
I1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:

[P ] = [P∞ P0 PI P ] = [p∞ p0 pI p] =
|−−→p0 p|
|−−→pI p0|

|−−−→p∞ pI |
|−−→p p∞|

= [p]

naming convention:

P0 – the origin [P0] = 0

PI – the unit point [PI ] = 1

P∞ – the supporting point [P∞] = ±∞

[P ] is equal to Euclidean coordinate along N

[p] is its measurement in the image plane

the mnemonic is now ‘∞’

p∞p0 pI p

p0

pI

p∞

n′n

p

N ′‖N in 3D

Applications
• Given the image of a 3D line N , the origin, the unit point, and the vanishing point,

then the Euclidean coordinate of any point P ∈ N can be determined →49

• Finding v.p. of a line through a regular object →50

3D Computer Vision: II. Perspective Camera (p. 48/186) R. Šára, CMP; rev. 24–Oct–2017



Application: Counting Steps
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• Namesti Miru underground station in Prague

p

p∞

detail around the vanishing point

Result: [P ] = 214 steps (correct answer is 216 steps) 4Mpx camera
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Application: Finding the Horizon from Repetitionsp0 pI p
p1

PI

P

P0

in 3D: |P0P | = 2|P0PI | then [H&Z, p. 218]

[P∞P0PIP ] =
|P0P |
|P0PI |

= 2 ⇒ |p∞p0| =
|p0pI | · |p0p|
|p0p| − 2|p0pI |

• could be applied to counting steps (→49) if there was no supporting line

~ P1; 1pt: How high is the camera above the floor?
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Homework Problem

~ H2; 3pt: What is the ratio of heights of Building A to Building B?
• expected: conceptual solution; use notation from this figure
• deadline: LD+2 weeks

B

A

tA

u

z

p

h

n∞

fB

tB
m

fA

Hints

1. What are the interesting properties of line h connecting the top tB of Buiding B with the point m at
which the horizon intersects the line p joining the foots fA, fB of both buildings? [1 point]

2. How do we actually get the horizon n∞? (we do not see it directly, there are some hills there. . . ) [1 point]

3. Give the formula for measuring the length ratio. [formula = 1 point]
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2D Projective Coordinates

V.P.

locate on the plane

pt we want to

origin in 3D

y-coordinate axis in 3D

unit pt

x-coordinate axis in 3D unit pt

V.P.

p0 pxI px px∞

pI

p

py∞

py

pyI

[Px] = [Px∞ P0 PxI Px] [Py] = [Py∞ P0 PyI Py]
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Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

• measuring distances on the floor in terms of tile units

• what are the dimensions of the seal? Is it circular (assuming square tiles)?

• needs no explicit camera calibration
because we can see the calibrating object (vanishing points)
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Part III

Computing with a Single Camera

3.1 Calibration: Internal Camera Parameters from Vanishing Points and Lines

3.2 Camera Resection: Projection Matrix from 6 Known Points

3.3 Exterior Orientation: Camera Rotation and Translation from 3 Known Points

covered by

[1] [H&Z] Secs: 8.6, 7.1, 22.1

[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM 24(6):381–395, 1981

[3] [Golub & van Loan 2013, Sec. 2.5]
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Obtaining Vanishing Points and Lines

• orthogonal direction pairs can be collected from more images by camera rotation

• vanishing line can be obtained without vanishing points (→50)
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ICamera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute K

d3n31 n12d1d2
v3 n23 v2

v1
di ' Q−1vi, i = 1, 2, 3 →44

pij ' Q>nij , i, j = 1, 2, 3, i 6= j →40
(2)

• simple method: solve (2) after eliminating nuisance pars.

