»1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:

— the mnemonic is now ‘co’
(P) = [Pa Py Pr P) = [poo popr ) = 1201 P=TEL )
[prpé| PP
naming convention:
Py — the origin [Po] =0
Pr — the unit point [Pr]=1

Poo — the supporting point [Poo] = 00

[P] is equal to Euclidean coordinate along N
[p] is its measurement in the image plane

Applications
e Given the image of a 3D line N, the origin, the unit point, and the vanishing point,
then the Euclidean coordinate of any point P € N can be determined —49
e Finding v.p. of a line through a regular object —50
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Application: Counting Steps

e Namesti Miru underground station in Prague

T

detail around the vanishing point

Result: [P] = 214 steps (correct answer is 216 steps) 4Mpx camera
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Application: Finding the Horizon from Repetitions

\
Po
Pr
.
=
in 3D: |PyP| = 2| Py P;| then [H&Z, p. 218]
|PoP| lpop1| - |pop]
P.oPyP;P| = =2 = |peopo| = —2OPII"1POPT
[PocPo PP | Po x| [Pocpol [pop| — 2|popr|

e could be applied to counting steps (—49) if there was no supporting line

® P1; 1pt: How high is the camera above the floor?
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Homework Problem

® H2; 3pt: What is the ratio of heights of Building A to Building B?
e expected: conceptual solution; use notation from this figure
e deadline: LD+2 weeks

Noo

Hints
1. What are the interesting properties of line h connecting the top ¢ of Buiding B with the point m at
which the horizon intersects the line p joining the foots fa, fp of both buildings? [1 point]
2. How do we actually get the horizon no? (we do not see it directly, there are some hills there...) [1 point]
3. Give the formula for measuring the length ratio. [formula = 1 point]
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2D Projective Coordinates

\
\
N
unit pt \

pt we want to
~ \
PyI

locate on the plane
Lp /
N

y-coordinate axis in 3D

origin in 3D /po

V.P.
/ Dar Pz Pzoo
z-coordinate axis in 3D \ unit pt
[Pr] = [Proc Po Por Po [Py] = [Pyss Po Pyr P,]
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Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

e measuring distances on the floor in terms of tile units
e what are the dimensions of the seal? Is it circular (assuming square tiles)?

e needs no explicit camera calibration
because we can see the calibrating object (vanishing points)
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Part Ill

Computing with a Single Camera

@ Calibration: Internal Camera Parameters from Vanishing Points and Lines
@ Camera Resection: Projection Matrix from 6 Known Points
@®Exterior Orientation: Camera Rotation and Translation from 3 Known Points

covered by

[1] [H&Z] Secs: 8.6, 7.1, 22.1

[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM 24(6):381-395, 1981

[3] [Golub & van Loan 2013, Sec. 2.5]
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Obtaining Vanishing Points and Lines

e orthogonal direction pairs can be collected from more images by camera rotation
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»Camera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute K

U3 n23 (% d; ~ Qilyi, 1= 1,2,3 —44

T . o (2)
Pi; = Q niy, 4,5=1,2,3,i#j —40

e simple method: solve (2) after eliminating nuisance pars.
Special Configurations
1. orthogonal rays d; L d2 in space then
0=d{d2=v/Q 'Q 'va=v/ (KK') 'vo

2. orthogonal planes p;; L pix in space“‘Y (A9)

T T T T -
0=p;;pik =10; QQ 'nix =njjw Nk

U1
3. orthogonal ray and plane d, || pij, k # 4, ] normal parallel to optical ray

pi~di = Q'n;=)Q 'vi = n;=)Q 'Q 'vi =) \ww, A#0

® n;; may be constructed from non-orthogonal v; and v;, e.g. using the cross-ratio

® w is a symmetric, positive definite 3 X 3 matrix IAC = Image of Absolute Conic
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»cont’'d

configuration equation # constraints
(3) orthogonal v.p. viwy; =0 1
(4) orthogonal v.l. I)iTj wlng =0 1
(5) v.p. orthogonal to v.l. n;; = A\w Vi 2
(6) orthogonal raster 6 = /2 wizg =wo1 =0 1
(7) unit aspect a = 1 when 0 = /2 wi1 — w22 =0 1
(8) known principal point ug =vp =0 wi3z = w31 = wo3z = w3z =0 2

o these are homogeneous linear equations for the 5 parameters in w in the form Dw = 0
A can be eliminated from (5)

e we need at least 5 constraints for full w symmetric 3 x 3

e we get K from w™! = KK by Choleski decomposition
the decomposition returns a positive definite upper triangular matrix
one avoids solving an explicit set of quadratic equations for the parameters in K

e unlike in the naive method (2), we can introduce constraints on K, e.g. (6)—(8)
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Examples

Assuming orthogonal raster, unit aspect (ORUA): 6 =7/2, a =1

1 0 —Uuo
w 0 1 —
—ug  —vo f2Aud + vl

Ex 1:
Assuming ORUA and known mo = (uo,vo), two finite orthogonal vanishing points give f

viwve=0 = f’=|(vi-—mo) (v2a—mo)]

in this formula, v;, mg are not homogeneous!

