▶1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:

$$[\mathbf{P}] = [P_{\infty} P_0 P_I \mathbf{P}] = [p_{\infty} p_0 p_I \mathbf{p}] = \frac{|\overline{p_0} \mathbf{p}|}{|\overline{p_I} p_0'|} \frac{|\overline{p_{\infty}} \mathbf{p}|}{|\overline{p} p_{\infty}'|} = [\mathbf{p}]$$

naming convention:

$$P_0$$
 – the origin

$$[P_0] = 0$$

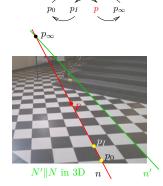
$$P_I$$
 – the unit point

$$[P_I] = 1$$

$$P_{\infty}$$
 – the supporting point $[P_{\infty}] = \pm \infty$

$$[P_{\infty}] = \pm \infty$$

[P] is equal to Euclidean coordinate along N[p] is its measurement in the image plane



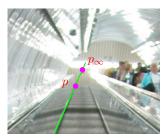
the mnemonic is now ' ∞ '

Applications

- Given the image of a 3D line N, the origin, the unit point, and the vanishing point, then the Euclidean coordinate of any point $P \in N$ can be determined
- Finding v.p. of a line through a regular object

Application: Counting Steps

• Namesti Miru underground station in Prague

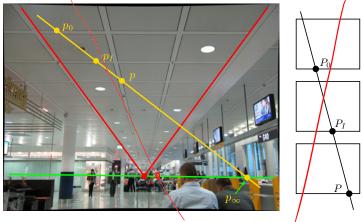


detail around the vanishing point

Result: [P] = 214 steps (correct answer is 216 steps)

4Mpx camera

Application: Finding the Horizon from Repetitions



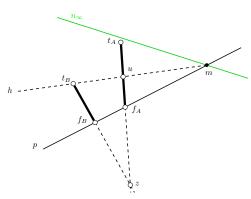
in 3D: $|P_0P|=2|P_0P_I|$ then [H&Z, p. 218]

$$[P_{\infty}P_0P_IP] = \frac{|P_0P|}{|P_0P_I|} = 2 \quad \Rightarrow \quad |p_{\infty}p_0| = \frac{|p_0p_I| \cdot |p_0p|}{|p_0p| - 2|p_0p_I|}$$

- could be applied to counting steps (\rightarrow 49) if there was no supporting line
- P1; 1pt: How high is the camera above the floor?

Homework Problem

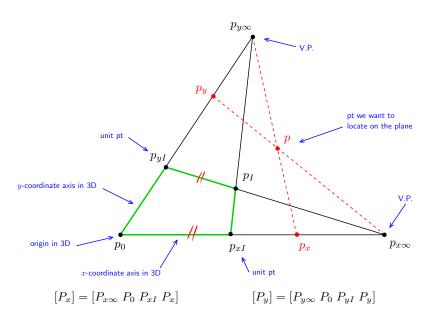
- H2; 3pt: What is the ratio of heights of Building A to Building B?
 - expected: conceptual solution; use notation from this figure
 - deadline: LD+2 weeks



Hints

- 1. What are the interesting properties of line h connecting the top t_B of Building B with the point m at which the horizon intersects the line p joining the foots f_A , f_B of both buildings? [1 point]
- 2. How do we actually get the horizon n_{∞} ? (we do not see it directly, there are some hills there...) [1 point]
- 3. Give the formula for measuring the length ratio. [formula =1 point]

2D Projective Coordinates



Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

- measuring distances on the floor in terms of tile units
- what are the dimensions of the seal? Is it circular (assuming square tiles)?
- needs no explicit camera calibration

because we can see the calibrating object (vanishing points)

Part III

Computing with a Single Camera

- ancalibration: Internal Camera Parameters from Vanishing Points and Lines
- Camera Resection: Projection Matrix from 6 Known Points
- Exterior Orientation: Camera Rotation and Translation from 3 Known Points

