3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.felk.cvut.cz/doku.php/courses/a4m33tdv/ http://cmp.felk.cvut.cz

mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. October 3, 2017

Open Informatics Master's Course

Part II

Perspective Camera

- Basic Entities: Points, Lines
- 22 Homography: Mapping Acting on Points and Lines
- 23 Canonical Perspective Camera
- Changing the Outer and Inner Reference Frames
- 25 Projection Matrix Decomposition
- 26 Anatomy of Linear Perspective Camera
- Vanishing Points and Lines

covered by

[H&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, Example: 2.19

▶ Basic Geometric Entities, their Representation, and Notation

- entities have names and representations
- names and their components:

entity	in 2-space	in 3-space
point	m = (u, v)	X = (x, y, z)
line	n	0
plane		π , φ

associated vector representations

$$\mathbf{m} = \begin{bmatrix} u \\ v \end{bmatrix} = [u, v]^{\top}, \quad \mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{n}$$

will also be written in an 'in-line' form as $\mathbf{m}=(u,v), \ \mathbf{X}=(x,y,z),$ etc.

- ullet vectors are always meant to be columns $\mathbf{x} \in \mathbb{R}^{n,1}$
- associated homogeneous representations

$$\underline{\mathbf{m}} = [m_1, m_2, m_3]^\top, \quad \underline{\mathbf{X}} = [x_1, x_2, x_3, x_4]^\top, \quad \underline{\mathbf{n}}$$

'in-line' forms: $\mathbf{m} = (m_1, m_2, m_3), \mathbf{X} = (x_1, x_2, x_3, x_4), \text{ etc.}$

- ullet matrices are $\mathbf{Q} \in \mathbb{R}^{m,n}$, linear map of a $\mathbb{R}^{n,1}$ vector is $\mathbf{y} = \mathbf{Q}\mathbf{x}$
- j-th element of vector \mathbf{m}_i is $(\mathbf{m}_i)_i$; element i, j of matrix \mathbf{P} is \mathbf{P}_{ij}

►Image Line (in 2D)

a finite line in the 2D (u,v) plane

$$a\,u + b\,v + c = 0$$

corresponds to a (homogeneous) vector

$$\underline{\mathbf{n}} \simeq (a, b, c)$$

a set of rays \rightarrow 22

and there is an equivalence class for $\lambda \in \mathbb{R}, \, \lambda \neq 0$ $(\lambda a, \, \lambda b, \, \lambda c) \simeq (a, \, b, \, c)$

'Finite' lines

• standard representative for $\underline{\text{finite}} \ \underline{\mathbf{n}} = (n_1, n_2, n_3)$ is $\lambda \underline{\mathbf{n}}$, where $\lambda = \frac{1}{\sqrt{n_1^2 + n_2^2}}$ assuming $n_1^2 + n_2^2 \neq 0$; $\mathbf{1}$ is the unit, usually $\mathbf{1} = 1$

'Infinite' line

• we augment the set of lines for a special entity called the Ideal Line (line at infinity)

• the set of equivalence classes of vectors in $\mathbb{R}^3 \setminus (0,0,0)$ forms the projective space \mathbb{P}^2

$$\underline{\mathbf{n}}_{\infty} \simeq (0,0,1)$$
 (standard representative)

- ullet line at infinity is a proper member of \mathbb{P}^2
- I may sometimes wrongly use = instead of \simeq , if you are in doubt, ask me

▶Image Point

Finite point $\mathbf{m} = (u, v)$ is incident on a finite line $\mathbf{\underline{n}} = (a, b, c)$ iff iff = works either way!

$$a u + b v + c = 0$$

can be rewritten as (with scalar product): $(u, v, \mathbf{1}) \cdot (a, b, c) = \mathbf{m}^{\top} \mathbf{n} = 0$

