► Matching Table

Based on the observation on mutual exclusion we expect each pixel to match at most once.

matching table ${\cal T}$

matching table

- rows and columns represent optical rays
- nodes: possible correspondence pairs
- full nodes: matches
- numerical values associated with nodes: descriptor similarities

see next

► Constructing A Suitable Image Similarity Statistic

• let $p_i = (l, r)$ and L(l), R(r) be (left, right) image descriptors (vectors) constructed from local image neighborhood windows

3D Computer Vision: VII. Stereovision (p. 165/186) つへや

R. Šára, CMP; rev. 2–Jan–2018

How A Scene Looks in The Filled-In Matching Table

3D Computer Vision: VII. Stereovision (p. 166/186) つへや

right image

 3×3 window

undiscrimiable

- MNCC ρ used $(\alpha = 1.5, \beta = 1)$
- high-correlation structures correspond to scene objects

constant disparity

- a diagonal in matching table
- zero disparity is the main diagonal

depth discontinuity

• horizontal or vertical jump in matching table

large image window

- better correlation
- worse occlusion localization

repeated texture

 horizontal and vertical block repetition

Image Point Descriptors And Their Similarity

Descriptors: Image points are tagged by their (viewpoint-invariant) physical properties:

- texture window
- a descriptor like DAISY
- learned descriptors
- reflectance profile under a moving illuminant
- photometric ratios
- dual photometric stereo
- polarization signature
- . . .
- similar points are more likely to match
- image similarity values for all 'match candidates' give the 3D <u>matching table</u>

R. Šára, CMP; rev. 2–Jan–2018

video

[Wolff & Angelopoulou 93-94] [Ikeuchi 87]

[Moravec 77]

[Tola et al. 2010]

Marroquin's Winner Take All (WTA) Matching Algorithm

- 1. per left-image pixel: find the most similar right-image pixel using SAD \rightarrow 165
- 2. select disparity range
- 3. represent the matching table diagonals in a compact form

3D Computer Vision: VII. Stereovision (p. 168/186) つへや

this is a critical weak point

A Matlab Code for WTA

```
function dmap = marroquin(iml,imr,disparityRange)
       iml, imr - rectified gray-scale images
%
% disparityRange - non-negative disparity range
% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12
 thr = 20:
                       % bad match rejection threshold
 r = 2:
 winsize = 2*r+[1 1]; % 5x5 window (neighborhood) for r=2
 \% the size of each local patch; it is N=(2r+1)^2 except for boundary pixels
 N = boxing(ones(size(iml)), winsize);
 % computing dissimilarity per pixel (unscaled SAD)
 for d = 0:disparityRange
                                                 % cycle over all disparities
  slice = abs(imr(:.1:end-d) - iml(:.d+1:end)): % pixelwise dissimilarity
  V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation
 end
 % collect winners, threshold, and output disparity map
 [cmap,dmap] = min(V,[],3);
 dmap(cmap > thr) = NaN; % mask-out high dissimilarity pixels
end % of marroquin
function c = boxing(im, wsz)
 % if the mex is not found, run this slow version:
 c = conv2(ones(1.wsz(1)), ones(wsz(2),1), im, 'same');
end % of boxing
```

3D Computer Vision: VII. Stereovision (p. 169/186) のへや

WTA: Some Results

- results are fairly bad
- false matches in textureless image regions and on repetitive structures (book shelf)
- a more restrictive threshold (thr = 10) does not work as expected
- we searched the true disparity range, results get worse if the range is set wider
- chief failure reasons:
 - unnormalized image dissimilarity does not work well
 - no occlusion model

► A Principled Approach to Similarity

Empirical Distribution of MNCC ρ for Matches and Non-Matches

- KITTI dataset
 - $4.2 \cdot 10^6$ ground-truth (LiDAR) matches for $p_1(\rho)$ (green),
 - $4.2\cdot 10^6$ random non-matches for $p_0(
 ho)$ (red)