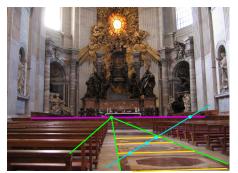
covered by

- [1] [H&Z] Secs: 8.6, 7.1, 22.1
- [2] Fischler, M.A. and Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381–395, 1981
- [3] [Golub & van Loan 2013, Sec. 2.5]

Obtaining Vanishing Points and Lines

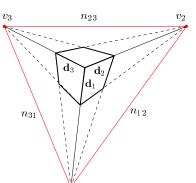
orthogonal direction pairs can be collected from more images by camera rotation

• vanishing line can be obtained without vanishing points $(\rightarrow 50)$



▶ Camera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute $\mathbf{K} = \lambda_i \partial_i \mathbf{V}_i$



$$\mathbf{d}_{i} \simeq \mathbf{Q}^{-1} \mathbf{y}_{i}, \qquad i = 1, 2, 3 \rightarrow 44$$

$$\mathbf{p}_{ij} \simeq \mathbf{Q}^{\top} \mathbf{p}_{ij}, \quad i, j = 1, 2, 3, i \neq j \rightarrow 40$$
(2)

• simple method: solve (2) after eliminating nuisance pars.

Special Configurations

1. orthogonal rays $\mathbf{d}_1 \perp \mathbf{d}_2$ in space then

$$0 = \mathbf{d}_{1}^{\top} \mathbf{d}_{2} = \mathbf{v}_{1}^{\top} \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \mathbf{v}_{2} = \mathbf{v}_{1}^{\top} \underbrace{(\mathbf{K}\mathbf{K}^{\top})^{-1}}_{\omega \text{ (IAC)}} \mathbf{v}_{2}$$
2. orthogonal planes $\mathbf{p}_{ij} \perp \mathbf{p}_{ik}$ in space

$$0 = \mathbf{p}_{ij}^{\mathsf{T}} \mathbf{p}_{ik} = \underline{\mathbf{n}}_{ij}^{\mathsf{T}} \mathbf{Q} \mathbf{Q}^{\mathsf{T}} \underline{\mathbf{n}}_{ik} = \underline{\mathbf{n}}_{ij}^{\mathsf{T}} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{ik}$$

3. orthogonal ray and plane
$$\mathbf{d}_k \parallel \mathbf{p}_{ij}, \ k \neq i, j$$
 normal parallel to optical ray $\mathbf{p}_{ij} \simeq \mathbf{d}_k \quad \Rightarrow \quad \mathbf{Q}^{\top} \underline{\mathbf{n}}_{ij} = \lambda \mathbf{Q}^{-1} \underline{\mathbf{v}}_k \quad \Rightarrow \quad \underline{\mathbf{n}}_{ij} = \lambda \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \underline{\mathbf{v}}_k = \lambda \boldsymbol{\omega} \, \underline{\mathbf{v}}_k, \qquad \lambda \neq 0$

- n_{ij} may be constructed from non-orthogonal v_i and v_j , e.g. using the cross-ratio
- ω is a symmetric, positive definite 3×3 matrix

 IAC = Image of Absolute Conic

▶cont'd

	configuration	equation	# constraints
(3)	orthogonal v.p.	$\underline{\mathbf{v}}_i^{\top} \boldsymbol{\omega} \underline{\mathbf{v}}_j = 0$	1
(4)	orthogonal v.l.	$\underline{\mathbf{n}}_{ij}^{\top} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{ik} = 0$	1
(5)	v.p. orthogonal to v.l.	$\underline{\mathbf{n}}_{ij} = \pmb{\lambda} \pmb{\omega} \underline{\mathbf{v}}_k$	2
(6)	orthogonal raster $\theta=\pi/2$	$\omega_{12}=\omega_{21}=0$	1
(7)	unit aspect $a=1$ when $\theta=\pi/2$	$\omega_{11}-\omega_{22}=0$	1
(8)	known principal point $u_0=v_0=0$	$\omega_{13} = \omega_{31} = \omega_{23} = \omega_{32} = 0$) 2
		w = Vec(ω)	