'Finite' points

- a finite point is also represented by a homogeneous vector $\underline{\mathbf{m}} \simeq (u, v, \mathbf{1})$
- the equivalence class for $\lambda \in \mathbb{R}, \lambda \neq 0$ is $(m_1, m_2, m_3) = \lambda \mathbf{m} \simeq \mathbf{m}$
- the standard representative for <u>finite</u> point $\underline{\mathbf{m}}$ is $\lambda \underline{\mathbf{m}}$, where $\lambda = \frac{1}{m_2}$ assuming $m_3 \neq 0$ • when $\mathbf{1} = 1$ then units are pixels and $\lambda \mathbf{m} = (u, v, 1)$
- ullet when ${f 1}=f$ then all components have a similar magnitude, $f\sim$ image diagonal use 1 = 1 unless you know what you are doing;

all entities participating in a formula must be expressed in the same units

'Infinite' points

- we augment for Ideal Points (points at infinity) $\underline{\mathbf{m}}_{\infty} \simeq (m_1, m_2, 0)$
- proper members of \mathbb{P}^2 • all such points lie on the ideal line (line at infinity) $\mathbf{n}_{\infty} \simeq (0,0,1)$, i.e. $\mathbf{m}_{\infty}^{\top} \mathbf{n}_{\infty} = 0$
- R. Šára, CMP; rev. 3-Oct-2017 3D Computer Vision: II. Perspective Camera (p. 20/186)

►Line Intersection and Point Join

The point of intersection m of image lines n and n', $n \not\simeq n'$ is

proof: If $\underline{\mathbf{m}} = \underline{\mathbf{n}} \times \underline{\mathbf{n}}'$ is the intersection point, it must be incident on both lines. Indeed, using known equivalences from vector algebra

$$\underline{\mathbf{n}}^{\top} \underbrace{(\underline{\mathbf{n}} \times \underline{\mathbf{n}}')}_{\underline{\mathbf{m}}} \equiv \underline{\mathbf{n}}'^{\top} \underbrace{(\underline{\mathbf{n}} \times \underline{\mathbf{n}}')}_{\underline{\mathbf{m}}} \equiv 0$$

The join n of two image points m and m', $m \not\simeq m'$ is

$$\underline{\mathbf{n}} \simeq \underline{\mathbf{m}} \times \underline{\mathbf{m}}'$$

Paralel lines intersect (somewhere) on the line at infinity $\underline{\mathbf{n}}_{\infty} \simeq (0,0,1)$

$$\begin{split} a\,u + b\,v + c &= 0,\\ a\,u + b\,v + d &= 0,\\ (a,b,c)\times(a,b,d) &\simeq (b,-a,0) \end{split}$$

- ullet all such intersections lie on ${f n}_{\infty}$
- line at infinity represents a set of directions in the plane
- Matlab: m = cross(n, n_prime);

► Homography in \mathbb{P}^2

Projective plane $\mathbb{P}^2\colon$ Vector space of dimension 3 excluding the zero vector, $\mathbb{R}^3\setminus(0,0,0),$ factorized to linear equivalence classes ('rays')

including 'points at infinity'

Homography in \mathbb{P}^2 : Non-singular linear mapping in \mathbb{P}^2

an analogic definition for \mathbb{P}^3

 $\underline{\mathbf{x}}' \simeq \mathbf{H}\,\underline{\mathbf{x}}, \quad \mathbf{H} \in \mathbb{R}^{3,3}$ non-singular

Defining properties

collinear image points are mapped to collinear image points

lines of points are mapped to lines of points

· concurrent image lines are mapped to concurrent image lines

 ${\sf concurrent} = {\sf intersecting} \ {\sf at} \ {\sf a} \ {\sf point}$

and point-line incidence is preserved

e.g. line intersection points mapped to line intersection points

- H is a 3×3 non-singular matrix, $\lambda H \simeq H$ equivalence class, 8 degrees of freedom
- homogeneous matrix representant: $\det \mathbf{H} = 1$
- what we call homography here is often called 'projective collineation' in mathematics

