»Degenerate (Critical) Configurations for Camera Resection

Let X = {X;; i =1,...} be a set of points and P % P, be two regular (rank-3) cameras.
Then two configurations (P, X)) and (P;, X') are image-equivalent if
P:X; ~P;X; forall X;eX

there is a non-trivial set of other cameras that see the same image

e importantly: If all calibration points X; € X lie on a plane
s then camera resection is non-unique and all
image-equivalent camera centers lie on a spatial line C
with the Coc = 3N C excluded

this also means we cannot resect if all X; are infinite

e by adding points X; € X to C we gain nothing

e there are additional image-equivalent configurations, see
Case 4 next

proof sketch in [H&Z, Sec. 22.1.2]
Note that if Q, T are suitable homographies then P; ~ QP(T, where Py is canonical and the
analysis can be made with P; ~ Q_le

PoTX; ~P; TX; forall Y;cy
N N~

Y; Y;
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cont'd (all cases)

4 Case 6

e cameras (1, (> co-located at point C

points on three optical rays or one optical ray
and one optical plane

® Case 5: camera sees 3 isolated point images
® Case 6: cam. sees a line of points and an isolated point

Case 4

cameras lie on a line C \ {Cu, CL }
points lie on C and
1. on two lines meeting C at C'w, Cgo

2. or on a plane meeting C at C

Case 3: camera sees 2 lines of points

Case 2

cameras lie on a planar conic C \ {Cc }
not necessarily an ellipse

points lie on C and an additional line meeting the
conic at Cso

Case 2: camera sees 2 lines of points

Case 1

cameras and points all lie on a twisted cubic C

Case 1: camera sees a conic
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» Three-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of 3 reference Points.
Problem: Given K and three corresponding pairs {(mi, Xi)}le, find R, C by solving

Aimi:KR(XifC), i:1,2,3 RR: |

1. Transform v; def K~'m;. Then
2. Eliminate R by taking rotation preserves length: ||Rx|| = ||x||
def
Nl - llvill = 11X = CI = = (11)

3. Consider only angles among v; and apply Cosine Law per
triangle (C,X;,X;) 4,7 =1,2,3, i #j

d?j = z? + zf — 22; zj ¢ij,
zi = ||Xi = Cll, dij = X5 — Xl cij = cos(Lv; v;)

4. Solve system of 3 quadratic eqs in 3 unknowns z; [Fischler & Bolles, 1981]
there may be no real root; there are up to 4 solutions that cannot be ignored (verify on additional points)

5. Compute C by trilateration (3-sphere intersection) from X; and z;; then \; from (11) and R
from (10)

Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)
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Degenerate (Critical) Configurations for Exterior Orientation

unstable solution

¢ e center of projection C' located on the orthogonal circular
PR O~ . . . . .

e Y cylinder with base circumscribing the three points X;

LT ! unstable: a small change of X results in a large change of C'

| : can be detected by error propagation

: X3 I

IPPX S -~

Y Y degenerate

“ ----- —., . . . .

X, Xo e camera (' is coplanar with points (X1, X2, X3) but is not
on the circumscribed circle of (X1, X2, X3) camera sees a
line

X, -
R A “a no solution
l\ Il
X;‘ ---- "'X2 1. C cocyclic with (X1, X2, X3) camera sees a line

e additional critical configurations depend on the method to solve the quadratic
equations

[Haralick ot al 11C\/ 10041
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»Populating A Little ZOO of Minimal Geometric Problems in CV

problem given unknown | slide

[§
i=1

camera resection 6 world—img correspondences {(Xi, ml)} P 64

3
i=1

exterior orientation | K, 3 world—img correspondences {(Xi, ml)} R, C 68

e camera resection and exterior orientation are similar problems in a sense:

e we do resectioning when our camera is uncalibrated
e we do orientation when our camera is calibrated

e more problems to come
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Part IV

Computing with a Camera Pair

@® Camera Motions Inducing Epipolar Geometry

@®Estimating Fundamental Matrix from 7 Correspondences
@®Estimating Essential Matrix from 5 Correspondences

@ Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by
[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630-633

additional references

@ H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293
(5828):133-135, 1981

3D Computer Vision: IV. Computing with a Camera Pair (p. 73/186) ©aC R. Séra, CMP; rev. 31-Oct—2017 *&l



»Geometric Model of a Camera Pair

Epipolar geometry:
e brings constraints necessary for inter-image matching
e its parametric form encapsulates information about the relative pose of two cameras
Description
® baseline b joins projection centers Cp, C2
b=Cy—-Cy
® epipole e; € m; is the image of Cj:

er ~P1Co, e ~P2Cy

® [, € m; is the image of epipolar plane

e =(C2,X,C1)