Ex 2:

-
L . Vv, WV;
Non-orthogonal vanishing points v;, v;, known angle ¢: cos¢ = =t =7

T . T .
VY wviy/vj wy;

e leads to polynomial equations

e e.g. ORUA and up = vp = 0 gives

(2 +vivy)? = (2 + vill®) - (F + 1v5117) - cos® 6
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Image of Absolute Conic

This is the K matrix:

K= {{f, s, U}, {0, axF, vo}, {0, 0, 1}}

fos u
[0 af vc]
0 0 1
The w matrix:
w = Inverse[K.Transpose[K]] « Det[K]”~2 // Simplify
a f? -afs af (svo—af uo)

—af's fi+s? afsug—(f?+5%)vy
af (svo—afug) afsug—(f2+s)vg @ f*+audf?-2asugvof +(f2+s)}

The w matrix with no skew:

w/fr2 /. s -> 0 // Simplify // MatrixForm

a? 0 —a? uy
0 1 —vo

—a?uy -vo a®f%+atuf+v}
ORUA

w/fr2 /. {a->1, s -> 0} // Simplify

1 0 —up
[ 0 1 —vo ]

—ug —vo fP+uf+g
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»Camera Orientation from Two Finite Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal

directions di, d2, compute camera orientation R with respect to the plane.
V2

e 3D coordinate system choice, e.g.:
d: =(1,0,0), d2=(0,1,0)
e we know that

di~Q 'vi=(KR) 'vi=R 'K 'v;
N——

Wy

Rd; ~ w;

e knowing d1,2 we conclude that w; /| ws||
is the i-th column r; of R

e the third column is orthogonal:

rs >~ri; Xro

R = [ w3 w2 Wi XWo ]

lhwill ezl flwa xwell
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Application: Planar Rectification

Principle: Rotate camera parallel to the plane of interest.

m~KR[I -C]X m ~K[I -C]X

m ~KKR) ' m=KR'K 'm=Hm

H is the rectifying homography

both K and R can be calibrated from two finite vanishing points assuming ORUA —58

not possible when one (or both) of them are infinite
without ORUA we would need 4 additional views to calibrate K as on —55
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»Camera Resection

Camera calibration and orientation from a known set of k > 6 reference points and their

images {(X;,m;)}o_;.

X, are considered exact

e m; is a measurement subject to
detection error

m; =m; + e; Cartesian

e where m, ~ PX;
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Resection Targets

calibration chart automatic calibration point detection

® target translated at least once
e by a calibrated (known) translation

e X, point locations looked up in a table
based on their code

3D Computer Vision: ITI. Computing with a Single Camera (p. 63/186) “9©AaC  R. Sara, CMP; rev. 24-Oct-2017 *@l



» The Minimal Problem for Camera Resection

Problem: Given k = 6 corresponding pairs {(Xi, mi)}le, find P

q;r q14 Xi:(xiayi>zi71)7 i:1727~--7k> k=6
Aim; = PX;, P = ‘121 24 m; = (ui,vi,1), XN ER, A #0
d3  g34

easy to modify for infinite points X; but be aware of —66

expanded: Mg = q X +qua, Nvi =ds X +qoa, A =3 Xi +qsa
after elimination of \;: (quXZ + q34)ui = qIXi + q14, (q;TXZ + q:s4)1)i = q;xi + q24

Then
X;r 1 OT 0 —u1X1T —Uu1 q1
0" 0 X{ 1 —-uX{ -wu Q14

Xg 1 0" 0 —wX{ —we| | qs
0" 0 X{ 1 —uwuX{ -wl |gu

e we need 11 indepedent parameters for P

e Ac RQk,lQ’ qe€ RIQ

® 6 points in a general position give rank A = 12 and there is no non-trivial null space

® drop one row to get rank 11 matrix, then the basis vector of the null space of A gives q
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» The Jack-Knife Solution for k£ = 6

e given the 6 correspondences, we have 12 equations for the 11 parameters
e can we use all the information present in the 6 points?

Jack-knife estimation
1. n:=0
2. fori=1,2,...,2k do
delete i-th row from A, this gives A;

2)
b) if dimnull A; > 1 continue with the next 4
c) ni=n+1
d)

compute the right null-space q; of A; e.g. by ‘economy-size'’ SVD
e) Q;:= q; normalized to ¢34 = 1 and dimension-reduced  assuming finite cam. with P3 4 = 1

3. from all n vectors q; collected in Step 1d compute

IR n—1 . <. X T
q=— Z Qi, var[q] = —— diag Z(ql —q)(q;: —q) regular for n > 11
n 1=1 n i—1
® have a solution + an error estimate, per individual elements of P (except P34)
® at least 5 points must be in a general position (—66)
® |arge error indicates near degeneracy

® computation not efficient with & > 6 points, needs (?If) draws, e.g. k = 7 = 364 draws

better error estimation method: decompose P, to K;, R;, t; (—34), represent R; with 3 parameters
(e.g. Euler angles, or in Cayley representation —137) and compute the errors for the parameters

3D Computer Vision: III. Computing with a Single Camera (p. 65/186) ©aC  R. Sira, CMP; rev. 24-Oct-2017 *&l



Thank You
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