► Mapping 2D Points and Lines by Homography

$$\underline{\mathbf{m}}' \simeq \mathbf{H}\,\underline{\mathbf{m}}$$
 image point

$$\underline{\mathbf{n}}' \simeq \mathbf{H}^{-\top}\underline{\mathbf{n}} \quad \text{ image line} \qquad \underline{\mathbf{H}}^{-\top} = (\mathbf{H}^{-1})^{\top} = (\mathbf{H}^{\top})^{-1}$$

• incidence is preserved: $(\underline{\mathbf{m}}')^{\top}\underline{\mathbf{n}}' \simeq \underline{\mathbf{m}}^{\top}\mathbf{H}^{\top}\mathbf{H}^{-\top}\underline{\mathbf{n}} = \underline{\mathbf{m}}^{\top}\underline{\mathbf{n}} = 0$

Mapping a finite 2D point $\mathbf{m} = (u, v)$ to $\underline{\mathbf{m}} = (u', v')$

- 1. extend the Cartesian (pixel) coordinates to homogeneous coordinates, $\underline{\mathbf{m}} = (u,v,\mathbf{1})$
- 2. map by homography, $\mathbf{\underline{m}}' = \mathbf{H} \mathbf{\underline{m}}$
- 3. if $m_3' \neq 0$ convert the result $\underline{\mathbf{m}}' = (m_1', m_2', m_3')$ back to Cartesian coordinates (pixels),

$$u' = \frac{m'_1}{m'_3} \mathbf{1}, \qquad v' = \frac{m'_2}{m'_3} \mathbf{1}$$

- note that, typically, $m_3' \neq 1$
- an infinite point (u, v, 0) maps the same way

 $m_3^\prime=1$ when ${\bf H}$ is affine

Some Homographic Tasters

Rectification of camera rotation: \rightarrow 59 (geometry), \rightarrow 122 (homography estimation)

 $\mathbf{H} \simeq \mathbf{K} \mathbf{R}^{\top} \mathbf{K}^{-1}$

maps from image plane to facade plane

Homographic Mouse for Visual Odometry: [Mallis 2007]

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

$$\mathbf{H} \simeq \mathbf{K} \left(\mathbf{R} - rac{\mathbf{t} \mathbf{n}^{ op}}{d}
ight) \mathbf{K}^{-1}$$
 [H&Z, p. 327]

► Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

• Euclidean mapping (EM): rotation, translation and their combination

$$\mathbf{H} = \begin{bmatrix} \cos \phi & -\sin \phi & t_x \\ \sin \phi & \cos \phi & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

• eigenvalues $(1, e^{-i\phi}, e^{i\phi})$

EM = The most general homography preserving

- 1. areas: $\det \mathbf{H} = 1$
 - 2. lengths: Let $\underline{\mathbf{x}}_i' = \mathbf{H}\underline{\mathbf{x}}_i$ (check we can use = instead of \simeq). Let $(x_i)_3 = 1$, Then

$$\|\underline{\mathbf{x}}_2' - \underline{\mathbf{x}}_1'\| = \|\mathbf{H}\underline{\mathbf{x}}_2 - \mathbf{H}\underline{\mathbf{x}}_1\| = \|\mathbf{H}(\underline{\mathbf{x}}_2 - \underline{\mathbf{x}}_1)\| = \dots = \|\underline{\mathbf{x}}_2 - \underline{\mathbf{x}}_1\|$$

- 3. angles check the dot-product of normalized differences from a point $(\mathbf{x} \mathbf{z})^{\top}(\mathbf{y} \mathbf{z})$ (Cartesian(!))
- eigenvectors when $\phi \neq k\pi$, k = 0, 1, ... (columnwise)

$$\mathbf{e}_1 \simeq egin{bmatrix} t_x + t_y \cot rac{arphi}{2} \\ t_y - t_x \cot rac{arphi}{2} \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 \simeq egin{bmatrix} i \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{e}_3 \simeq egin{bmatrix} -i \\ 1 \\ 0 \end{bmatrix} \qquad \mathbf{e}_2, \, \mathbf{e}_3 - \mathsf{circular points}, \, i - \mathsf{imaginary unit} \end{cases}$$

