▶Some Mappings by the Fundamental Matrix

$$0 = \underline{\mathbf{m}}_{2}^{\top} \mathbf{F} \underline{\mathbf{m}}_{1}$$

$$\underline{\mathbf{e}}_{1} \simeq \operatorname{null}(\mathbf{F}), \qquad \underline{\mathbf{e}}_{2} \simeq \operatorname{null}(\mathbf{F}^{\top})$$

$$\underline{\mathbf{l}}_{2} = \mathbf{F}\underline{\mathbf{m}}_{1} \qquad \underline{\mathbf{l}}_{1} = \mathbf{F}^{\top}\underline{\mathbf{m}}_{2}$$

$$\underline{\mathbf{l}}_{2} = \mathbf{F}[\underline{\mathbf{e}}_{1}] \downarrow \underline{\mathbf{l}}_{1} \qquad \underline{\mathbf{l}}_{1} = \mathbf{F}^{\top}[\underline{\mathbf{e}}_{2}] \downarrow \underline{\mathbf{l}}_{2}$$

• $\mathbf{l}_2 \simeq \mathbf{F} \left[\mathbf{e}_1 \right]_{\times} \mathbf{l}_1$:

- by 'transmutation' \rightarrow 78
- $\mathbf{F}[\underline{e}_1]_{\times}$ maps lines to lines but it is not a homography
- $\mathbf{H} = \mathbf{Q}_2 \mathbf{Q}_1^{-1}$ is the epipolar homography \rightarrow 78 mapping epipolar lines to epipolar lines, hence

$$\mathbf{H} = \mathbf{Q}_2 \mathbf{Q}_1^{-1} = \mathbf{K}_2 \mathbf{R}_{21} \mathbf{K}_1^{-1}$$

you have seen this ${\to}61\,$

► Representation Theorem for Fundamental Matrices

Theorem

Every 3×3 matrix of rank 2 is a fundamental matrix.

Proof.

Converse: By the definition $\mathbf{F} = \mathbf{H}^{-\top}[\mathbf{e}_1]_{\times}$ is a 3×3 matrix of rank 2.

Direct:

- 1. let $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$ be the SVD of a 3×3 matrix \mathbf{A} of rank 2; then $\mathbf{D} = \operatorname{diag}(\lambda_1, \lambda_2, 0)$
- 2. we can write $\mathbf{D} = \mathbf{BC}$, where $\mathbf{B} = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$, $\mathbf{C} = \operatorname{diag}(1, 1, 0)$, $\lambda_3 \neq 0$
- 3. then $\mathbf{A} = \mathbf{U}\mathbf{B}\mathbf{C}\mathbf{V}^{\top} = \mathbf{U}\mathbf{B}\mathbf{C}\mathbf{W}\mathbf{W}^{\top}\mathbf{V}^{\top}$ with \mathbf{W} rotation
- 4. we look for a rotation W that maps C to a skew-symmetric S, i.e. S = CW
- 5. then $\mathbf{W} = \begin{bmatrix} 0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $|\alpha| = 1$, and $\mathbf{S} = [\mathbf{s}]_{\times}$, $\mathbf{s} = (0, 0, 1)$
- 6. we can write

write
$$\mathbf{A} = \mathbf{U}\mathbf{B}[\mathbf{s}]_{\times}\mathbf{W}^{\top}\mathbf{V}^{\top} = \overset{\text{\circledast}}{\cdots} = \underbrace{\mathbf{U}\mathbf{B}(\mathbf{V}\mathbf{W})^{\top}}_{\mathbf{I}\mathbf{V}^{\top}} [\mathbf{v}_{3}]_{\times}, \qquad \mathbf{v}_{3} - 3\text{rd column of } \mathbf{V}$$
(13)

П

- 7. H regular \Rightarrow A does the job of a fundamental matrix, with epipole \mathbf{v}_3 and epipolar homography H
- we also got a (non-unique: λ_3 , $\alpha=\pm1$) decomposition formula for fundamental matrices
- it follows there is no constraint on F except the rank

► Representation Theorem for Essential Matrices

Theorem

Let ${\bf E}$ be a 3×3 matrix with SVD ${\bf E}={\bf U}{\bf D}{\bf V}^{\top}$. Then ${\bf E}$ is essential iff ${\bf D}\simeq {\rm diag}(1,1,0)$.

