»Homography in P?

elements of P2

R3 — . .
Projective plane P?: Vector space of dimension 3

N excluding the zero vector, R?\ (0, 0,0), factorized
to linear equivalence classes (‘rays’)
including ‘points at infinity’

=~ aplane selecting

the representatives
Honhography in P?: Non-singular linear mapping in P? an analogic definition for P3

xX ~Hx, HeR*? non-singular

Defining properties )\H jd H Ato
e collinear image points are mapped to collinear image points
lines of points are mapped to lines of points

e concurrent image lines are mapped to concurrent image lines
concurrent = intersecting at a point

e and point-line incidence is preserved
e.g. line intersection points mapped to line intersection points

e H is a 3 X 3 non-singular matrix, A H ~ H equivalence class, 8 degrees of freedom
® homogeneous matrix representant: det H =1
e what we call homography here is often called ‘projective collineation’ in mathematics
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»Mapping 2D Points and Lines by Homography

H
H—T
—
'~Hm image point
'~H "n  image line H =@ =@=") !

e incidence is preserved: (m’) "0’ *m ' H ' H "'n=m'n=0

Mapping a finite 2D point m = (u,v) to m = (u/,v’)
1. extend the Cartesian (pixel) coordinates to homogeneous coordinates, m = (u,v,1)
2. map by homography, m’ = Hm

3. if m{ # 0 convert the result m’ = (m/, m}, m}) back to Cartesian coordinates (pixels),

/ /
= r_ M2
T omh T om
3 3
e note that, typically, m} # 1 mj = 1 when H is affine

® an infinite point (u,v,0) maps the same way
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Some Homographic Tasters

Rectification of camera rotation: —59 (geometry), —122 (homography estimation)

H~KR'K™ maps from image plane to facade plane

Homographic Mouse for Vlsual Odometry [Mallis 2007]

arfor VIuaI Odometry

[H&Z, p. 327]
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»Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

e Euclidean mapping (EM): rotation, b o 1 s 3 4 s 6 1 8 o 10
translation and their combination Y I D W ‘ ‘
cos¢p —sing it 07&
H= [sing cos¢p t, r
0 0 1 > 2r
sl
e cigenvalues (1, e "%, ) = 1 ol
sl

EM = The most general homography preserving
1. areas: det H =1 = unit Jacobian

2. lengths: Let x, = Hx; (check we can use = instead of ~). Let (z;); =1, Then

rotation by 30°, then translation by (7, 2)

(Cartesian(!))

x5 — x| = [[Hxe — Hxy[| = [H(xz —x1)]| = -+ = [[x2 — x|
3. angles check the dot-product of normalized differences from a point (x — z)T(y —z)
e eigenvectors when ¢ # km, k=0, 1,... (columnwise)
ty + ty cot ¢ i —i
€1 |ty —tycot |, €2 1|, e3>~ |1 es, e3 — circular points, i — imaginary unit
2 0 0

4. circular points: points at infinity (¢,1,0), (—¢,1,0) (preserved even by similarity)
e similarity: scaled Euclidean mapping (does not preserve lengths, areas)
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»Homography Subgroups:

AM

does not preserve

Affine Mapping

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
T

[0 B S—
<=1
i -
air a2 ta .l
H= a1 a2 1y s
0 0 1

rotation by 30°
then scaling by diag(1, 1.5, 1)
then translation by (7, 2)

=
7T
2l

= The most general homography preserving

parallelism

ratio of areas

ratio of lengths on parallel lines

linear combinations of vectors (e.g. midpoints)

convex hull

line at infinity n (not pointwise)
observe HTQOC ~ Fg

lengths ta

angles

areas

circular points

Euclidean mappings preserve all properties affine mappings preserve, of course
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»Homography Subgroups: General Homography

hi1  hiz  his 2 1 0 ! 2 3 4 5 6 7 8 9
H= [ha1 ha2 hes 2 \
hs1  hs2 has or iy
1l
preserves only . ol
e incidence and concurrency 3t : :
e collinearity 4
. _ S (1 o)
@cross—ratlo on the line —47 Bl ( (

does not preserve /7 7 _05 6
e lengths \ H= [3 ; 3:|

1 0 1
e areas
parallelism M linen = (1, OO is mapped to no.: H™
ratio of areas ﬂ \ (where in the picture is the line ),
ratio of lengths o
linear combinations of vectors M = ‘1 \' 0 1 ( P
(midpoints, etc.)

e convex hull
e line at infinity ns ’ %

~

\5
\.'3
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Elementary Decomposition of a Homography

Unique decompositions: H=HsH.Hp (=H),H/, HY)

Hs = ‘3)13 ﬂ similarity (scaled EM)
(K 0 . .

