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Part Il

Perspective Camera

@ Basic Entities: Points, Lines

@Homography: Mapping Acting on Points and Lines
@ Canonical Perspective Camera

@ Changing the Outer and Inner Reference Frames
@Projection Matrix Decomposition

@ Anatomy of Linear Perspective Camera

@ Vanishing Points and Lines

covered by

[H&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, Example: 2.19
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»Basic Geometric Entities, their Representation, and Notation

e entities have names and representations

e names and their components:

’ entity H in 2-space ‘ in 3-space ‘

point || m = (u,v) | X = (z,y,2)

line n O

plane T,

e associated vector representations

q T
U T
m = v :[u,v] , X=|ly|, n
- z

will also be written in an ‘in-line’ form as m = (u,v), X = (z,y, 2), etc.
e vectors are always meant to be columns x € R™*
e associated homogeneous representations

m= [m1,m2,m3]T, X = [$1,$2,$3,$4]T, n
‘in-line’ forms: m = (m1,ma,m3), X = (z1,z2,23,24), etc.
e matrices are Q € R™", linear map of a R™! vector is y = Qx
e j-th element of vector m; is (m;);; element 4,5 of matrix P is P;;
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»Image Line (in 2D)

a finite line in the 2D (u,v) plane au+bv+c=0
corresponds to a (homogeneous) vector n ~ (a, b, c)

and there is an equivalence class for A€ R, A #0 (\a, Ab, Ac) =~ (a, b, ¢)

‘Finite’ lines
1
1/ n%+n%

assuming n% + n% # 0; 1 is the unit, usually 1 =1

e standard representative for finite n = (n1,n2,n3) is An, where A\ =

‘Infinite’ line
e we augment the set of lines for a special entity called the Ideal Line (line at infinity)

ne ~ (0,0,1) (standard representative)

e the set of equivalence classes of vectors in R3 \ (0,0,0) forms the projective space P2
a set of rays —22

e line at infinity is a proper member of P2

® | may sometimes wrongly use = instead of ~~, if you are in doubt, ask me

3D Computer Vision: II. Perspective Camera (p. 19/186) 9©a( R. S4ra, CMP; rev. 3-Oct—2017 =@l



»Image Point

Finite point m = (u,v) is incident on a finite line n = (a, b, ¢) iff iff = works either way!

au+bv+c=0

can be rewritten as (with scalar product):  (u,v,1) - (a,b,¢) =m ' n =0

"Finite’ points
e a finite point is also represented by a homogeneous vector m ~ (u,v,1)

e the equivalence class for A€ R, A\ £ 0 is (m1, m2, m3) = Am=>~m
1

g assuming mg #0

e the standard representative for finite point m is A m, where A =

e when 1 =1 then units are pixels and Am = (u, v, 1)
e when 1 = f then all components have a similar magnitude, f ~ image diagonal
use 1 = 1 unless you know what you are doing;
all entities participating in a formula must be expressed in the same units
"Infinite’ points
e we augment for Ideal Points (points at infinity) me ~ (m1,ms,0)

proper members of P2

e all such points lie on the ideal line (line at infinity) ne ~ (0,0,1), i.e. M) Noo =0
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»Line Intersection and Point Join

The point of intersection m of image lines n and n’, n % n' is

proof: If m = n x n’ is the intersection point, it
must be incident on both lines. Indeed, using
known equivalences from vector algebra

=
R
=
X

n' (nxn)=n'"T (nxn)=0
—_—— —_——
m m

The join n of two image points m and m’, m 2 m’ is

!
n~mx m

Paralel lines intersect (somewhere) on the line at infinity noo ~ (0,0, 1)
au+bv+c=0,
au+bv+d=0, d#c
((l, b7 C) X ((l, b7 d) = (bﬂ —a, 0)
e all such intersections lie on nso

e line at infinity represents a set of directions in the plane

e Matlab: m = cross(n, n_prime);
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»Homography in P?

elements of P2

R3 — . .
Projective plane P?: Vector space of dimension 3

N excluding the zero vector, R?\ (0, 0,0), factorized
to linear equivalence classes (‘rays’)
including ‘points at infinity’

=~ aplane selecting

the representatives
Homography in P?: Non-singular linear mapping in P2 an analogic definition for P3
xX ~Hx, HeR*? non-singular

Defining properties
e collinear image points are mapped to collinear image points
lines of points are mapped to lines of points
e concurrent image lines are mapped to concurrent image lines