Proof.

Direct:

If ${\bf E}$ is an essential matrix, then the epipolar homography is a rotation (\rightarrow 78) and ${\bf U}{\bf B}({\bf V}{\bf W})^{\top}$ in (13) must be orthogonal, therefore ${\bf B}=\lambda {\bf I}$.

Converse:

 ${\bf E}$ is fundamental with ${\bf D}=\lambda\,{\rm diag}(1,1,0)$ then we do not need ${\bf B}$ (as if ${\bf B}=\lambda {\bf I})$ in (13) and ${\bf U}({\bf V}{\bf W})^{\top}$ is orthogonal, as required.

▶Essential Matrix Decomposition

We are decomposing \mathbf{E} to $\mathbf{E}=\left[-\mathbf{t}_{21}\right]_{ imes}\mathbf{R}_{21}=\mathbf{R}_{21}\left[-\mathbf{R}_{21}^{ op}\mathbf{t}_{21}\right]_{ imes}$

1.0)

despite non-uniqueness of SVD

[H&Z, sec. 9.6]

- 1. compute SVD of $\mathbf{E} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$ and verify $\mathbf{D} = \lambda \operatorname{diag}(1, 1, 0)$
- 2. if $\det {\bf U} < 0$ change signs ${\bf U} \mapsto -{\bf U}, \ {\bf V} \mapsto -{\bf V}$ the overall sign is dropped 3. compute

$$\mathbf{R}_{21} = \mathbf{U} \underbrace{\begin{bmatrix} 0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\mathbf{W}} \mathbf{V}^{\top}, \quad \mathbf{t}_{21} = -\beta \, \mathbf{u}_{3}, \qquad |\alpha| = 1, \quad \beta \neq 0$$
 (14)

Notes

- ullet $\mathbf{v}_3 \simeq \mathbf{R}_{21}^{ op} \mathbf{t}_{21}$, hence $\mathbf{R}_{21} \mathbf{v}_3 \simeq \mathbf{t}_{21} \simeq \mathbf{u}_3$ since it must fall in left null space by $\mathbf{E} \simeq \left[\mathbf{u}_3\right]_{ imes} \mathbf{R}$
 - ullet ${f t}_{21}$ is recoverable up to scale eta and direction ${
 m sign}\,eta$
- the result for ${f R}_{21}$ is unique up to $lpha=\pm 1$

• change of sign in α rotates the solution by 180° about \mathbf{t}_{21}

R(
$$\alpha$$
) = UWV $^{\top}$, R($-\alpha$) = UW $^{\top}$ V $^{\top}$ \Rightarrow T = R($-\alpha$)R $^{\top}$ (α) = \cdots = U diag($-1, -1, 1$)U which is a rotation by 180° about $\mathbf{u}_3 = \mathbf{t}_{21}$:

$$\mathbf{U}\operatorname{diag}(-1,-1,1)\mathbf{U}^{ op}\mathbf{u}_3 = \mathbf{U}egin{bmatrix} -1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{bmatrix}egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} = \mathbf{u}_3$$

ullet 4 solution sets for 4 sign combinations of $lpha,\,eta$ see next for geometric interpretation

▶ Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then $\mathbf{t}_{21} = -\mathbf{b}$ and \mathbf{W} rotates about the baseline \mathbf{b} .

- chirality constraint: all 3D points are in front of both cameras
- this singles-out the upper left case

[H&Z, Sec. 9.6.3]

▶7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set $\{(x_i, y_i)\}_{i=1}^k$ of k=7 correspondences, estimate f. m. \mathbf{F} .

$$\underline{\mathbf{y}}_i^{\mathsf{T}} \mathbf{F} \underline{\mathbf{x}}_i = 0, \quad i = 1, \dots, k, \quad \underline{\text{known}}: \quad \underline{\mathbf{x}}_i = (u_i^1, v_i^1, 1), \quad \underline{\mathbf{y}}_i = (u_i^2, v_i^2, 1)$$

 $terminology: \ correspondence = truth, \ later: \ match = algorithm's \ result; \ hypothesized \ corresp.$