Special Configurations

1. orthogonal rays d1 ⊥ d2 in space then

0 = d>1 d2 = v>1 Q
−>Q−1v2 = v>1 (KK>)−1︸ ︷︷ ︸

ω (IAC)

v2

2. orthogonal planes pij ⊥ pik in space

0 = p>ijpik = n>ij QQ>nik = n>ij ω
−1nik

3. orthogonal ray and plane dk ‖ pij , k 6= i, j normal parallel to optical ray

pij ' dk ⇒ Q>nij = λQ−1vk ⇒ nij = λQ−>Q−1vk = λω vk, λ 6= 0

• nij may be constructed from non-orthogonal vi and vj , e.g. using the cross-ratio

• ω is a symmetric, positive definite 3× 3 matrix IAC = Image of Absolute Conic
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Icont’d

configuration equation # constraints

(3) orthogonal v.p. v>i ω vj = 0 1

(4) orthogonal v.l. n>ij ω
−1nik = 0 1

(5) v.p. orthogonal to v.l. nij = λω vk 2

(6) orthogonal raster θ = π/2 ω12 = ω21 = 0 1

(7) unit aspect a = 1 when θ = π/2 ω11 − ω22 = 0 1

(8) known principal point u0 = v0 = 0 ω13 = ω31 = ω23 = ω32 = 0 2

• these are homogeneous linear equations for the 5 parameters in ω in the form Dw = 0
λ can be eliminated from (5)

• we need at least 5 constraints for full ω symmetric 3× 3

• we get K from ω−1 = KK> by Choleski decomposition
the decomposition returns a positive definite upper triangular matrix

one avoids solving an explicit set of quadratic equations for the parameters in K

• unlike in the naive method (2), we can introduce constraints on K, e.g. (6)–(8)
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Examples

Assuming orthogonal raster, unit aspect (ORUA): θ = π/2, a = 1

ω '

 1 0 −u0

0 1 −v0
−u0 −v0 f2 + u2

0 + v20


Ex 1:
Assuming ORUA and known m0 = (u0, v0), two finite orthogonal vanishing points give f

v>1 ω v2 = 0 ⇒ f2 =
∣∣(v1 −m0)

>(v2 −m0)
∣∣

in this formula, vi, m0 are not homogeneous!

Ex 2:

Non-orthogonal vanishing points vi, vj , known angle φ: cosφ =
v>i ωvj√

v>i ωvi
√

v>j ωvj

• leads to polynomial equations

• e.g. ORUA and u0 = v0 = 0 gives

(f2 + v>i vj)
2 = (f2 + ‖vi‖2) · (f2 + ‖vj‖2) · cos2 φ
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Image of Absolute Conic

This is the K matrix:

K = {{f, s, u0}, {0, a * f, v0}, {0, 0, 1}}

f s u0

0 a f v0

0 0 1

The ω matrix:

ω = Inverse[K.Transpose[K]] * Det[K]^2 // Simplify

a2 f 2 -a f s a f (s v0 - a f u0)

-a f s f 2 + s2 a f s u0 - ( f 2 + s2) v0

a f (s v0 - a f u0) a f s u0 - ( f 2 + s2) v0 a2 f 4 + a2 u0
2 f 2 - 2 a s u0 v0 f + ( f 2 + s2) v0

2

The ω matrix with no skew:

ω / f^2 /. s -> 0 // Simplify // MatrixForm

a2 0 -a2 u0

0 1 -v0

-a2 u0 -v0 a2 f 2 + a2 u0
2 + v0

2

ORUA

ω / f^2 /. {a -> 1, s -> 0} // Simplify

1 0 -u0

0 1 -v0

-u0 -v0 f 2 + u0
2 + v0

2
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ICamera Orientation from Two Finite Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal
directions d1, d2, compute camera orientation R with respect to the plane.

• 3D coordinate system choice, e.g.:

d1 = (1, 0, 0), d2 = (0, 1, 0)

• we know that

di ' Q−1vi = (KR)−1vi = R−1 K−1vi︸ ︷︷ ︸
wi

Rdi ' wi

• knowing d1,2 we conclude that wi/‖wi‖
is the i-th column ri of R

• the third column is orthogonal:
r3 ' r1 × r2

R =
[

w1
‖w1‖

w2
‖w2‖

w1×w2
‖w1×w2‖

]

.

v2
d2 d1 v1

some suitable scenes
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Application: Planar Rectification

Principle: Rotate camera parallel to the plane of interest.

m' KR
[
I −C

]
X m′ ' K

[
I −C

]
X

m′ ' K(KR)−1 m= KR>K−1 m= Hm

• H is the rectifying homography

• both K and R can be calibrated from two finite vanishing points assuming ORUA →58

• not possible when one (or both) of them are infinite

• without ORUA we would need 4 additional views to calibrate K as on →55

3D Computer Vision: III. Computing with a Single Camera (p. 61/186) R. Šára, CMP; rev. 24–Oct–2017



ICamera Resection

Camera calibration and orientation from a known set of k ≥ 6 reference points and their
images {(Xi,mi)}6i=1.

