tomography in \mathbb{P}^{2}

Holography in \mathbb{P}^{2} : Non-singular linear mapping in \mathbb{P}^{2}

$$
\underline{\mathbf{x}}^{\prime} \simeq \mathbf{H}_{\underline{\mathbf{x}}}, \quad \mathbf{H} \in \mathbb{R}^{3,3} \text { non-singular }
$$

Defining properties

$$
\lambda H \simeq H \quad \lambda \neq 0
$$

- collinear image points are mapped to collinear image points
an analogic definition for \mathbb{P}^{3}
lines of points are mapped to lines of points
- concurrent image lines are mapped to concurrent image lines
- and point-line incidence is preserved
concurrent $=$ intersecting at a point e.g. line intersection points mapped to line intersection points
- \mathbf{H} is a 3×3 non-singular matrix, $\lambda \mathbf{H} \simeq \mathbf{H}$ equivalence class, 8 degrees of freedom
- homogeneous matrix representant: $\operatorname{det} \mathbf{H}=1$
- what we call homograph here is often called 'projective collineation' in mathematics

- Mapping 2D Points and Lines by Homography

$$
\begin{array}{ll}
\underline{\mathbf{m}}^{\prime} \simeq \mathbf{H} \underline{\mathbf{m}} & \text { image point } \\
\underline{\underline{\prime}}^{\prime} \simeq \mathbf{H}^{-\top} \underline{\mathbf{n}} & \text { image line }
\end{array} \quad \mathbf{H}^{-\top}=\left(\mathbf{H}^{-1}\right)^{\top}=\left(\mathbf{H}^{\top}\right)^{-1}
$$

- incidence is preserved: $\left(\underline{\mathbf{m}}^{\prime}\right)^{\top} \underline{\mathbf{n}}^{\prime} \simeq \underline{\mathbf{m}}^{\top} \mathbf{H}^{\top} \mathbf{H}^{-\top} \underline{\mathbf{n}}=\underline{\mathbf{m}}^{\top} \underline{\mathbf{n}}=0$

Mapping a finite 2D point $\mathbf{m}=(u, v)$ to $\underline{\mathbf{m}}=\left(u^{\prime}, v^{\prime}\right)$

1. extend the Cartesian (pixel) coordinates to homogeneous coordinates, $\underline{\mathbf{m}}=(u, v, \mathbf{1})$
2. map by homography, $\underline{\mathbf{m}}^{\prime}=\mathbf{H} \underline{\mathbf{m}}$
3. if $m_{3}^{\prime} \neq 0$ convert the result $\underline{\mathbf{m}}^{\prime}=\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right)$ back to Cartesian coordinates (pixels),

$$
u^{\prime}=\frac{m_{1}^{\prime}}{m_{3}^{\prime}} 1, \quad v^{\prime}=\frac{m_{2}^{\prime}}{m_{3}^{\prime}} \mathbb{1}
$$

- note that, typically, $m_{3}^{\prime} \neq 1$
$m_{3}^{\prime}=1$ when \mathbf{H} is affine
- an infinite point ($u, v, 0$) maps the same way

Some Homographic Tasters

Rectification of camera rotation: $\rightarrow 59$ (geometry), $\rightarrow 122$ (homography estimation)

$\mathbf{H} \simeq \mathbf{K} \mathbf{R}^{\top} \mathbf{K}^{-1}$

maps from image plane to facade plane

Homographic Mouse for Visual Odometry: [Mallis 2007]

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

$$
\mathbf{H} \simeq \mathbf{K}\left(\mathbf{R}-\frac{\mathbf{t n}^{\top}}{d}\right) \mathbf{K}^{-1} \quad[\mathbf{H} \& Z, \text { p. 327] }
$$

-Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

- Euclidean mapping (EM): rotation, translation and their combination

$$
\mathbf{H}=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & t_{x} \\
\sin \phi & \cos \phi & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

- eigenvalues $\left(1, e^{-i \phi}, e^{i \phi}\right) i=\sqrt{-1}$
$\mathrm{EM}=$ The most general homography preserving

