
IGauge Freedom

1. The external frame is not fixed: See Projective Reconstruction Theorem →130

mi ' PjXi = PjH
−1HXi = P′jX

′
i

2. Some representations are not minimal, e.g.

• P is 12 numbers for 11 parameters
• we may represent P in decomposed form K, R, t
• but R is 9 numbers representing the 3 parameters of rotation

As a result

• there is no unique solution
• matrix

∑
r L
>
r Lr is singular

Solutions

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints

2a. either imposing constraints on projective entities
• cameras, e.g. P3,4 = 1 this excludes affine cameras
• points, e.g. ‖Xi‖2 = 1 this way we can represent points at infinity

2b. or using minimal representations
• points in their Euclidean representation Xi but finite points may be an unrealistic model
• rotation matrix can be represented by axis-angle or the Cayley transform see next
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Implementing Simple Constraints

What for?
1. fixing external frame as in θi = ti ‘trivial gauge’

2. representing additional knowledge as in θi = θj e.g. cameras share calibration matrix K

Introduce reduced parameters θ̂ and
replication matrix T:

θ = T θ̂ + t, T ∈ Rp,p̂, p̂ ≤ p

then Lr in LM changes to Lr T and
everything else stays the same →107

�2�3�4�5T = t =�̂1 �̂2 �̂3 �̂4�1 these T, t represent

θ1 = θ̂1 no change

θ2 = θ̂2 no change

θ3 = t3 constancy

θ4 = θ5 = θ̂4 equality

• T deletes columns of Lr that correspond to fixed parameters it reduces the problem size

• consistent initialisation: θ0 = T θ̂0 + t or filter the init by pseudoinverse θ0 7→ T†θ0

• no need for computing derivatives for θj corresponding to all-zero rows of T fixed θ

• constraining projective entities →145–146

• more complex constraints tend to make normal equations dense

• implementing constraints is safer than explicit renaming of the parameters, gives a flexibility
to experiment

• other methods are much more involved, see [Triggs et al. 1999]

• BA resource: http://www.ics.forth.gr/~lourakis/sba/ [Lourakis 2009]
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Matrix Exponential

• for any square matrix we define

expmA =

∞∑
k=0

1

k!
Ak

note: A0 = I

• some properties

expm0 = I, expm(−A) =
(
expmA

)−1
, expm(A + B) 6= expm(A) expm(B)

expm(A>) = (expmA)> hence if A is skew symmetric then expmA is orthogonal:(
expm(A)

)>
= expm(A>) = expm(−A) =

(
expm(A)

)−1

expm(aA) expm(bA) = expm((a+ b)A), det expmA = expm(trA)

Ex:

• homography can be represented via exponential map with 8 numbers e.g. as

H = expmZ such that trZ = 0, eg. Z =

z11 z12 z13

z21 z22 z23

z31 z32 −(z11 + z22)


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IMinimal Representations for Rotation

• o – rotation axis, ‖o‖ = 1, ϕ – rotation angle
• wanted: simple mapping to/from rotation matrices

1. Matrix exponential. Let ω = ϕo, 0 < ϕ < π, then

R = expm [ω]× =

∞∑
n=0

[ω]n×
n!

=
~ 1· · · = I +

sinϕ

ϕ
[ω]× +

1− cosϕ

ϕ2
[ω]2×

• for ϕ = 0 we take the limit and R = I
• this is the Rodrigues’ formula for rotation
• inverse (the principal logarithm of R) from

0 ≤ ϕ < π, cosϕ =
1

2
(trR− 1), [ω]× =

ϕ

2 sinϕ
(R−R>),

2. Cayley’s representation; let a = o tan ϕ
2

, then

R = (I + [a]×)(I− [a]×)−1, [a]× = (R + I)−1(R− I)

a1 ◦ a2 =
a1 + a2 − a1 × a2

1− a>1 a2
composition of rotations R = R1R2

• again, cannot represent rotations for φ ≥ π
• no trigonometric functions
• explicit composition formula
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IMinimal Representations for Other Entities

with the help of rotation we can minimally represent
1. fundamental matrix

F = UDV>, D = diag(1, d2, 0), U,V are rotations, 3 + 1 + 3 = 7 DOF

2. essential matrix

E = [−t]×R, R is rotation, ‖t‖ = 1, 3 + 2 = 5 DOF

3. camera
P = K

[
R t

]
, 5 + 3 + 3 = 11 DOF

Interestingly, let [Eade 2017]

B =

[
[ω]× u

0> 0

]
, B ∈ R4,4

then, assuming ‖ω‖ = φ > 0 for φ = 0 we take the limits[
R t
0> 1

]
= expmB = I4 +B+ h2(φ)B

2 + h2(φ)B
3 =

[
expm [ω]× Vu

0> 1

]
V = I3 + h2(φ) [ω]× + h3(φ) [ω]2×, V−1 = I3 −

1

2
[ω]× + h4(φ)[ω]2×

h1(φ) =
sinφ

φ
, h2(φ) =

1− cosφ

φ2
, h3(φ) =

φ− sinφ

φ3
, h4(φ) =

1

φ2

(
1−

1

2
φ cot

φ

2

)
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Part VII

Stereovision

7.1 Introduction
7.2 Epipolar Rectification
7.3 Binocular Disparity and Matching Table
7.4 Image Similarity
7.5 Marroquin’s Winner Take All Algorithm
7.6 Maximum Likelihood Matching
7.7 Uniqueness and Ordering as Occlusion Models

mostly covered by

Šára, R. How To Teach Stereoscopic Vision. Proc. ELMAR 2010 referenced as [SP]

additional references

C. Geyer and K. Daniilidis. Conformal rectification of omnidirectional stereo pairs. In Proc Computer Vision

and Pattern Recognition Workshop, p. 73, 2003.

J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. In Proc IEEE

CS Conf on Computer Vision and Pattern Recognition, vol. 1:111–117. 2001.

M. Pollefeys, R. Koch, and L. V. Gool. A simple and efficient rectification method for general motion. In

Proc Int Conf on Computer Vision, vol. 1:496–501, 1999.
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What Are The Relative Distances?

• monocular vision already gives a rough 3D sketch because we understand the scene
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What Are The Relative Distances?

Centrum för teknikstudier at Malmö Högskola, Sweden The Vyšehrad Fortress, Prague

• left: we have no help from image interpretation

• right: ambiguous interpretation due to a combination of missing texture and occlusion
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IHow Difficult Is Stereo?

• when we do not recognize the scene and cannot use high-level constraints the problem
seems difficult (right, less so in the center)

• most stereo matching algorithms do not require scene understanding prior to matching

• the success of a model-free stereo matching algorithm is unlikely:

left image a good disparity map disparity map from WTA

WTA Matching:

for every left-image pixel
find the most similar
right-image pixel
along the
corresponding epipolar
line [Marroquin 83]
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A Summary of Our Observations and an Outlook

1. simple matching algorithms do not work

2. stereopsis requires image interpretation in sufficiently complex scenes
or another-modality measurement

we have a tradeoff: model strength ↔ universality

Outlook:

1. represent the occlusion constraint: correspondences are not independent due to occlusions

• epipolar rectification
• disparity
• uniqueness as an occlusion constraint

2. represent piecewise continuity the weakest of interpretations; piecewise: object boundaries

• ordering as a weak continuity model

3. use a consistent framework
• looking for the most probable solution (MAP)
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Thank You
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