- 4. circular points: points at infinity (i, 1, 0), (-i, 1, 0) (preserved even by similarity)
- similarity: scaled Euclidean mapping (does not preserve lengths, areas)

► Homography Subgroups: Affine Mapping

$$\mathbf{H} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

then scaling by diag(1, 1.5, 1)

then translation by (7, 2)

AM = The most general homography preserving

- parallelism
- ratio of areas
- ratio of lengths on parallel lines
- linear combinations of vectors (e.g. midpoints)
- convex hull
- line at infinity $\underline{\mathbf{n}}_{\infty}$ (not pointwise)

observe $\mathbf{H}^{\top} \underline{\mathbf{n}}_{\infty} \simeq \underline{\mathbf{n}}_{\infty} \ \Rightarrow \ \underline{\mathbf{n}}_{\infty} \simeq \mathbf{H}^{-\top} \underline{\mathbf{n}}_{\infty}$

does not preserve

- lengths
- angles
- areas
- circular points

Euclidean mappings preserve all properties affine mappings preserve, of course

► Homography Subgroups: General Homography

$$\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

preserves only

- incidence and concurrency
- collinearity
- cross-ratio on the line \rightarrow 47

does not preserve

- lengths
- areas
- parallelism
- ratio of areas
- · ratio of lengths
- linear combinations of vectors (midpoints, etc.)
- convex hull
- line at infinity \mathbf{n}_{∞}

$$\mathbf{H} = \begin{bmatrix} 7 & -0.5 & 6 \\ 3 & 1 & 3 \\ 1 & 0 & 1 \end{bmatrix}$$

line
$$\underline{\mathbf{n}} = (1, 0, 1)$$
 is mapped to $\underline{\mathbf{n}}_{\infty} \colon \mathbf{H}^{-\top} \underline{\mathbf{n}} \simeq \underline{\mathbf{n}}_{\infty}$

(where is the line ${f n}$ it in the picture?)

Elementary Decomposition of a Homography

Unique decompositions:
$$\mathbf{H} = \mathbf{H}_S \mathbf{H}_A \mathbf{H}_P \quad (= \mathbf{H}_P' \mathbf{H}_A' \mathbf{H}_S')$$

$$\mathbf{H}_S = egin{bmatrix} s \, \mathbf{R} & \mathbf{t} \ \mathbf{0}^{\top} & 1 \end{bmatrix}$$
 similarity (scaled EM)
$$\mathbf{H}_A = egin{bmatrix} \mathbf{K} & \mathbf{0} \ \mathbf{0}^{\top} & 1 \end{bmatrix}$$
 special affine
$$\mathbf{H}_P = egin{bmatrix} \mathbf{I} & \mathbf{0} \ \mathbf{v}^{\top} & w \end{bmatrix}$$
 special projective

 ${f K}$ – upper triangular matrix with positive diagonal entries

$$\mathbf{R}$$
 - orthogonal, $\mathbf{R}^{\top}\mathbf{R} = \mathbf{I}$, $\det \mathbf{R} = 1$

$$s,w\in\mathbb{R}$$
, $s>0$, $w\neq 0$

$$\mathbf{H} = \begin{bmatrix} s\mathbf{R}\mathbf{K} + \mathbf{t}\,\mathbf{v}^{\top} & w\,\mathbf{t} \\ \mathbf{v}^{\top} & w \end{bmatrix}$$

- must use 'thin' QR decomposition, which is unique [Golub & van Loan 2013, Sec. 5.2.6]
- H_S, H_A, H_P are homography subgroups (in the sense of group theory)
 (eg. K = K₁K₂, K⁻¹, I are all upper triangular with unit determinant, associativity holds)