• these are homogeneous linear equations for the 5 parameters in ω in the form $D_{\mathbf{w}} = \mathbf{0}$ λ can be eliminated from (5)

the decomposition returns a positive definite upper triangular matrix

- we need at least 5 constraints for full ω • we get ${f K}$ from ${m \omega}^{-1} = {f K}{f K}^{ op}$ by Choleski decomposition ${f K}$ = ${f chol}$ (${m \omega}$)

one avoids solving an explicit set of quadratic equations for the parameters in K

- unlike in the naive method (2), we can introduce constraints on K, e.g. (6)–(8)
- R. Šára, CMP; rev. 24-Oct-2017 3D Computer Vision: III. Computing with a Single Camera (p. 57/186) 2990

Examples

Assuming orthogonal raster, unit aspect (ORUA): $\theta = \pi/2$, a = 1

$$\boldsymbol{\omega} \simeq \begin{bmatrix} 1 & 0 & -u_0 \\ 0 & 1 & -v_0 \\ -u_0 & -v_0 & f^2 + u_0^2 + v_0^2 \end{bmatrix}$$

Ex 1:

Assuming ORUA and known
$$m_0 = (u_0, v_0)$$
, two finite orthogonal vanishing points give f

$$\mathbf{v}_1^\top \boldsymbol{\omega} \, \mathbf{v}_2 = 0 \quad \Rightarrow \quad f^2 = \left| (\mathbf{v}_1 - \mathbf{m}_0)^\top (\mathbf{v}_2 - \mathbf{m}_0) \right|$$

in this formula, \mathbf{v}_i , \mathbf{m}_0 are not homogeneous!

Ex 2:

Non-orthogonal vanishing points \mathbf{v}_i , \mathbf{v}_j , known angle ϕ : $\cos \phi = \frac{\mathbf{v}_i^\top \boldsymbol{\omega} \mathbf{v}_j}{\sqrt{\mathbf{v}^\top \boldsymbol{\omega} \mathbf{v}_i}, \sqrt{\mathbf{v}^\top \boldsymbol{\omega} \mathbf{v}_i}}$

- leads to polynomial equations
- e.g. ORUA and $u_0 = v_0 = 0$ gives

$$(f^2 + \mathbf{v}_i^{\top} \mathbf{v}_i)^2 = (f^2 + ||\mathbf{v}_i||^2) \cdot (f^2 + ||\mathbf{v}_i||^2) \cdot \cos^2 \phi$$

Image of Absolute Conic

This is the K matrix:

The ω matrix:

ω = Inverse[K.Transpose[K]] * Det[K] ^2 // Simplify

$$\begin{pmatrix} a^2f^2 & -afs & af(s\,v_0-af\,u_0) \\ -afs & f^2+s^2 & afs\,u_0-(f^2+s^2)\,v_0 \\ af(s\,v_0-af\,u_0) & afs\,u_0-(f^2+s^2)\,v_0 & a^2f^4+a^2\,u_0^2\,f^2-2\,as\,u_0\,v_0\,f+(f^2+s^2)\,v_0^2 \end{pmatrix}$$

The ω matrix with no skew:

$$\omega$$
 / f^2 /. s -> 0 // Simplify // MatrixForm

$$\left(\begin{array}{cccc} a^2 & 0 & -a^2 \, u_0 \\ 0 & 1 & -v_0 \\ -a^2 \, u_0 & -v_0 & a^2 \, f^2 + a^2 \, u_0^2 + v_0^2 \end{array} \right)$$

ORUA

$$\omega$$
 /f^2 /. {a -> 1, s -> 0} // Simplify

$$\begin{pmatrix} 1 & 0 & -u_0 \\ 0 & 1 & -v_0 \\ -u_0 & -v_0 & f^2 + u_0^2 + v_0^2 \end{pmatrix}$$

► Camera Orientation from Two Finite Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal directions d_1 , d_2 , compute camera orientation R with respect to the plane.

