Matching Table

Based on the observation on mutual exclusion we expect each pixel to match at most once.

matching table

- rows and columns represent optical rays
- nodes: possible correspondence pairs
- full nodes: matches
- numerical values associated with nodes: descriptor similarities

Constructing A Suitable Image Similarity Statistic

- let $p_{i}=(l, r)$ and $\mathbf{L}(l), \mathbf{R}(r)$ be (left, right) image descriptors (vectors) constructed from local image neighborhood windows
in matching table T :
 in the left image:

$\sum_{i} l L_{i}$
$\frac{-\mathbf{R}(r) \|^{2}}{2}(l, r)$
- σ_{I}^{2} - the difference scale; a suitable (plug-in) estimate is $\frac{1}{2}[\operatorname{var}(\mathbf{L}(l))+\operatorname{var}(\mathbf{R}(r))]$, giving

$$
\begin{equation*}
\operatorname{sim}(l, r)=1-\underbrace{\frac{2 \operatorname{cov}(\mathbf{L}(l), \mathbf{R}(r))}{\operatorname{var}(\mathbf{L}(l))+\operatorname{var}(\mathbf{R}(r))}}_{\rho(\mathbf{L}(l), \mathbf{R}(r)) \leftarrow} \quad \operatorname{var}(\cdot), \operatorname{cov}(\cdot) \text { is sample (co-) variance } \tag{35}
\end{equation*}
$$

- $\rho-\mathrm{MNCC}$ - Moravec's Normalized Cross-Correlation statistic
[Moravec 1977]

$$
\rho^{2} \in[0,1], \quad \operatorname{sign} \rho \sim \text { 'phase' }
$$

How A Scene Looks in The Filled-In Matching Table

right image

3×3 window

undiscrimiable

- MNCC ρ used $(\alpha=1.5, \beta=1)$
- high-correlation structures correspond to scene objects constant disparity
- a diagonal in matching table
- zero disparity is the main diagonal
depth discontinuity
- horizontal or vertical jump in matching table
large image window
- better correlation
- worse occlusion localization repeated texture
- horizontal and vertical block repetition

Image Point Descriptors And Their Similarity

Descriptors: Image points are tagged by their (viewpoint-invariant) physical properties:

- texture window
- a descriptor like DAISY
- learned descriptors
- reflectance profile under a moving illuminant
- photometric ratios
- dual photometric stereo
- polarization signature
- ...
- similar points are more likely to match
- image similarity values for all 'match candidates' give the 3D matching table

video

- Marroquin's Winner Take All (WTA) Matching Algorithm

1. per left-image pixel: find the most similar right-image pixel using SAD
2. select disparity range
this is a critical weak point
3. represent the matching table diagonals in a compact form

4. use an 'image sliding \& cost aggregation algorithm'

5. threshold results by maximal allowed dissimilarity

A Matlab Code for WTA

```
function dmap = marroquin(iml,imr,disparityRange)
% iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range
% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12
    thr = 20; % bad match rejection threshold
    r = 2;
    winsize = 2*r+[11 1]; % 5x5 window (neighborhood) for r=2
    % the size of each local patch; it is N=(2r+1) ^2 except for boundary pixels
    N = boxing(ones(size(iml)), winsize);
    % computing dissimilarity per pixel (unscaled SAD)
    for d = 0:disparityRange % cycle over all disparities
    slice = abs(imr(:,1:end-d) - iml(:,d+1:end)); % pixelwise dissimilarity
    V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation
    end
    % collect winners, threshold, and output disparity map
    [cmap,dmap] = min(V,[],3);
    dmap(cmap > thr) = NaN; % mask-out high dissimilarity pixels
end % of marroquin
function c = boxing(im, wsz)
    % if the mex is not found, run this slow version:
    c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im, 'same');
end % of boxing
```


WTA: Some Results

- results are fairly bad
- false matches in textureless image regions and on repetitive structures (book shelf)
- a more restrictive threshold (thr $=10$) does not work as expected
- we searched the true disparity range, results get worse if the range is set wider
- chief failure reasons:
- unnormalized image dissimilarity does not work well
- no occlusion model