Solution:
$$\mathbf{a}^{\mathsf{T}}\mathbf{b} = \mathcal{U}(\mathbf{a}\mathbf{b}^{\mathsf{T}}) \qquad \mathbf{A}: \mathbf{B} = \mathcal{U}(\mathbf{A}^{\mathsf{T}}\mathbf{B})$$
$$\mathbf{y}_{i}^{\mathsf{T}}\left(\mathbf{F}\,\mathbf{x}_{i}\right) = \left(\operatorname{vec}(\mathbf{y}_{i}\mathbf{x}_{i}^{\mathsf{T}})\right)^{\mathsf{T}}\operatorname{vec}(\mathbf{F}), \qquad \left(\mathbf{b}_{i}^{\mathsf{T}}\mathbf{x}_{i}^{\mathsf{T}}\right): \mathbf{F} = \mathbf{b}$$

$$\operatorname{vec}(\mathbf{F}) = \begin{bmatrix} f_{11} & f_{21} & f_{31} & \dots & f_{33} \end{bmatrix}^{\top} \in \mathbb{R}^9$$
 column vector from matrix

$$\operatorname{vec}(\mathbf{F}) = [f_{11} \quad f_{21} \quad f_{31} \quad \dots \quad f_{33}] \in \mathbb{R}^{s}$$
 column vector from matrix

$$\mathbf{D} = \begin{bmatrix} \left(\operatorname{vec}(\mathbf{y}_{1}\mathbf{x}_{1}^{\top}) \right)^{\top} \\ \left(\operatorname{vec}(\mathbf{y}_{2}\mathbf{x}_{2}^{\top}) \right)^{\top} \\ \left(\operatorname{vec}(\mathbf{y}_{2}\mathbf{x}_{2}^{\top}) \right)^{\top} \\ \left(\operatorname{vec}(\mathbf{y}_{3}\mathbf{x}_{3}^{\top}) \right)^{\top} \end{bmatrix} = \begin{bmatrix} u_{1}^{1}u_{1}^{2} & u_{1}^{1}v_{1}^{2} & u_{1}^{1} & u_{1}^{2}v_{1}^{1} & v_{1}^{1}v_{1}^{2} & v_{1}^{1} & u_{1}^{2} & v_{1}^{2} & 1 \\ u_{2}^{1}u_{2}^{2} & u_{2}^{1}v_{2}^{2} & u_{2}^{1} & u_{2}^{2}v_{2}^{2} & v_{2}^{1} & u_{2}^{2} & v_{2}^{2} & 1 \\ u_{3}^{1}u_{3}^{2} & u_{3}^{1}v_{3}^{2} & u_{3}^{1} & u_{3}^{2}v_{3}^{2} & v_{3}^{1}v_{3}^{2} & v_{3}^{1} & u_{3}^{2} & v_{3}^{2} & 1 \\ \vdots & & & & & & \vdots \\ u_{k}^{1}u_{k}^{2} & u_{k}^{1}v_{k}^{2} & u_{k}^{1} & u_{k}^{2}v_{k}^{1} & v_{k}^{1}v_{k}^{2} & v_{k}^{1} & u_{k}^{2} & v_{k}^{2} & 1 \end{bmatrix} \in \mathbb{R}^{k,9}$$

$$F = \mathbf{v} F_{1} + (1 - \mathbf{v}) F_{2} \qquad \mathbf{D} \operatorname{vec}(\mathbf{F}) = \mathbf{0}$$

$$\mathcal{L}_{1} + (\mathbf{F}) = \mathbf{0} = \mathcal{L}_{1} + (\mathbf{0} - \mathbf{v}) F_{2} \qquad \mathbf{D} \operatorname{vec}(\mathbf{F}) = \mathbf{0}$$

3D Computer Vision: IV. Computing with a Camera Pair (p. 84/186) 🔊 ९ 🤈 R. Šára, CMP; rev. 7-Nov-2017 🗺

▶7-Point Algorithm Continued

$$\mathbf{D} \operatorname{vec}(\mathbf{F}) = \mathbf{0}, \quad \mathbf{D} \in \mathbb{R}^{k,9}$$