. . . concurrent = intersecting at a point
e and point-line incidence is preserved

e.g. line intersection points mapped to line intersection points

e H is a 3 X 3 non-singular matrix, A H ~ H equivalence class, 8 degrees of freedom
® homogeneous matrix representant: det H =1
e what we call homography here is often called ‘projective collineation’ in mathematics
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»Mapping 2D Points and Lines by Homography

H
H—T
—
'~Hm image point
'~H "n  image line H =@ =@=") !

e incidence is preserved: (m’) "0’ *m ' H ' H "n=m'n=0

Mapping a finite 2D point m = (u,v) to m = (u/,v’)
1. extend the Cartesian (pixel) coordinates to homogeneous coordinates, m = (u,v,1)
2. map by homography, m’ = Hm

3. if m{ # 0 convert the result m’ = (m/, m}, m}) back to Cartesian coordinates (pixels),

e note that, typically, m} # 1 mj = 1 when H is affine

® an infinite point (u,v,0) maps the same way
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Some Homographic Tasters

Rectification of camera rotation: —59 (geometry), —122 (homography estimation)

U Q%

Ll lllliinnum

il"mimw
i "

H~KR'K™ maps from image plane to facade plane

Homographic Mouse for Vlsual Odometry [Mallis 2007]
F A"y ¢

H~K (R - ti) K™ [H&Z p.327]
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»Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

e Euclidean mapping (EM): rotation, 2 1 o0 1 2 3 4 5 & 7 8 9 10

translation and their combination =
cos¢p —sing it O =
H= |sing cos¢p t, b
0 0 1 >2r
al
o cigenvalues (1, e, ¢'?) ol
sl
EM = The most general homography preserving rotation by 30°, then translation by (7, 2)

1. areas: detH =1
2. lengths: Let x, = Hx; (check we can use = instead of ~). Let (z;); =1, Then

x5 — %11l = [Hxo — Hxa || = [H(x2 — x1)[| = -+ = [lx2 — x|

3. angles check the dot-product of normalized differences from a point (x — z) ' (y — z) (Cartesian(!))

e eigenvectors when ¢ # km, k=0, 1,... (columnwise)
ty + ty cot ¢ i —i
€1 |ty —tycot |, €2 1|, e3>~ |1 es, e3 — circular points, i — imaginary unit
2 0 0

4. circular points: points at infinity (¢,1,0), (—¢,1,0) (preserved even by similarity)
e similarity: scaled Euclidean mapping (does not preserve lengths, areas)
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»Homography Subgroups:

a1
H= |axn
0

ai2

az2
0

2
ty
1

Affine Mapping

AM = The most general homography preserving

e parallelism
ratio of areas

convex hull

does not preserve
e lengths
e angles
e areas
e circular points

line at infinity n. (not pointwise)

ratio of lengths on parallel lines
linear combinations of vectors (e.g. midpoints)

rotation by 30°
then scaling by diag(1, 1.5, 1)
then translation by (7, 2)

observe HTQOO ~ N = Noo H_Tgoo

Euclidean mappings preserve all properties affine mappings preserve, of course
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»Homography Subgroups:

hi1 hi2  his
H= |hot ho2 has
h31  hs2 hss

preserves only

e incidence and concurrency
e collinearity
e cross-ratio on the line

does not preserve

lengths

areas
parallelism
ratio of areas
ratio of lengths

(midpoints, etc.)
convex hull
e line at infinity n

—47

linear combinations of vectors

General Homography

linen = (1,0,1) is mapped to n..: H "n~n.

(where is the line n it in the picture?)
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Elementary Decomposition of a Homography

Unique decompositions: H=HsH.Hp (=H),H/, HY)

Hs = ‘3)13 ﬂ similarity (scaled EM)
(K 0 . .

Hs = _OT 1] special affine
(1 0 . -

Hp = _VT w] special projective

K — upper triangular matrix with positive diagonal entries
R - orthogonal, RTR =1, detR =1
s,weER, s>0,w#0

-
H:{SRKitv zi)ut

e must use ‘thin’ QR decomposition, which is unique [Golub & van Loan 2013, Sec. 5.2.6]
e Hg, Hy, Hp are homography subgroups (in the sense of group theory)
(eg. K = K1 Ko, K1, I are all upper triangular with unit determinant, associativity holds)
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