1. areas: $\operatorname{det} \mathbf{H}=1 \Rightarrow$ unit Jacobian
2. lengths: Let $\underline{\mathbf{x}}_{i}^{\prime}=\mathbf{H} \underline{\mathbf{x}}_{i}$ (check we can use $=$ instead of \simeq). Let $\left(x_{i}\right)_{3}=1$, Then

$$
\left\|\underline{\mathbf{x}}_{2}^{\prime}-\underline{\mathbf{x}}_{1}^{\prime}\right\|=\left\|\mathbf{H} \underline{\mathbf{x}}_{2}-\mathbf{H} \underline{\mathbf{x}}_{1}\right\|=\left\|\mathbf{H}\left(\underline{\mathbf{x}}_{2}-\underline{\mathbf{x}}_{1}\right)\right\|=\cdots=\left\|\underline{\mathbf{x}}_{2}-\underline{\mathbf{x}}_{1}\right\|
$$

3. angles check the dot-product of normalized differences from a point $(\mathbf{x}-\mathbf{z})^{\top}(\mathbf{y}-\mathbf{z}) \quad$ (Cartesian(!))

- eigenvectors when $\phi \neq k \pi, k=0,1, \ldots$ (columnwise)

$$
\mathbf{e}_{1} \simeq\left[\begin{array}{c}
t_{x}+t_{y} \cot \frac{\phi}{2} \\
t_{y}-t_{x} \cot \frac{\phi}{2} \\
2
\end{array}\right], \quad \mathbf{e}_{2} \simeq\left[\begin{array}{l}
i \\
1 \\
0
\end{array}\right], \quad \mathbf{e}_{3} \simeq\left[\begin{array}{c}
-i \\
1 \\
0
\end{array}\right]
$$

$\mathbf{e}_{2}, \mathbf{e}_{3}$ - circular points, i - imaginary unit
4. circular points: points at infinity $(i, 1,0),(-i, 1,0)$ (preserved even by similarity)

- similarity: scaled Euclidean mapping (does not preserve lengths, areas)

-Homography Subgroups: Affine Mapping

$$
\mathbf{H}=\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{x} \\
a_{21} & a_{22} & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

$\mathrm{AM}=$ The most general homography preserving
rotation by 30°

- parallelism
- ratio of areas
- ratio of lengths on parallel lines
- linear combinations of vectors (e.g. midpoints)
- convex hull
then scaling by $\operatorname{diag}(1,1.5,1)$

- line at infinity $\underline{\mathbf{n}}_{\infty}$ (not pointwise)

- areas
- circular points

Euclidean mappings preserve all properties affine mappings preserve, of course

-Nomography Subgroups: General Homography

$$
\mathbf{H}=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]
$$

preserves only

- incidence and concurrency
- collinearity
\odot cross-ratio on the line $\rightarrow 47$
does not preserve
- lengths
- areas
- parallelism
- ratio of areas
- ratio of lengths

- linear combinations of vectors (midpoints, etc.)
- convex hull
- line at infinity $\underline{\mathbf{n}}_{\infty}$

$$
\mathbf{H}=\left[\begin{array}{ccc}
7 & -0.5 & 6 \\
3 & 1 & 3 \\
1 & 0 & 1
\end{array}\right]
$$

line $\underline{\mathbf{n}}=\left(1,0,(1)\right.$ is mapped to $\underline{\mathbf{n}}_{\infty}: \mathbf{H}^{-\top} \underline{\mathbf{n}} \simeq \underline{\mathbf{n}}_{\infty}$

$$
\mu=-1 \quad(-1,0,1)^{\text {(where in the picture is the line }} \begin{aligned}
& \text { n? } \\
& T
\end{aligned}\left(\begin{array}{c}
1 \\
0 \\
1
\end{array}\right)=0
$$

Elementary Decomposition of a Homography

Unique decompositions: $\quad \mathbf{H}=\mathbf{H}_{S} \mathbf{H}_{A} \mathbf{H}_{P} \quad\left(=\mathbf{H}_{P}^{\prime} \mathbf{H}_{A}^{\prime} \mathbf{H}_{S}^{\prime}\right)$

$$
\begin{array}{rlr}
\mathbf{H}_{S} & =\left[\begin{array}{cc}
s \mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right] & \text { similarity (scaled EM) } \\
\mathbf{H}_{A} & =\left[\begin{array}{cc}
\mathbf{K} & \mathbf{0} \\
\mathbf{0}^{\top} & 1
\end{array}\right] & \text { special affine } \\
\mathbf{H}_{P} & =\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{v}^{\top} & w
\end{array}\right] & \text { special projective }
\end{array}
$$