A Principled Approach to Similarity

Empirical Distribution of MNCC ρ for Matches and Non-Matches

$P(\rho=1)=0$

- histograms of ρ computed over 5×5 correlation n window
$\rho=0.7$
$L(\rho)$
- KITTI dataset
- $4.2 \cdot 10^{6}$ ground-truth (LiDAR) matches for $p_{1}(\rho)$ (green),
- $4.2 \cdot 10^{6}$ random non-matches for $p_{0}(\rho)$ (red)

Obs:

- non-matches (red) may have arbitrarily large ρ
- matches (green) may have arbitrarily low ρ
- $\rho=1$ is improbable for matches

Match Likelihood

－ρ is just a statistic
－we need a probability distribution on $[0,1]$ ， e．g．Beta distribution

$$
p_{1}(\rho(l, r))=\frac{1}{B(\alpha, \beta)} \rho^{2(\alpha-1)}\left(1-\rho^{2}\right)^{\beta-1}
$$

－note that uniform distribution is obtained for $\alpha=\beta=1$
－when $\alpha=3 / 2$ and $\beta=1$ then $p_{1}(\cdot)=\frac{2}{3}|\rho|$

－the mode is at $\sqrt{\frac{\alpha-1}{\alpha+\beta-2}} \approx 0.9733$ for $\alpha=10, \beta=1.5$
－if we chose $\beta=1$ then the mode was at $\rho=1$
－perfect similarity is＇suspicious＇（depends on expected camera noise level）
－from now on we will work with negative log－likelihood

$$
\begin{equation*}
V_{1}(\rho(l, r))=-\log p_{1}(\rho(l, r)) \tag{36}
\end{equation*}
$$

smaller is better
－we may also define similarity（and negative log－likelihood $V_{0}(\rho(l, r))$ ）for non－matches

- A Principled Approach to Matching

- given matching M what is the likelihood of observed data D ?
- data - all pairwise costs in matching table T
- matches - pairs $p_{i}=\left(l_{i}, r_{i}\right), \quad i=1, \ldots, n$
- matching: partitioning matching table T to matched M and excluded E pairs

$$
T=M \cup E, \quad M \cap E=\emptyset
$$

- matching cost (negative log-likelihood, smaller is better)

$$
V(D \mid M)=\sum_{p \in M} V_{1}(D \mid p)+\sum_{p \in E} V_{0}(D \mid p)
$$

$V_{1}(D \mid p)$ - negative log-probability of data D at matched pixel p (36)
$V_{0}(D \mid p)$ - ditto at unmatched pixel p

$$
\rightarrow 171 \text { and } \rightarrow 172
$$

- matching problem

$$
M^{*}=\arg \min _{M \in \mathcal{M}(T)} V(D \mid M)
$$

$\mathcal{M}(T)$ - the set of all matchings in table T

- symmetric: formulated over pairs, invariant to left \leftrightarrow right image swap

- (cont'd) Log-Likelihood Ratio

- we need to reduce matching to a standard polynomial-complexity problem
- we convert the matching cost to an 'easier' sum

$$
\begin{aligned}
V(D \mid M) & =\sum_{p \in M} V_{1}(D \mid p)+\sum_{p \in E} V_{0}(D \mid p) \\
& =\sum_{p \in M} \underbrace{\left(V_{1}(D \mid p)-V_{0}(D \mid p)\right)}_{-L(D \mid p)}+\underbrace{\sum_{p \in E} V_{0}(D \mid p)+\sum_{p \in M}^{\sum_{0 \in M} V_{0}(D \mid p)} \overbrace{0} V_{0} \mid p)}_{\sum_{p \in M} V_{0}(D \mid p)} \\
& \text { log - likd'ho.d vahis }
\end{aligned}
$$

- hence

$$
\begin{equation*}
\arg \min _{M \in \mathcal{M}(T)} V(D \mid M)=\arg \max _{M \in \mathcal{M}(T)} \sum_{p \in M} L(D \mid p) \tag{37}
\end{equation*}
$$

$L(D \mid p)$ - logarithm of matched-to-unmatched likelihood ratio (bigger is better)
why this way: we want to use maximum-likelihood but our measurement is all data D

- (37) is max-cost matching (maximum assignment) for the maximum-likelihood (ML) matching problem
- it must contain no pairs p with $L(D \mid p)<0$
- use Hungarian (Munkres) algorithm and threshold the result based on $L(D \mid p)$
- or step back: sacrifice symmetry to speed and use dynamic programming