- for k=7 we have a rank-deficient system, the null-space of ${\bf D}$ is 2-dimensional
- but we know that $\det \mathbf{F} = 0$, hence
 - 1. find a basis of the null space of D: F_1 , F_2

by SVD or QR factorization

2. get up to 3 real solutions for α from

$$\det(\alpha \mathbf{F}_1 + (1 - \alpha)\mathbf{F}_2) = 0$$
 cubic equation in α

- 3. get up to 3 fundamental matrices $\mathbf{F} = \alpha_i \mathbf{F}_1 + (1 \alpha_i) \mathbf{F}_2$ (check rank $\mathbf{F} = 2$)
- the result may depend on image transformations
- normalization improves conditioning
- this gives a good starting point for the full algorithm
- dealing with mismatches need not be a part of the 7-point algorithm

- \rightarrow 92
- $\rightarrow 105$

▶ Degenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

- 1. when images are related by homography a) camera centers coincide $\mathbf{t}_{21} = 0$: $\mathbf{H} = \mathbf{K}_2 \mathbf{R}_{21} \mathbf{K}_1^{-1}$
 - b) camera moves but all 3D points lie in a plane (\mathbf{n}, d) : $\mathbf{H} = \mathbf{K}_2(\mathbf{R}_{21} \mathbf{t}_{21}\mathbf{n}^\top/d)\mathbf{K}_1^{-1}$
 - in both cases: epipolar geometry is not defined
 - ullet we do get a solution from the 7-point algorithm but it has the form of $\mathbf{F} = [\mathbf{s}]_{\times} \mathbf{H}$

note that
$$[\underline{s}]_{ imes}\mathbf{H}\simeq\mathbf{H}'[\underline{s}']_{ imes}$$
 o 76

- given (arbitrary) $\underline{\mathbf{s}}$ and correspondence $x \leftrightarrow y$ y is the image of x: $\underline{\mathbf{y}} \simeq \mathbf{H}\underline{\mathbf{x}}$

• a necessary condition:
$$y \in l$$
, $\underline{l} \simeq \underline{s} \times H\underline{x}$

$$0 = \underline{y}^{\top}(\underline{s} \times H\underline{x}) = \underline{y}^{\top}[\underline{s}]_{\vee}H\underline{x} \text{ for any } \underline{x},\underline{s} \ (!)$$

- 2. both camera centers and all 3D points lie on a ruled quadric hyperboloid of one sheet, cones, cylinders, two planes
 - there are 3 solutions for F

notes

- estimation of \mathbf{E} can deal with planes: $[\mathbf{s}]_{\times}\mathbf{H}$ is essential matrix iff $\mathbf{s} = \lambda \mathbf{t}_{21}$
- a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]
- a stronger epipolar constraint could reject some configurations

A Note on Oriented Epipolar Constraint

- a tighter epipolar constraint preserves orientations
- requires all points and cameras be on the same side of the plane at infinity

notation: $\underline{\mathbf{m}} \stackrel{+}{\sim} \underline{\mathbf{n}}$ means $\underline{\mathbf{m}} = \lambda \underline{\mathbf{n}}, \ \lambda > 0$

- ullet note that the constraint is not invariant to the change of either sign of $\underline{\mathbf{m}}_i$
- all 7 correspondence in 7-point alg. must have the same sign

see later

ullet this may help reject some wrong matches, see ightarrow 106

[Chum et al. 2004]

• an even more tight constraint: scene points in front of both cameras

ras expensive this is called chirality constraint

▶5-Point Algorithm for Relative Camera Orientation

Problem: Given $\{m_i, m_i'\}_{i=1}^5$ corresponding image points and calibration matrix **K**, recover the camera motion \mathbf{R} , \mathbf{t} .

Obs:

- 1. E 8 numbers
- 2. ${f R}$ 3DOF, ${f t}$ 2DOF only, in total 5 DOF \to we need 8-5=3 constraints on ${f E}$
- 3. E essential iff it has two equal singular values and the third is zero $\rightarrow 81$

This gives an equation system:

$$\mathbf{\underline{v}}_i^{\mathsf{T}} \mathbf{E} \, \mathbf{\underline{v}}_i' = 0$$
 5 linear constraints $(\mathbf{\underline{v}} \simeq \mathbf{K}^{-1} \mathbf{\underline{m}})$ det $\mathbf{E} = 0$ 1 cubic constraint

$$\mathbf{E}\mathbf{E}^{\mathsf{T}}\mathbf{E} - \frac{1}{2}\operatorname{tr}(\mathbf{E}\mathbf{E}^{\mathsf{T}})\mathbf{E} = \mathbf{0}$$
 9 cubic constraints, 2 independent