Hs = _OT 1] special affine
(1 0 . -

Hp = _VT w] special projective

K — upper triangular matrix with positive diagonal entries
R - orthogonal, RTR =1, detR =1
s,weER, s>0,w#0

-
H:{SRKitv zi)ut

e must use ‘thin’ QR decomposition, which is unique [Golub & van Loan 2013, Sec. 5.2.6]
e Hg, Hy, Hp are homography subgroups (in the sense of group theory)
(eg. K = K1 Ko, K1, I are all upper triangular with unit determinant, associativity holds)
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»Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

1. in this picture we are looking ‘down the street’

1
2. right-handed canonical coordinate system
(z,y, z) with unit vectors ez, ey, e,
3. origin = center of projection C' | v plane X
4. image plane 7 at unit distance from C . L .
gep at Ut projected point in the natural image

5. optical axis O is perpendicular to 7 coordinate system:
6. principal point xp: intersection of O and 7 ,

. perspective camera is given by C' and m 1 1+.-1 2’ .
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»Natural and Canonical Image Coordinate Systems

projected point in canonical camera (z # 0)

- 1 100 o] |[¥
(w’,y’,l):(77 g,l)ff(x,y,z ~|10 1 0 O Z =Py X
° Faa~"3loo01 0
Xék | —— 1
Py
projected point in scanned image scale by f and translate to (ug, vo)
(0,0) u w (v, “)
e
v | ZN
zp = (g, po) 4 - : *~—;ef;jj:

(u,v)

X
u=f—+uo L [Fe+ 2w f 0 00 0
- | fy+zv|~|0 f wl|-{0 1 0 O
z z 0 0 00 1 0

IS IS

vzfg-&-vo

[y

e ‘calibration’ matrix K transforms canonical Py to standard perspective camera P
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» Computing with Perspective Camera Projection Matrix

mi f 0 w O r fr+uoz T+ ?UO
m= |mz| =1[0 f v O Yl ~ fy+voz ~ |y + Fvo
ms 00 1 0 '_j 2 z
(a)
@:&—Fuo:u, @:—y—kvozv when mg #0
ms 4 ms3 z

f — ‘focal length’ — converts length ratios to pixels, [f] =px, f >0

(uo,v0) — principal point in pixels

Perspective Camera:

1. dimension reduction since P € R34

2. nonlinear unit change1—1-z/f, see (a)

for convenience we use P11 = P2y = f rather than P33 = 1/f and the ug, vg in relative units

3. m3 = 0 represents points at infinity in image plane 7 i.e. points with z =0
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»Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera R.t cam\%
coordinate system:
Fe

X, Z<RX, +t world
. . fu‘
R - camera rotation matrix world orientation in the camera coordinate frame F.

t — camera tianslation vector world origin in the camera coordinate frame F.
PX.= KP, ﬁ] — KP, {RX‘I” + t] — KP, [5& ﬂ {Xlw} —K[R t]X,

T
Py (a 3 x 4 mtx) selects the first 3 rows of T and discards the last row

—
e Risrotation, RTR =1, detR = +1 ?o - [L} O:l I € R*? identity matrix
® 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components
® alternative, often used, cam;ca\rc;p_rew
P=K[R t|=KR[l -C]

C — camera position in the world reference frame F,, t = —-RC
rl;r — optical axis in the world reference frame F,, third row of R: r3 = R™! [0,0, 1]—r

® we can save some conversion and computation by noting that KR[I —C} X=KR(X-C)
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»Changing the Inner (Image) Reference Frame

The general form of calibration matrix K includes
o skew angle 6 of the digitization raster

e pixel aspect ratio a f f cotf
—f co ug

u K= |0 f/(asinf) wo

U 0 0 1

a [ units: [f] = px, [uo] = px, [vo] =px, [a] =1

b ® H1; 2pt: Verify this K. Hints: (1) Map first by skew then by
(uO; UO) sampling scale then shift by ug, vo; (2) Skew: express point x as
x =u'e, +v'e, =uey, + vey, ey, €, etc. are unit basis
vectors, K maps from an orthogonal system to a skewed system
[w'v, w'v' ,w']T = Klu,v,1]T; deadline LD+2 wk

general finite perspective camera has 11 parameters:
e 5 intrinsic parameters: f, uo, vo, a, 0 finite camera: det K # 0
e 6 extrinsic parameters: t, R(«, 8,7)

m~PX, P=[Q q=K[R t|]=KR[I —C] a recipe for filling P

Representation Theorem: The set of projection matrices P of finite perspective cameras is
isomorphic to the set of homogeneous 3 x 4 matrices with the left 3 x 3 submatrix Q non-singular.
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Thank You
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