\mathbf{K} - upper triangular matrix with positive diagonal entries
\mathbf{R} - orthogonal, $\mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \operatorname{det} \mathbf{R}=1$
$s, w \in \mathbb{R}, s>0, w \neq 0$

$$
\mathbf{H}=\left[\begin{array}{cc}
s \mathbf{R K}+\mathbf{t} \mathbf{v}^{\top} & w \mathbf{t} \\
\mathbf{v}^{\top} & w
\end{array}\right]
$$

- must use 'thin' QR decomposition, which is unique [Golub \& van Loan 2013, Sec. 5.2.6]
- $\mathbf{H}_{S}, \mathbf{H}_{A}, \mathbf{H}_{P}$ are homography subgroups (in the sense of group theory) (eg. $\mathbf{K}=\mathbf{K}_{1} \mathbf{K}_{2}, \mathbf{K}^{-1}, \mathbf{I}$ are all upper triangular with unit determinant, associativity holds)

Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

$\mathbf{X}=(x, y, z)$

1. in this picture we are looking 'down the street'
2. right-handed canonical coordinate system (x, y, z) with unit vectors $\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}$
3. origin $=$ center of projection C
4. image plane π at unit distance from C
5. optical axis O is perpendicular to π
6. principal point x_{p} : intersection of O and π
7. perspective camera is given by C and π

projected point in the natural image coordinate system:

$$
\frac{y^{\prime}}{1}=y^{\prime}=\frac{y}{1+z-1}=\frac{y}{z}, \quad x^{\prime}=\frac{x}{z}
$$

- Natural and Canonical Image Coordinate Systems

$$
\left.\begin{array}{l}
\text { projected point in canonical camera }(z \neq 0) \\
\qquad\left(x^{\prime}, y^{\prime}, 1\right)=\left(\frac{x}{z}, \frac{y}{z}, 1\right)=\frac{1}{z}(\underbrace{(x, y, z)}_{\mathbf{X} \in \mathbb{R}^{3}}(\underbrace{(\underline{\theta}}_{\mathbf{P}_{0}}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\mathbf{P}_{0} \underline{\mathbf{X}}
$$

projected point in scanned image

scale by f and translate to $\left(u_{0}, v_{0}\right)$
$u=f \frac{x}{z}+u_{0}$
$v=f \frac{y}{z}+v_{0}$

$$
\frac{1}{z}\left[\begin{array}{c}
f x+z u_{0} \\
f y+z v_{0} \\
z
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0} \underline{\mathbf{X}}=\mathbf{P} \underline{\mathbf{X}}
$$

- 'calibration' matrix \mathbf{K} transforms canonical \mathbf{P}_{0} to standard perspective camera \mathbf{P}

- Computing with Perspective Camera Projection Matrix

$$
\begin{gathered}
\underline{\mathbf{m}}=\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{llll}
f & 0 & u_{0} & 0 \\
0 & f & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{P}}\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right] \simeq\left[\begin{array}{c}
f x+u_{0} z \\
f y+v_{0} z \\
z
\end{array}\right] \quad \underbrace{\left[\begin{array}{c}
x+\frac{z}{f} u_{0} \\
y+\frac{z}{f} v_{0} \\
\frac{z}{f}
\end{array}\right]}_{(a)} \\
\frac{m_{1}}{m_{3}}=\frac{f x}{z}+u_{0}=u, \quad \frac{m_{2}}{m_{3}}=\frac{f y}{z}+v_{0}=v \quad \text { when } \quad m_{3} \neq 0
\end{gathered}
$$

f - 'focal length' - converts length ratios to pixels, $\quad[f]=\mathrm{px}, \quad f>0$
$\left(u_{0}, v_{0}\right)$ - principal point in pixels

Perspective Camera:

1. dimension reduction
2. nonlinear unit change $\mathbf{1} \mapsto \mathbf{1} \cdot z / f$, see (a)
for convenience we use $P_{11}=P_{22}=f$ rather than $P_{33}=1 / f$ and the u_{0}, v_{0} in relative units
3. $m_{3}=0$ represents points at infinity in image plane π
i.e. points with $z=0$

Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera coordinate system:

$$
\mathbf{X}_{c}=\mathbf{R} \mathbf{X}_{w}+\mathbf{t}
$$

\mathbf{R} - camera rotation matrix
world orientation in the camera coordinate frame \mathcal{F}_{c}
t - camera tanslation vector world origin in the camera coordinate frame \mathcal{F}_{c}

$$
\mathbf{P} \underline{\mathbf{X}}_{c}=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{X}_{c} \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{R} \mathbf{X}_{w}+\mathbf{t} \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0} \underbrace{\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]}_{\mathbf{T}}\left[\begin{array}{c}
\mathbf{X}_{w} \\
1
\end{array}\right]=\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \underline{\mathbf{X}}_{w}
$$

\mathbf{P}_{0} (a $3 \times 4 \mathrm{mtx}$) selects the first 3 rows of \mathbf{T} and discards the last row

- \mathbf{R} is rotation, $\mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \operatorname{det} \mathbf{R}=+1$

$$
P_{0}=\left[\begin{array}{ll}
I_{3} & 0
\end{array}\right]
$$

$\mathbf{I} \in \mathbb{R}^{3,3}$ identity matrix

- 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components
- alternative, often used, camera representations

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

$\begin{aligned} & \text { C } \\ & \mathbf{r}_{3}^{\top} \text { - camera position in the world reference frame } \mathcal{F}_{w} \\ & \text { - optis in the world reference frame } \mathcal{F}_{w}\end{aligned}$
third row of $\mathbf{R}: \mathbf{r}_{3}=\mathbf{R}^{\mathbf{t}}\left[=-\mathbf{R} \mathbf{C}(0,0,1]^{\top}\right.$

- we can save some conversion and computation by noting that $\mathbf{K R}[\mathbf{I} \quad-\mathbf{C}] \underline{\mathbf{X}}=\mathbf{K R}(\mathbf{X}-\mathbf{C})$

Changing the Inner (Image) Reference Frame

The general form of calibration matrix \mathbf{K} includes

- skew angle θ of the digitization raster
- pixel aspect ratio a

$$
\begin{aligned}
& \mathbf{K}=\left[\begin{array}{ccc}
f & -f \cot \theta & u_{0} \\
0 & f /(a \sin \theta) & v_{0} \\
0 & 0 & 1
\end{array}\right] \\
& \text { units: }[f]=\mathrm{px},\left[u_{0}\right]=\mathrm{px},\left[v_{0}\right]=\mathrm{px},[a]=1
\end{aligned}
$$

\circledast H1; 2pt: Verify this K. Hints: (1) Map first by skew then by sampling scale then shift by u_{0}, v_{0}; (2) Skew: express point x as $\mathbf{x}=u^{\prime} \mathbf{e}_{u^{\prime}}+v^{\prime} \mathbf{e}_{v^{\prime}}=u \mathbf{e}_{u}+v \mathbf{e}_{v}, \mathbf{e}_{u}, \mathbf{e}_{v}$ etc. are unit basis vectors, \mathbf{K} maps from an orthogonal system to a skewed system $\left[w^{\prime} u^{\prime}, w^{\prime} v^{\prime}, w^{\prime}\right]^{\top}=\mathbf{K}[u, v, 1]^{\top} ;$
general finite perspective camera has 11 parameters:

- 5 intrinsic parameters: $f, u_{0}, v_{0}, a, \theta$
finite camera: $\operatorname{det} \mathbf{K} \neq 0$
- 6 extrinsic parameters: $\mathbf{t}, \mathbf{R}(\alpha, \beta, \gamma)$

$$
\underline{\mathbf{m}} \simeq \mathbf{P} \underline{\mathbf{X}}, \quad \mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right] \quad \text { a recipe for filling } \mathbf{P}
$$

Representation Theorem: The set of projection matrices \mathbf{P} of finite perspective cameras is isomorphic to the set of homogeneous 3×4 matrices with the left 3×3 submatrix \mathbf{Q} non-singular.

Thank You