® P1; 1pt: verify this equation from $\mathbf{E} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$, $\mathbf{D} = \lambda \operatorname{diag}(1, 1, 0)$

1. estimate **E** by SVD from $\mathbf{v}_i^{\mathsf{T}} \mathbf{E} \mathbf{v}_i' = 0$ by the null-space method

4D null space

[Kukelova et al. BMVC 2008]

- 2. this gives $\mathbf{E} = x\mathbf{E}_1 + y\mathbf{E}_2 + z\mathbf{E}_3 + \mathbf{E}_4$
- 3. at most 10 (complex) solutions for x, y, z from the cubic constraints
- when all 3D points lie on a plane: at most 2 real solutions (twisted-pair) can be disambiguated in 3 views or by chirality constraint (\rightarrow 83) unless all 3D points are closer to one camera
 - 6-point problem for unknown f
 - resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php

► The Triangulation Problem

Problem: Given cameras P_1 , P_2 and a correspondence $x \leftrightarrow y$ compute a 3D point X projecting to x and y

$$\underline{\lambda_1 \, \underline{\mathbf{x}} = \mathbf{P}_1 \underline{\underline{\mathbf{X}}}}, \qquad \underline{\lambda_2 \, \underline{\mathbf{y}} = \mathbf{P}_2 \underline{\underline{\mathbf{X}}}}, \qquad \underline{\mathbf{x}} = \begin{bmatrix} u^1 \\ v^1 \\ 1 \end{bmatrix}, \qquad \underline{\mathbf{y}} = \begin{bmatrix} u^2 \\ v^2 \\ 1 \end{bmatrix}, \qquad \mathbf{P}_i = \begin{bmatrix} (\mathbf{p}_1^i)^\top \\ (\mathbf{p}_2^i)^\top \\ (\mathbf{p}_3^i)^\top \end{bmatrix}$$

Linear triangulation method

$$u^{1} (\mathbf{p}_{3}^{1})^{\top} \underline{\mathbf{X}} = (\mathbf{p}_{1}^{1})^{\top} \underline{\mathbf{X}}, \qquad u^{2} (\mathbf{p}_{3}^{2})^{\top} \underline{\mathbf{X}} = (\mathbf{p}_{1}^{2})^{\top} \underline{\mathbf{X}},$$
$$v^{1} (\mathbf{p}_{3}^{1})^{\top} \underline{\mathbf{X}} = (\mathbf{p}_{2}^{1})^{\top} \underline{\mathbf{X}}, \qquad v^{2} (\mathbf{p}_{3}^{2})^{\top} \underline{\mathbf{X}} = (\mathbf{p}_{2}^{2})^{\top} \underline{\mathbf{X}},$$

Gives

$$\|\mathbf{D}\underline{\mathbf{X}}\| = \mathbf{0}, \quad \mathbf{D} = \begin{bmatrix} u^{1} (\mathbf{p}_{3}^{1})^{\top} - (\mathbf{p}_{1}^{1})^{\top} \\ v^{1} (\mathbf{p}_{3}^{1})^{\top} - (\mathbf{p}_{2}^{1})^{\top} \\ u^{2} (\mathbf{p}_{3}^{2})^{\top} - (\mathbf{p}_{2}^{2})^{\top} \\ v^{2} (\mathbf{p}_{3}^{2})^{\top} - (\mathbf{p}_{2}^{2})^{\top} \end{bmatrix}, \quad \mathbf{\underline{X}} \in \mathbb{R}^{4}$$

$$(15)$$

- back-projected rays will generally not intersect due to image error, see next
- using Jack-knife (\rightarrow 65) not recommended sensitive to small error we will use SVD (\rightarrow 90)
- but the result will not be invariant to projective frame
- replacing ${f P}_1\mapsto {f P}_1{f H},\,{f P}_2\mapsto {f P}_2{f H}$ does not always result in ${f \underline X}\mapsto {f H}^{-1}{f \underline X}$
- note the homogeneous form in (15) can represent points at infinity

