)$ but is not on the circumscribed circle of $\left(X_{1}, X_{2}, X_{3}\right)$ camera sees a line

no solution

1. C cocyclic with $\left(X_{1}, X_{2}, X_{3}\right)$

- additional critical configurations depend on the method to solve the quadratic equations

Populating A Little ZOO of Minimal Geometric Problems in CV

problem	given	unknown	slide
camera resection	6 world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}$	\mathbf{P}	64
exterior orientation	$\mathbf{K}, 3$ world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, \mathbf{C}	68

- camera resection and exterior orientation are similar problems in a sense:
- we do resectioning when our camera is uncalibrated
- we do orientation when our camera is calibrated
- more problems to come

Part IV

Computing with a Camera Pair

4．1．Camera Motions Inducing Epipolar Geometry
4．2 Estimating Fundamental Matrix from 7 Correspondences
4．3 Estimating Essential Matrix from 5 Correspondences
444 Triangulation：3D Point Position from a Pair of Corresponding Points

Abstract

covered by

［1］［H\＆Z］Secs：9．1，9．2，9．6，11．1，11．2，11．9，12．2，12．3，12．5．1
［2］H．Li and R．Hartley．Five－point motion estimation made easy．In Proc ICPR 2006，pp．630－633
additional references
酋
H．Longuet－Higgins．A computer algorithm for reconstructing a scene from two projections．Nature， 293 （5828）：133－135， 1981.

Geometric Model of a Camera Pair

Epipolar geometry:

- brings constraints necessary for inter-image matching
- its parametric form encapsulates information about the relative pose of two cameras

Description

- baseline b joins projection centers C_{1}, C_{2}

$$
\mathbf{b}=\mathbf{C}_{2}-\mathbf{C}_{1}
$$

- epipole $e_{i} \in \pi_{i}$ is the image of C_{j} :

$$
\underline{\mathbf{e}}_{1} \simeq \mathbf{P}_{1} \underline{\mathbf{C}}_{2}, \quad \underline{\mathbf{e}}_{2} \simeq \mathbf{P}_{2} \underline{\mathbf{C}}_{1}
$$

- $l_{i} \in \pi_{i}$ is the image of epipolar plane

$$
\varepsilon=\left(C_{2}, X, C_{1}\right)
$$

- l_{j} is the epipolar line in image π_{j} induced by m_{i} in image π_{i}

Epipolar constraint: corresponding d_{2}, b, d_{1} are coplanar a necessary condition, see $\rightarrow 87$

Epipolar Geometry Example：Forward Motion

－red：correspondences
－green：epipolar line pairs per correspondence

image 2
click on the image to see their IDs same ID in both images

How high was the camera above the floor？

Cross Products and Maps by Skew-Symmetric 3×3 Matrices

- There is an equivalence $\mathbf{b} \times \mathbf{m}=\left([\mathbf{b}]_{\times}\right) \mathbf{m}$, where $[\mathbf{b}]_{\times}$is a 3×3 skew-symmetric matrix

$$
[\mathbf{b}]_{\times}=\left[\begin{array}{ccc}
0 & -b_{3} & b_{2} \\
b_{3} & 0 & -b_{1} \\
-b_{2} & b_{1} & 0
\end{array}\right], \quad \text { assuming } \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Some properties

1. $[\mathbf{b}]_{\times}^{\top}=-[\mathbf{b}]_{\times}$
the general antisymmetry property
2. \mathbf{A} is skew-symmetric iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}=0$ for all \mathbf{x} skew-sym mtx generalizes cross products
3. $[\mathbf{b}]_{\times}^{3}=-\|\mathbf{b}\|^{2} \cdot[\mathbf{b}]_{\times}$
4. $\left\|[\mathbf{b}]_{\times}\right\|_{F}=\sqrt{2}\|\mathbf{b}\|$ Frobenius norm $\left(\|\mathbf{A}\|_{F}=\sqrt{\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{A}\right)}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}\right)$
5. $[\mathbf{b}]_{\times} \mathbf{b}=\mathbf{0} \quad b \times b \equiv 0$
6. $\operatorname{rank}[\mathbf{b}]_{\times}=2$ iff $\|\mathbf{b}\|>0$
check minors of $[\mathbf{b}]_{\times}$
7. eigenvalues of $[\mathbf{b}]_{\times}$are $(0, \lambda,-\lambda)$
8. for any regular $\mathbf{B}:[\mathbf{B z}]_{\times} \mathbf{B}=\operatorname{det} \mathbf{B} \cdot \mathbf{B}^{-\top}[\mathbf{z}]_{\times} \quad$ follows from the factoring on $\rightarrow 40$
9. special case: if $\mathbf{R} \mathbf{R}^{\top}=\mathbf{I}$ then $[\mathbf{R b}]_{\times}=\mathbf{R}[\mathbf{b}]_{\times} \mathbf{R}^{\top}$