P

m̂i

mi

ei

Xi

• Xi are considered exact

• mi is a measurement subject to
detection error

mi = m̂i + ei Cartesian

• where m̂i ' PXi
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Resection Targets
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calibration chart automatic calibration point detection

z

• target translated at least once

• by a calibrated (known) translation

• Xi point locations looked up in a table
based on their code

resection target with translation stage
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IThe Minimal Problem for Camera Resection

Problem: Given k = 6 corresponding pairs
{
(Xi, mi)

}k
i=1

, find P

λimi = PXi, P =

 q>1 q14
q>2 q24
q>3 q34

 Xi = (xi, yi, zi, 1), i = 1, 2, . . . , k, k = 6

mi = (ui, vi, 1), λi ∈ R, λi 6= 0

easy to modify for infinite points Xi but be aware of →66

expanded: λiui = q>1 Xi + q14, λivi = q>2 Xi + q24, λi = q>3 Xi + q34

after elimination of λi: (q>3 Xi + q34)ui = q>1 Xi + q14, (q>3 Xi + q34)vi = q>2 Xi + q24

Then

Aq =


X>1 1 0> 0 −u1X

>
1 −u1

0> 0 X>1 1 −v1X>1 −v1
...

...
X>k 1 0> 0 −ukX>k −uk
0> 0 X>k 1 −vkX>k −vk

·


q1

q14
q2

q24
q3

q34

 = 0 (9)

• we need 11 indepedent parameters for P

• A ∈ R2k,12, q ∈ R12

• 6 points in a general position give rankA = 12 and there is no non-trivial null space

• drop one row to get rank 11 matrix, then the basis vector of the null space of A gives q

3D Computer Vision: III. Computing with a Single Camera (p. 64/186) R. Šára, CMP; rev. 24–Oct–2017



IThe Jack-Knife Solution for k = 6

• given the 6 correspondences, we have 12 equations for the 11 parameters
• can we use all the information present in the 6 points?

Jack-knife estimation

1. n := 0

2. for i = 1, 2, . . . , 2k do
a) delete i-th row from A, this gives Ai

b) if dimnullAi > 1 continue with the next i
c) n := n+ 1
d) compute the right null-space qi of Ai e.g. by ‘economy-size’ SVD

e) q̂i:= qi normalized to q34 = 1 and dimension-reduced assuming finite cam. with P3,4 = 1

3. from all n vectors q̂i collected in Step 1d compute

q =
1

n

n∑
i=1

q̂i, var[q] =
n− 1

n
diag

n∑
i−1

(q̂i − q)(q̂i − q)> regular for n ≥ 11

• have a solution + an error estimate, per individual elements of P (except P34)

• at least 5 points must be in a general position (→66)

• large error indicates near degeneracy

• computation not efficient with k > 6 points, needs
(2k
11

)
draws, e.g. k = 7⇒ 364 draws

• better error estimation method: decompose Pi to Ki, Ri, ti (→34), represent Ri with 3 parameters
(e.g. Euler angles, or in Cayley representation →137) and compute the errors for the parameters
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Thank You
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−7,11

−8,10

−9,9

−5,11

−6,10

−7,9

−8,8

−3,11

−4,10

−5,9

−6,8

−7,7

−8,6

−9,5

−1,11

−2,10

−3,9

−4,8

−5,7

−6,6

−7,5

−8,4

1,11

0,10

−1,9

−2,8

−3,7

−4,6

−5,5

−6,4

−7,3

3,11

2,10

1,9

0,8

−1,7

−2,6

−3,5

−4,4

−5,3

3,9

2,8

1,7

0,6

−1,5

−2,4

−3,3

3,7

2,6

1,5

0,4

−1,3

3,5

2,4

1,3

4,4

3,3

−6,12 −4,12

−9,7

−2,12

−10,6

0,12 2,12

−6,2

4,10

−4,2

4,8

−2,2

4,6

0,2 2,2

−10,8

1,13

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 24–Oct–2017
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