• 3D coordinate system choice, e.g.:

$$\mathbf{d}_1 = (1, 0, 0), \quad \mathbf{d}_2 = (0, 1, 0)$$

we know that

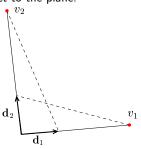
$$\mathbf{d}_i \simeq \mathbf{Q}^{-1} \underline{\mathbf{v}}_i = (\mathbf{K}\mathbf{R})^{-1} \underline{\mathbf{v}}_i = \mathbf{R}^{-1} \underbrace{\mathbf{K}^{-1} \underline{\mathbf{v}}_i}_{\mathbf{w}_i}$$

$$\mathbf{Rd}_i \simeq \mathbf{w}_i$$

- knowing $\mathbf{d}_{1,2}$ we conclude that $\underline{\mathbf{w}}_i/\|\underline{\mathbf{w}}_i\|$ is the *i*-th column \mathbf{r}_i of \mathbf{R}
- the third column is orthogonal:

$$\mathbf{r}_3 \simeq \mathbf{r}_1 \times \mathbf{r}_2$$

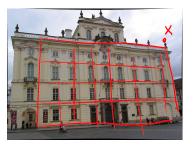
$$\mathbf{R} = \begin{bmatrix} \frac{\mathbf{w}_1}{\|\mathbf{w}_1\|} & \frac{\mathbf{w}_2}{\|\mathbf{w}_2\|} & \frac{\mathbf{w}_1 \times \mathbf{w}_2}{\|\mathbf{w}_1 \times \mathbf{w}_2\|} \end{bmatrix}$$



some suitable scenes

Application: Planar Rectification

Principle: Rotate camera parallel to the plane of interest.



$$\mathbf{k} \left(\mathbf{k} \hat{\mathbf{n}} \right)^{\mathbf{l}} \quad \underline{\mathbf{m}} \simeq \mathbf{K} \mathbf{K} \left[\mathbf{I} \quad -\mathbf{C} \right] \mathbf{X}$$

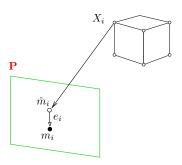
$$\underline{\mathbf{m}}' \simeq \mathbf{K} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix} \underline{\mathbf{X}}$$

$$\underline{\mathbf{m}}' \simeq \mathbf{K}(\mathbf{K}\mathbf{R})^{-1}\,\underline{\mathbf{m}} = \mathbf{K}\mathbf{R}^{\top}\mathbf{K}^{-1}\,\underline{\mathbf{m}} = \mathbf{H}\,\underline{\mathbf{m}}$$

- ullet H is the rectifying homography
- ullet both ${f K}$ and ${f R}$ can be calibrated from two finite vanishing points assuming ORUA ightarrow 58
- not possible when one (or both) of them are infinite
- without ORUA we would need 4 additional views to calibrate ${f K}$ as on $\to 55$

▶Camera Resection

Camera <u>calibration</u> and <u>orientation</u> from a known set of $k \ge 6$ reference points and their images $\{(X_i, m_i)\}_{i=1}^6$.



- X_i are considered exact
- m_i is a measurement subject to detection error

$$\mathbf{m}_i = \hat{\mathbf{m}}_i + \mathbf{e}_i$$
 Cartesian

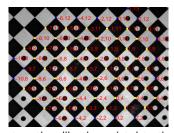
• where $\hat{\mathbf{m}}_i \simeq \mathbf{P}\mathbf{X}_i$

Resection Targets



calibration chart

resection target with translation stage



automatic calibration point detection

- target translated at least once
- by a calibrated (known) translation
- ullet X_i point locations looked up in a table based on their code