- note that if \mathbf{R}_{b} is rotation about \mathbf{b} then $\mathbf{R}_{b} \mathbf{b}=\mathbf{b}$
- note $[\mathbf{b}]_{\times}$is not a homography; it is not a rotation matrix it is a logarithm of a rotation mtx

Expressing Epipolar Constraint Algebraically

$$
\mathbf{P}_{i}=\left[\begin{array}{ll}
\mathbf{Q}_{i} & \mathbf{q}_{i}
\end{array}\right]=\mathbf{K}_{i}\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right], i=1,2
$$

$$
0=\mathbf{d}_{2}^{\top} \underbrace{\mathbf{p}_{\varepsilon}}_{\text {normal of } \varepsilon} \simeq \underbrace{(\mathbf{Q}_{2}^{-1} \underbrace{}_{2} \underline{\mathbf{m}}_{2})}_{\text {optical ray }}{ }^{\top} \underbrace{\left.\mathbf{Q}_{1}^{\top} \underline{l}_{1}\right)}_{\text {optical plane }}=\underline{\mathbf{m}}_{2}^{\top} \underbrace{\left.\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top} \widehat{[}_{1} \underline{\mathbf{e}}_{1} \times \underline{\mathbf{m}}_{1}\right)}_{\text {image of } \varepsilon \text { in } \pi_{2}}=\underline{\mathbf{m}}_{2}^{\top} \underbrace{\left(\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\mathbf{e}_{1}\right]_{\times}\right)}_{\text {fundamental matrix } \mathbf{F}} \mathbf{m}_{1}
$$

Epipolar constraint $\quad \underline{\mathbf{m}}_{2}^{\top}\left(\mathbf{F} \underline{\mathbf{m}}_{1}\right)=0 \quad$ is a point－line incidence constraint
－point $\underline{\mathbf{m}}_{2}$ is incident on epipolar line $\underline{\mathbf{l}}_{2} \simeq \mathbf{F m}_{1}$
－point $\underline{\mathbf{m}}_{1}$ is incident on epipolar line $\underline{l}_{1} \simeq \mathbf{F}^{\top} \underline{\mathbf{m}}_{2}$
－ $\mathbf{F e}_{1}=\mathbf{F}^{\top} \underline{\mathbf{e}}_{2}=\mathbf{0}$（non－trivially）
－all epipolars meet at the epipole

$$
\mathbf{F}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{b}\right]_{\times}=\stackrel{\circledast}{\cdots} \simeq \mathbf{K}_{2}^{-\top}\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21} \mathbf{K}_{1}^{-1} \quad \text { fundamental }
$$

$$
\mathbf{E}=\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}=\underbrace{\left[\mathbf{R}_{2} \mathbf{b}\right]_{\times}}_{\text {baseline in Cam 2 }} \mathbf{R}_{21}=\mathbf{R}_{21} \underbrace{\left[\mathbf{R}_{1} \mathbf{b}\right]_{\times}}_{\text {baseline in Cam 1 }}=\mathbf{R}_{21}\left[-\mathbf{R}_{21} \mathbf{t}_{21}\right]_{\times} \quad \text { essential }
$$