(7'_7

e
01{: 2 e [; is the epipolar line in image 7; induced
two-camera setup by m; in image m;

Epipolar constraint: corresponding d2, b, di are coplanar a necessary condition, see —87
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Epipolar Geometry Example: Forward Motion

8

6 a8

h A
% /

/

image 1 image 2
e red: correspondences click on the image to see their IDs
e green: epipolar line pairs per correspondence same ID in both images

How high was the camera above the floor?

movement Il

2 1
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»Cross Products and Maps by Skew-Symmetric 3 x 3 Matrices

e There is an equivalence b x m :([b]xm, where [b], is a 3 x 3 skew-symmetric matrix

0 —bs b by
[b], = | b3 0 -b, assuming b= |by
—by b1 0 bs
Some properties
T .
1. [b]>< = —[b}>< the general antisymmetry property
2. A is skew-symmetric iff x Ax =0 for all x skew-sym mtx generalizes cross products
3. [b]} = —|b]* - [b],
4. ||[b], ”F = \/i”b” Frobenius norm (||A||r = /tr(ATA) = \/ i lais|?)
5 [b],b=0 bkt =0
6. rank [b], =2 iff ||b]| >0 check minors of [b],
7. eigenvalues of [b], are (0, A, —))
8. for any regular B: [Bz] B =detB - B_T[Z} % follows from the factoring on —40
9. special case: if RR" =1 then [Rb], =R[b], R"

e note that if Ry is rotation about b then Ryb = b

e note [b], is not a homography; it is not a rotation matrix it is a logarithm of a rotation mtx
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» Expressing Epipolar Constraint Algebraically

Pi=[Q a|=Ki[Ri t,i=1,2
R, — relative camera rotation, Ra; = RQRIT

t21 — relative camera translation, t2; =t — R21t; = —R2b

b - baseline (world coordinate system)

remember: C = —Q ™ !q :11—RTt —34 and 36

0=dip. > @Q'1m)" QIl)=m! Q: Qfelxm)=m (Q: Q] e].) mu

normal of optical ray  optical plane

image of € in w2 fundamental matrix F

Epipolar constraint m;(tm%: 0 is a point-line incidence constraint

® point mo is incident on epiplolar line I ~ Fmy
e point my is incident on epipolar line l; ~ F " my

e Fe; = Fez = 0 (non-trivially)
e all epipolars meet at the epipole

e1 ~QiCs+qi =QiCs— Q:C1 =K ;Rib = K RiRj t2; = —K;RJ, to

_ _ ® 1 — _
F= QQ TQI [Ql]x = QQ TQI [I(1R,1b}>< = S ~ K2 T[—tzl]XRmKl ! fundamental
E = [7t21]XR21 = [Rgb]XRgl = Ro1 [:Rlb}>< = :Rgl[fl:{mtgl]>< essential

baseline in Cam 2 baseline in Cam 1
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»The Structure and the Key Properties of the Fundamental Matrix

<T =
!L: l ll H (61 X Wj\ left epipole  right epipole
—15=T -T T -T -1
F=(Q:Q71" ) [e1], =K; RaiK; [e1], ~¥[He:] H=K; [—t2a] Ro1 K;
———— —_—— \ ,
epipolar homography H H-T essential matrix E
1. E captures relative camera pose only [Longuet-Higgins 1981]
(the change of the world coordinate system does not change E)
R t
R, t]=[R t]. [OT J ~ [RR Rit+t],
then T
Ry =R5R] =---=Rn T
th=t Rt ==ty (F LY 4

2. the translation length t2; is lost since E is homogeneous
3. F maps points to lines and it is not a homography
4. e X (e2 x Fmy) ~ Fmy, in general F ~ [gg]iaF [gl]ib for any a,b € N

N
N

e by point/line ‘transmutation’ (left)

e xFmy L~Fm point ez does not lie on line ez (dashed): c;;rgg #0

\\\ e application:(F T (e2 x L) ~F(e2 x Fm;) ~F 'my ~ 11
e \?2 ° F-'—[(gg]>< maps epipolar lines to epi. lines but it is not a
homography
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»Some Mappings by the Fundamental Matrix

0= szF my
er ~ null(F), e ~null(F")
L = Fm, L=F'm

I =Flei], h L = FT[QQ]xb

e b ~Flel|x li: by ‘transmutation’ —78

e F[e1], maps lines to lines but it is not a homography

e H= Q2Q;1 is the epipolar homography—78
mapping epipolar lines to epipolar lines, hence
H=Q:Q; ' =K:RauK;'

you have seen this —61

(QQ;") T or Fl[es]x
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Thank You
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