▶ The Minimal Problem for Camera Resection

Problem: Given k = 6 corresponding pairs $\{(X_i, m_i)\}_{i=1}^k$, find **P**

 $\lambda_i u_i = \mathbf{q}_1^{\mathsf{T}} \mathbf{X}_i + q_{14}, \quad \lambda_i v_i = \mathbf{q}_2^{\mathsf{T}} \mathbf{X}_i + q_{24}, \quad \lambda_i = \mathbf{q}_3^{\mathsf{T}} \mathbf{X}_i + q_{34}$ expanded: after elimination of λ_i : $(\mathbf{q}_3^\top \mathbf{X}_i + q_{34})u_i = \mathbf{q}_1^\top \mathbf{X}_i + q_{14}, \quad (\mathbf{q}_3^\top \mathbf{X}_i + q_{34})v_i = \mathbf{q}_2^\top \mathbf{X}_i + q_{24}$

Then
$$\begin{cases}
\mathbf{V} \triangleright (\mathbf{A}) = \mathbf{U} \triangleright \mathbf{V}^{\mathsf{T}} & \begin{bmatrix} \mathbf{X}_{1}^{\mathsf{T}} & 1 & \mathbf{0}^{\mathsf{T}} & 0 & -u_{1} \mathbf{X}_{1}^{\mathsf{T}} & -u_{1} \\ \mathbf{0}^{\mathsf{T}} & 0 & \mathbf{X}_{1}^{\mathsf{T}} & 1 & -v_{1} \mathbf{X}_{1}^{\mathsf{T}} & -v_{1} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{q}_{1} \\ \mathbf{q}_{14} \\ \mathbf{q}_{2} \\ \mathbf{q}_{24} \\ \mathbf{q}_{3} \end{bmatrix} = \mathbf{0}$$

$$\bullet \text{ we need 11 independent parameters for P}$$

- we need 11 indepedent parameters for P
- $\mathbf{A} \in \mathbb{R}^{2k,12}$, $\mathbf{q} \in \mathbb{R}^{12}$
- 6 points in a general position give rank A = 12 and there is no non-trivial null space
- drop one row to get rank 11 matrix, then the basis vector of the null space of A gives q
- 3D Computer Vision: III. Computing with a Single Camera (p. 64/186) 999 R. Šára, CMP; rev. 24-Oct-2017

► The Jack-Knife Solution for k = 6

- given the 6 correspondences, we have 12 equations for the 11 parameters
- can we use all the information present in the 6 points?

Jack-knife estimation

- 1. n := 0
- 2. for i = 1, 2, ..., 2k do
 - a) delete *i*-th row from A, this gives A_i
 - b) if dim null $A_i > 1$ continue with the next i
 - c) n := n + 1
 - d) compute the right null-space \mathbf{q}_i of \mathbf{A}_i
 - e) $\hat{\mathbf{q}}_i \coloneqq \mathbf{q}_i$ normalized to $q_{34} = 1$ and dimension-reduced assuming finite cam. with $P_{3,4} = 1$
- 3. from all n vectors $\hat{\mathbf{q}}_i$ collected in Step 1d compute

$$\mathbf{q} = \frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{q}}_i, \qquad \mathrm{var}[\mathbf{q}] = \frac{n-1}{n} \operatorname{diag} \sum_{i=1}^{n} (\hat{\mathbf{q}}_i - \mathbf{q}) (\hat{\mathbf{q}}_i - \mathbf{q})^{\top} \qquad \text{regular for } n \geq 11$$

- have a solution + an error estimate, per individual elements of \mathbf{P} (except P_{34})
- at least 5 points must be in a general position (→66)
- large error indicates near degeneracy
- computation not efficient with k>6 points, needs $\binom{2k}{11}$ draws, e.g. $k=7\Rightarrow 364$ draws
- better error estimation method: decompose P_i to K_i , R_i , $t_i (\rightarrow 34)$, represent R_i with 3 parameters (e.g. Euler angles, or in Cayley representation $\rightarrow 137$) and compute the errors for the parameters

e.g. by 'economy-size' SVD