-The Structure and the Key Properties of the Fundamental Matrix

1. E captures relative camera pose only (the change of the world coordinate system does not change \mathbf{E})

$$
\left[\begin{array}{ll}
\mathbf{R}_{i}^{\prime} & \mathbf{t}_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right] \cdot\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{R}_{i} \mathbf{R} & \mathbf{R}_{i} \mathbf{t}+\mathbf{t}_{i}
\end{array}\right]
$$

then

$$
\begin{aligned}
& \mathbf{R}_{21}^{\prime}=\mathbf{R}_{2}^{\prime} \mathbf{R}_{1}^{\prime \top}=\cdots=\mathbf{R}_{21} \\
& \mathbf{t}_{21}^{\prime}=\mathbf{t}_{2}^{\prime}-\mathbf{R}_{21}^{\prime} \mathbf{t}_{1}^{\prime}=\cdots=\mathbf{t}_{21} \ell_{1} \simeq\left(F^{\top}\left[e_{2}\right]_{\times}\right) \ell_{2} \\
& \text { s lost since } \mathbf{E} \text { is homogeneous }
\end{aligned}
$$

2. the translation length \mathbf{t}_{21} is lost since \mathbf{E} is homogeneous
3. \mathbf{F} maps points to lines and it is not a homography
4. $\underline{\mathbf{e}}_{2} \times\left(\underline{\mathbf{e}}_{2} \times \mathbf{F} \underline{\mathbf{m}}_{1}\right) \simeq \mathbf{F}_{1}, \quad$ in general $\mathbf{F} \simeq\left[\underline{\mathbf{e}}_{2}\right]_{\times}^{2 a} \mathbf{F}\left[\underline{\mathbf{e}}_{1}\right]_{\times}^{2 b} \quad$ for any $a, b \in \mathbb{N}$

- by point/line 'transmutation' (left)
- point $\underline{\mathbf{e}}_{2}$ does not lie on line \underline{e}_{2} (dashed): $\underline{\mathbf{e}}_{2}^{\top} \underline{\mathbf{e}}_{2} \neq 0$
- application: $\mathbf{F}^{\top}\left(\mathbf{e}_{2} \times \underline{1}_{2}\right) \simeq \mathbf{F}^{\top}\left(\underline{\mathbf{e}}_{2} \times \mathbf{F} \underline{\mathbf{m}}_{1}\right) \simeq \mathbf{F}^{\top} \underline{\mathbf{m}}_{2} \simeq \underline{\underline{1}}_{1}$
- $\mathbf{F}^{\top}\left[\underline{\mathbf{e}}_{2}\right]_{\times}$maps epipolar lines to epi. lines but it is not a homography

Some Mappings by the Fundamental Matrix

$$
\begin{aligned}
0 & =\underline{\mathbf{m}}_{2}^{\top} \mathbf{F} \underline{\mathbf{m}}_{1} & & \\
\underline{\mathbf{e}}_{1} & \simeq \operatorname{null}(\mathbf{F}), & & \underline{\mathbf{e}}_{2} \simeq \operatorname{null}\left(\mathbf{F}^{\top}\right) \\
\underline{\mathbf{l}}_{2} & =\mathbf{F} \underline{\mathbf{m}}_{1} & & \underline{\mathbf{l}}_{1}
\end{aligned}=\mathbf{F}^{\top} \underline{\mathbf{m}}_{2} \quad \begin{cases}\underline{\mathbf{l}}_{2} & =\mathbf{F}\left[\underline{\mathbf{e}}_{1}\right]_{\times} \underline{\mathbf{l}}_{1}\end{cases}
$$

$\left(\mathbf{Q}_{1} \mathbf{Q}_{2}^{-1}\right)^{-\top}$ or $\mathbf{F}^{\top}\left[\underline{\mathbf{e}}_{2}\right]_{\times}$
－ $\mathbf{l}_{2} \simeq \mathbf{F}\left[\mathbf{e}_{1}\right] \times \underline{l}_{1}:$
by＇transmutation＇$\rightarrow 78$
－ $\mathbf{F}\left[\mathbf{e}_{1}\right]_{\times}$maps lines to lines but it is not a homography
－ $\mathbf{H}=\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}$ is the epipolar homography $\rightarrow 78$ mapping epipolar lines to epipolar lines，hence

$$
\mathbf{H}=\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}=\mathbf{K}_{2} \mathbf{R}_{21} \mathbf{K}_{1}^{-1}
$$

you have seen this $\rightarrow 61$

Thank You