 3D Computer Vision: IV. Computing with a Camera Pair (p. 89/186) 298 R. Šára, CMP; rev. 7-Nov-2017

► The Least-Squares Triangulation by SVD

ullet if ${f D}$ is full-rank we may minimize the algebraic least-squares error

$$\underline{\underline{\mathbf{X}}}^{\mathsf{X}} = \mathbf{M}_{\underline{\mathbf{X}}}^{\mathsf{X}} \boldsymbol{\varepsilon}^2(\underline{\mathbf{X}}) = \|\mathbf{D}\underline{\mathbf{X}}\|^2 \quad \text{s.t.} \quad \|\underline{\mathbf{X}}\|^2 = 1, \qquad \underline{\mathbf{X}} \in \mathbb{R}^4$$

• let D_i be the *i*-th row of D, then $a^2 = a^T a$

$$\|\mathbf{D}_{\mathbf{X}}^{\mathbf{X}}\|^2 = \sum_{i=1}^4 (\mathbf{D}_i \, \underline{\mathbf{X}})^2 = \sum_{i=1}^4 \underline{\mathbf{X}}^{\top} \mathbf{D}_i^{\top} \mathbf{D}_i \, \underline{\mathbf{X}} = \underline{\mathbf{X}}^{\top} \mathbf{Q} \, \underline{\mathbf{X}}, \text{ where } \mathbf{Q} = \sum_{i=1}^4 \mathbf{D}_i^{\top} \mathbf{D}_i = \mathbf{D}^{\top} \mathbf{D} \in \mathbb{R}^{4,4}$$

• we write the SVD of \mathbf{Q} as $\mathbf{Q} = \sum_{j} \sigma_j^2 \, \mathbf{u}_j \mathbf{u}_j^{\mathsf{T}}$, in which [Golub & van Loan 2013, Sec. 2.5]

$$\sigma_1^2 \geq \dots \geq \sigma_4^2 \geq 0$$
 and $\mathbf{u}_l^{\top} \mathbf{u}_m = \begin{cases} 0 & \text{if } l \neq m \\ 1 & \text{otherwise} \end{cases}$

 $\bullet \ \ \text{then} \quad \underline{\underline{\mathbf{X}}} = \arg\min_{\mathbf{q}, \|\mathbf{q}\|=1} \mathbf{q}^{\top} \mathbf{Q} \, \mathbf{q} = \mathbf{u}_4$

Proof (by contradiction).

$$\mathbf{q}^{\top}\mathbf{Q}\,\mathbf{q} = \sum_{j=1}^{4} \sigma_{j}^{2}\,\mathbf{q}^{\top}\mathbf{u}_{j}\,\mathbf{u}_{j}^{\top}\mathbf{q} = \sum_{j=1}^{4} \sigma_{j}^{2}\,(\mathbf{u}_{j}^{\top}\mathbf{q})^{2} \text{ is a sum of non-negative terms } 0 \leq (\mathbf{u}_{j}^{\top}\mathbf{q})^{2} \leq 1$$

Let $\mathbf{q} = \mathbf{u}_4 \cos \alpha + \bar{\mathbf{q}} \sin \alpha$ s.t. $\bar{\mathbf{q}} \perp \mathbf{u}_4$ and $\|\bar{\mathbf{q}}\| = 1$, then $\|\mathbf{q}\| = 1$ and

$$\mathbf{q}^{\top} \mathbf{Q} \mathbf{q} = \dots = \sigma_4^2 \cos^2 \alpha + \sin^2 \alpha \underbrace{\sum_{j=1}^3 \sigma_j^2 (\mathbf{u}_j^{\top} \mathbf{\bar{q}})^2}_{> \sigma^2} \ge \sigma_4^2$$

• if $\sigma_4 \ll \sigma_3$, there is a unique solution $\underline{\mathbf{X}} = \mathbf{u}_4$ with residual error $(\mathbf{D} \underline{\mathbf{X}})^2 = \sigma_4^2$ the quality (conditioning) of the solution may be expressed as $q = \sigma_3/\sigma_4$ (greater is better)

Matlab code for the least-squares solver:

 \circledast P1; 1pt: Why did we decompose **D** and not **Q** = **D**^T**D**?