Obs:

- non-matches (red) may have arbitrarily large ho
- matches (green) may have arbitrarily low ρ
- $\rho = 1$ is improbable for matches

Match Likelihood

- ρ is just a statistic
- we need a probability distribution on [0, 1], e.g. Beta distribution

$$p_1(\rho(l,r)) = \frac{1}{B(\alpha,\beta)} \rho^{2(\alpha-1)} (1-\rho^2)^{\beta-1}$$

- note that uniform distribution is obtained for $\alpha = \beta = 1$
- when $\alpha = 3/2$ and $\beta = 1$ then $p_1(\cdot) = \frac{2}{3}|\rho|$
- the mode is at $\sqrt{rac{lpha-1}{lpha+eta-2}}pprox 0.9733$ for $lpha=10,\ \beta=1.5$
- if we chose $\beta = 1$ then the mode was at $\rho = 1$
- perfect similarity is 'suspicious' (depends on expected camera noise level)
- from now on we will work with negative log-likelihood

$$V_1(\rho(l,r)) = -\log p_1(\rho(l,r))$$
(36)

smaller is better

• we may also define similarity (and negative log-likelihood $V_0(
ho(l,r)))$ for non-matches

► A Principled Approach to Matching

- given matching M what is the likelihood of observed data D?
- data all pairwise costs in matching table T
- matches pairs $p_i = (l_i, r_i)$, $i = 1, \dots, n$
- matching: partitioning matching table T to matched M and excluded E pairs

$$T = M \cup E, \quad M \cap E = \emptyset$$

matching cost (negative log-likelihood, smaller is better)

$$V(D \mid M) = \sum_{p \in M} V_1(D \mid p) + \sum_{p \in E} V_0(D \mid p)$$

 $V_1(D \mid p)$ - negative log-probability of data D at <u>matched</u> pixel p (36) $V_0(D \mid p)$ - ditto at <u>unmatched</u> pixel p \rightarrow 171 and \rightarrow 172

matching problem

$$M^* = \arg\min_{M \in \mathcal{M}(T)} V(D \mid M)$$

 $\mathcal{M}(T)$ – the set of all matchings in table T

• symmetric: formulated over pairs, invariant to left \leftrightarrow right image swap

►(cont'd) Log-Likelihood Ratio

- we need to reduce matching to a standard polynomial-complexity problem
- we convert the matching cost to an 'easier' sum

$$V(D \mid M) = \sum_{p \in M} V_1(D \mid p) + \sum_{p \in E} V_0(D \mid p) + \sum_{p \in M} V_0(D \mid p) - \sum_{p \in M} V_0(D \mid p)$$

=
$$\sum_{p \in M} \left(V_1(D \mid p) - V_0(D \mid p) \right) + \sum_{p \in E} V_0(D \mid p) + \sum_{p \in M} V$$

$$\arg\min_{M\in\mathcal{M}(T)} V(D\mid M) = \arg\max_{M\in\mathcal{M}(T)} \sum_{p\in M} L(D\mid p)$$
(37)

 $L(D \mid p)$ – logarithm of matched-to-unmatched likelihood ratio (bigger is better) why this way: we want to use maximum-likelihood but our measurement is all data D

- (37) is max-cost matching (maximum assignment) for the maximum-likelihood (ML) matching problem
 - it must contain no pairs p with $L(D \mid p) < 0$
 - use Hungarian (Munkres) algorithm and threshold the result based on $L(D \mid p)$
 - or step back: sacrifice symmetry to speed and use dynamic programming

Some Results for the Maximum-Likelihood (ML) Matching

- unlike the WTA we can efficiently control the density/accuracy tradeoff
 black = no match
- middle row: $L(D \mid p)$ threshold set to achieve error rate of 3% (and 61% density results)
- bottom row: $L(D \mid p)$ threshold set to achieve density of 76% (and 4.3% error rate results)

