»Gauge Freedom

1. The external frame is not fixed: See Projective Reconstruction Theorem —130
m;\~ P;X; = P;H 'HX, = P/X]

2. Some representations are not minimal, e.g.

e P is 12 numbers for 11 parameters
e we may represent P in decomposed form K, R, t
e but R is 9 numbers representing the 3 parameters of rotation

As a result

e there is no unique solution
e matrix >, L, L, is singular

Solutions

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints

2a. either imposing constraints on projective entities
e cameras, e.g. P34 R’ZT_ T this excludes affine cameras
e points, e.g. ||X,L||é = 1 - this way we can represent points at infinity
2b. or using minimal representations ollf R = *+1

e points in their Euclidean representation X; but finite points may be an unrealistic model
e rotation matrix can be represented by axis-angle or the Cayley transform  see next
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Implementing Simple Constraints

What for?
1. fixing external frame as in 6; = t; ‘trivial gauge’
2. representing additional knowledge as in 6; = 6; e.g. cameras share calibration matrix K

Introduce reduced parameters 6 and 4, By 65 6
fecucec parameters 01 02 05 64 these T, t represent

replication matrix T

- . b1 01 = 6, no change
59:T9+t, 'TGRP’p, p<p T 22 0y = O no change
= 3
. 03 =1t t.
then L, in LM changes to L,- T and 0, 3 B 3 s cons fancy
everything else stays the same —107 65 01 =05 = 04 equality
°

T deletes columns of L, that correspond to fixed parameters it reduces the problem size
e consistent initialisation: 6° = T §° + ¢ or filter the init by pseudoinverse 60 — T190

e no need for computing derivatives for 6; corresponding to all-zero rows of T fixed 6

® constraining projective entities —145-146
® more complex constraints tend to make normal equations dense

® implementing constraints is safer than explicit renaming of the parameters, gives a flexibility
to experiment

e other methods are much more involved, see [Triggs et al. 1999]
e BA resource: http://www.ics.forth.gr/~lourakis/sba/ [Lourakis 2009]
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Matrix Exponential

e for any square matrix we define e

— 1
expm A = Z M AF note: A? =1

k=0

e some properties

expm0 =1, expm(—A) = (expm A)il, expm(A + B) # expm(A) expm(B)

expm(A ') = (expm A) " hence if A is skew symmetric then expm A is orthogonal:

(4]

e X - R (expm(A))-r =expm(AT) = expm(—A) = (expm(A))71
expm(a A) expm(b A) = expm((a + b)A), detexpm A = expm(tr A)

>

Ex:

e homography can be represented via exponential map with 8 numbers e.g. as

211 212 213
H=expmZ suchthat trZ=0, eg. Z = |z21 222 223
z31  zs2  —(z11 + 222)
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» Minimal Representations for Rotation

e o — rotation axis, ||o|| =1, ¢ — rotation angle
e wanted: simple mapping to/from rotation matrices

1. Matrix exponential. Let w = po, 0< ¢ <, then ¢= //Q)/[

> [w]z ® 1 sin

® 1 —cosyp 2
R:expm[w}xzz i =1+ [W]XJFT[“’]X
n=0
e for ¢ = 0 we take the limit and R =1
e this is the Rodrigues’ formula for rotation
e inverse (the principal logarithm of R) from
1
0<g<m cosp=—-(trR—1), [w], =——(R-RT),
2 2 singp

2. Cayley's representation; let a = otan ¥, then

R=(I+[a,)I-[a,)", [a,=R+D 'R~

a; +az2 —aj X as

ajoas = composition of rotations R = R1Ra

1—alas
e again, cannot represent rotations for ¢ >
® no trigonometric functions

e explicit composition formula
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»Minimal Representations for Other Entities

with the help of rotation we can minimally represent
1. fundamental matrix

F=UDV', D= diag(1, d?, 0), U,V are rotations, 3+ 1+3=7DOF
2. essential matrix

E =[-t],R, Risrotation, [t|| =1, 3+2=5DOF

3. camera
P=K[R t], 5+3+3=11DOF
Interestingly, let [Eade 2017]
_ Wy u 4,4
B = { 0T ol BeR
then, assuming [|w|| =¢ > 0 for ¢ = 0 we take the limits

: A\
[(% ﬂ =expm B = I + B + ha(¢) B? + }@W’) B3 = [eXPIS_ILw]X 1u}

V =15 + ha(9) [w]y +h3(¢) [w]%, V' =13 %[W]X + ha(@)[w]%

sin ¢ 1 —cos¢ ¢ — sin ¢ 1 1 o)
) 277 T h4(¢):ﬁ(1*5¢C0t5)

hi(¢) = » ha(9) h3(¢) =
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Part VII

Stereovision

@Introduction

@Epipolar Rectification

@Binocular Disparity and Matching Table
@Image Similarity

@Marroquin’s Winner Take All Algorithm

@ Maximum Likelihood Matching

@ Uniqueness and Ordering as Occlusion Models

mostly covered by
Sara, R. How To Teach Stereoscopic Vision. Proc. ELMAR 2010 referenced as [SP]

additional references

@ C. Geyer and K. Daniilidis. Conformal rectification of omnidirectional stereo pairs. In Proc Computer Vision
and Pattern Recognition Workshop, p. 73, 2003.

@ J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. In Proc IEEE
CS Conf on Computer Vision and Pattern Recognition, vol. 1:111-117. 2001.

@ M. Pollefeys, R. Koch, and L. V. Gool. A simple and efficient rectification method for general motion. In
Proc Int Conf on Computer Vision, vol. 1:496-501, 1999.
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What Are The Relative Distances?

e monocular vision already gives a rough 3D sketch because we understand the scene
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What Are The Relative Distances?

Centrum for teknikstudier at Malmé Hogskola, Sweden The Vy3ehrad Fortress, Prague

o left: we have no help from image interpretation

e right: ambiguous interpretation due to a combination of missing texture and occlusion
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»How Difficult Is Stereo?

e when we do not recognize the scene and cannot use high-level constraints the problem
seems difficult (right, less so in the center)

e most stereo matching algorithms do not require scene understanding prior to matching

e the success of a model-free stereo matching algorithm is unlikely:

WTA Matching:

for every left-image pixel
find the most similar
right-image pixel

along the
: — o corresponding epipolar
left image a good disparity map  disparity map from WTA line [Marroquin 83]
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A Summary of Our Observations and an Outlook

1. simple matching algorithms do not work

2. stereopsis requires image interpretation in sufficiently complex scenes
or another-modality measurement

we have a tradeoff: model strength <> universality

Outlook:

1. represent the occlusion constraint: correspondences are not independent due to occlusions

e epipolar rectification
o disparity
® uniqueness as an occlusion constraint

2. represent piecewise continuity the weakest of interpretations; piecewise: object boundaries
e ordering as a weak continuity model

3. use a consistent framework
e looking for the most probable solution (MAP)

Pz
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Thank You
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