Some Results for the Maximum-Likelihood (ML) Matching

- unlike the WTA we can efficiently control the density/accuracy tradeoff black $=$ no match
- middle row: $L(D \mid p)$ threshold set to achieve error rate of 3% (and 61% density results)
- bottom row: $L(D \mid p)$ threshold set to achieve density of 76% (and 4.3% error rate results)

- Basic Stereoscopic Matching Models

- notice many small isolated errors in the ML matching
- we need a stronger model

Potential models for M (from weaker to stronger)

1. Uniqueness: Every image point matches at most once

- excludes semi-transparent objects
- used by the ML matching algorithm (but not by the WTA algorithm)

2. Monotonicity: Matched pixel ordering is preserved

- For all $(i, j) \in M,(k, l) \in M, \quad k>i \Rightarrow l>j$

Notation: $(i, j) \in M$ or $j=M(i)$ - left-image pixel i matches right-image pixel j

- excludes thin objects close to the cameras

3. Coherence: Objects occupy well-defined 3D volumes

- concept by [Prazdny 85]
- algorithms are based on image/disparity map segmentation
- a popular model (segment-based, bilateral filtering and their successors)

4. Continuity: There are no occlusions or self-occlusions

- too strong, except in some applications

Understanding Occlusion Structure in Matching Table

Formally: Uniqueness and Ordering in Matching Table T

X-zone and F-zone

$$
p_{j} \notin X\left(p_{i}\right), \quad p_{j} \notin F\left(p_{i}\right)
$$

- Uniqueness Constraint:

$$
\begin{aligned}
& \text { A set of pairs } M=\left\{p_{i}\right\}_{i=1}^{n}, p_{i} \in T \text { is a matching iff } \\
& \qquad \forall p_{i}, p_{j} \in M: p_{j} \notin X\left(p_{i}\right) .
\end{aligned}
$$

- Ordering Constraint:

Matching M is monotonic iff

$$
\forall p_{i}, p_{j} \in M: p_{j} \notin F\left(p_{i}\right) .
$$

$$
F \text {-zone, } p_{i} \notin F\left(p_{i}\right)
$$

- ordering constraint: matched points form a monotonic set in both images
- ordering is a powerful constraint: in $n \times n$ table we have monotonic matchings $O\left(4^{n}\right) \ll O(n!)$ all matchings
\circledast 2: how many are there maximal monotonic matchings? (e.g. 27 for $n=4$; hard!)
- uniqueness constraint is a basic occlusion model
- ordering constraint is a weak continuity model and partly also an occlusion model
- monotonic matching can be found by dynamic programming

Some Results: AppleTree

left image

3LDP w/ordering [SP]

right image

naïve DP [Cox et al. 1992]

ML $\rightarrow 174$

stable segmented 3LDP

- 3LDP parameters $\alpha_{i}, V_{\mathrm{e}}$ learned on Middlebury stereo data

Some Results：Larch

left image

3LDP w／ordering［SP］

right image

naïve $D P$

ML $\rightarrow 174$

stable segmented 3LDP
－naïve DP does not model mutual occlusion
－but even 3LDP has errors in mutually occluded region
－stable segmented 3LDP has few errors in mutually occluded region since it uses a coherence model

Algorithm Comparison

Marroquin's Winner-Take-All (WTA \rightarrow 168)

- the ur-algorithm very weak model
- dense disparity map
- $O\left(N^{3}\right)$ algorithm, simple but it rarely works Maximum Likelihood Matching (ML $\rightarrow 174$)
- semi-dense disparity map
- many small isolated errors
- models basic occlusion
- $O\left(N^{3} \log (N V)\right)$ algorithm max-flow by cost scaling MAP with Min-Cost Labeled Path (3LDP)
- semi-dense disparity map
- models occlusion in flat, piecewise continuos scenes
- has 'illusions' if ordering does not hold
- $O\left(N^{3}\right)$ algorithm

Stable Segmented 3LDP

- better (fewer errors at any given density)
- $O\left(N^{3} \log N\right)$ algorithm
- requires image segmentation itself a difficult task

ROC curves and their average error rate bounds

- ROC-like curve captures the density/accuracy tradeoff
- numbers: AUC (smaller is better)
- GCS is the one used in the exercises
- more algorithms at http://vision.middlebury.edu/ stereo/ (good luck!)

Thank You

ROC curves and their average error rate bounds