3D Computer Vision: VII. Stereovision (p. 175/186) つへや

R. Šára, CMP; rev. 2–Jan–2018

► Basic Stereoscopic Matching Models

- notice many small isolated errors in the ML matching
- we need a stronger model

Potential models for M (from weaker to stronger)

- 1. Uniqueness: Every image point matches at most once
 - excludes semi-transparent objects
 - used by the ML matching algorithm (but not by the WTA algorithm)
- 2. Monotonicity: Matched pixel ordering is preserved
 - For all $(i,j) \in M, (k,l) \in M, k > i \Rightarrow l > j$

Notation: $(i,j)\in M\;\; {\rm or}\;\; j=M(i)\;$ – left-image pixel i matches right-image pixel j

- excludes thin objects close to the cameras
- 3. Coherence: Objects occupy well-defined 3D volumes
 - concept by [Prazdny 85]
 - algorithms are based on image/disparity map segmentation
 - a popular model (segment-based, bilateral filtering and their successors)
- 4. Continuity: There are no occlusions or self-occlusions
 - too strong, except in some applications

Understanding Occlusion Structure in Matching Table

• this leads to the concept of 'forbidden zone'

3D Computer Vision: VII. Stereovision (p. 177/186) つへや

► Formally: Uniqueness and Ordering in Matching Table T

 $p_j \notin X(p_i), \quad p_j \notin F(p_i)$

• Uniqueness Constraint:

A set of pairs $M = \{p_i\}_{i=1}^n$, $p_i \in T$ is a matching iff $\forall p_i, p_j \in M : p_j \notin X(p_i).$

X-zone, $p_i \not\in X(p_i)$

• Ordering Constraint:

Matching M is monotonic iff $\forall p_i, p_j \in M : p_j \notin F(p_i).$

F-zone, $p_i \notin F(p_i)$

- ordering constraint: matched points form a monotonic set in both images
- ordering is a powerful constraint: in $n\times n$ table we have monotonic matchings $O(4^n)\ll O(n!)$ all matchings
- \circledast 2: how many are there <u>maximal</u> monotonic matchings? (e.g. 27 for n = 4; hard!)
- uniqueness constraint is a basic occlusion model
- ordering constraint is a weak continuity model and partly also an occlusion model
- monotonic matching can be found by dynamic programming

3D Computer Vision: VII. Stereovision (p. 178/186) つへや

Some Results: AppleTree

• 3LDP parameters α_i , Ve learned on Middlebury stereo data http://vision.middlebury.edu/stereo/

Some Results: Larch

left image

right image

 $ML \rightarrow 174$

3LDP w/ordering [SP]

naïve DP

stable segmented 3LDP

- naïve DP does not model mutual occlusion
- but even 3LDP has errors in mutually occluded region
- stable segmented 3LDP has few errors in mutually occluded region since it uses a coherence model

Marroquin's Winner-Take-All (WTA \rightarrow 168)

• the ur-algorithm

very weak model

- dense disparity map
- $O(N^3)$ algorithm, simple but it rarely works

Maximum Likelihood Matching (ML \rightarrow 174)

- semi-dense disparity map
- many small isolated errors
- models basic occlusion
- $O(N^3 \log(NV))$ algorithm max-flow by cost scaling

MAP with Min-Cost Labeled Path (3LDP)

- semi-dense disparity map
- models occlusion in flat, piecewise continuos scenes
- has 'illusions' if ordering does not hold
- $O(N^3)$ algorithm

Stable Segmented 3LDP

- better (fewer errors at any given density)
- O(N³ log N) algorithm
- requires image segmentation itself a difficult task

- ROC-like curve captures the density/accuracy tradeoff
- numbers: AUC (smaller is better)
- GCS is the one used in the exercises
- more algorithms at http://vision.middlebury.edu/ stereo/ (good luck!)

Thank You

