»Some Mappings by the Fundamental Matrix

0= szF my
er ~ null(F), e ~null(F")
L =Fm, L=F'm

I =Flei], h L = FT[QQ]xb

o b ~Flel|x li: by ‘transmutation’ —78

e F[e1], maps lines to lines but it is not a homography

e H= Q2Q;1 is the epipolar homography—78
mapping epipolar lines to epipolar lines, hence
H=Q:Q; ' =K:RauK;'

you have seen this —61

(QQ;") T or Flles]x
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»Representation Theorem for Fundamental Matrices

Theorem

Every 3 x 3 matrix of rank 2 is a fundamental matrix.

Proof.

Converse: By the definition F = H™ " [e;],, is a 3 x 3 matrix of rank 2.
Direct:

[y

let A = U];)V—r be the SVD of a 3 X 3 matrix A of rank 2; then D = diag(A1, A2,0)

2. we can write D = BC, where B = diag(\1, A2, A3), C = diag(1,1,0), A3 #0
3. then A = UBC/\\/T =UB &WT VT with W rotation
T 3 I

4. we look for a rotation W that maps C to a skew-symmetric S, i.,e. S = CW

0 a 0
5. then W= |-a 0 Of,|a]/=1,and S =]s],,s=(0,0,1)

0 0 1
6. we can write ) / A

A=UB[s|, W'VT = .. = UB(VW)" [v3],, vs - 3rd column of V. (13)
N————

H-T
7. H regular = A does the job of a fundamental matrix, with epipole v3 and epipolar
homography H o

® we also got a (non-unique: A3, & = +1) decomposition formula for fundamental matrices
o it follows there is no constraint on F' except the rank
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» Representation Theorem for Essential Matrices

Theorem
Let E be a 3 x 3 matrix with SVD E = UDV ". Then E is essential iff D ~ diag(1,1,0).

Proof.
Direct:

If E is an essential matrix, then the epipolar homography is a rotation (—78) and
UB(VW) " in (13) must be orthogonal, therefore B = AL

Converse:

E is fundamental with D = A diag(1, 1,0) then we do not need B (as if B = AI) in (13)
and U(VW)T is orthogonal, as required.
O
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»Essential Matrix Decompaosition

We are decomposing E to E = [—t21], Ra1 = Ro1[~Rgita1],, [H&Z, sec. 9.6]

1. compute SVD of E = UDV " and verify D = Adiag(1, 1,0)
2. if det U < 0 change signs U — —U, V— -V the overall sign is dropped
3. compute

0 a O
R21 =U| -« 0 0 VT, to1 = _BUB, |Oé| = 1a ﬁ 7é 0 (14)
0O 0 1 N
~—_——

Notes w

® vy~ R;1t21, hence R21v3 =~ t21 ~ ug since it must fall in left null space by E ~ [u3], R

® to1 is recoverable up to scale 3 and direction sign (3

o the result for R21 is unique up to ao = £1 despite non-uniqueness of SVD
e change of sign in « rotates the solution by 180° about to1 @
R(a) =UWV' R(-a)=UW'V' = T =R(-a)R" (a) = --- = Udiag(-1,-1,1)U"

which is a rotation by 180° about uz = to;:

—1 0 0 0
Udiag(—1,-1,)U 'us=U |0 -1 0| [0 =us
0 0 1 1
® 4 solution sets for 4 sign combinations of «;, (8 see next for geometric interpretation

3D Computer Vision: IV. Computing with a Camera Pair (p. 82/186) ©aC R. Séra, CMP; rev. 7-Nov-2017 =@l



»Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then t2; = —b
and W rotates about the baseline b. —77

o, —f (baseline reversal) —a, —f (combination of both)

o chirality constraint: all 3D points are in front of both cameras
e this singles-out the upper left case [H&Z, Sec. 9.6.3]
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»7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set {(x;,1:)}"_; of k = 7 correspondences, estimate f. m. F.
yiFx; =0, i=1,...,k,  known: x; = (uj,v;,1), yi = (uf,v,1)

terminology: correspondence = truth, later: match = algorithm’s result; hypothesized corresp.

T T R - (ATR
Solution: ab - f»f(qg) AR = & > ( XT\ -
Xj@ &5: (Vec(}’z'XiT))Tvec(F), (ljn V) -/b

vec(F) = [fll Ja fa ... f33]'r € R?  column vector from matrix

T\ T
(Vec(ylxl )) wiu? wh? Wl wdol vt ol W 0?1

T 1,2 1,2 1 2,1 1,2 1 2 2
(Vec(y2x2 ) UsU2 UV Uy UV VaVy Vg Uy Vo 1
T 1,2 1,2 1 2.1 1,2 1 2 2
D= (vec(ygx;—)) — | usuz ugv3y wuz wuzvs vzv3 w3 uz vz 1| - pks
. —_—
' 1,2 1,2 1 21 1,2 1 2 2
(vec(ykka))T URU,  URVE UL UKV, UpVp VU Uun U, 1
9
v
F:xF+(U-0)F D vec(F) = 0

L@ = g = did (xFpe (09%) < P(3)
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»7-Point Algorithm Continued

Dvec(F) =0, DeR"

e for k = 7 we have a rank-deficient system, the null-space of D is 2-dimensional

e but we know that det F' = 0, hence
1. find a basis of the null space of D: Fy, Fa by SVD or QR factorization

2. get up to 3 real solutions for o from
det(aF1 4+ (1 — a)F2) =0 cubic equation in a
3. get up to 3 fundamental matrices F = o;F1 + (1 — a;)F2 (check rank F = 2)

® the result may depend on image transformations

@ normalization improves conditioning —92
e this gives a good starting point for the full algorithm —105
@ dealing with mismatches need not be a part of the 7-point algorithm —106
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»Degenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

1. when images are related by homography

a) camera centers coincide to; =0: H = K2R21K1_1

b) camera moves but all 3D points lie in a plane (n,d): H = Ks(Ra1 — thl’lT/d)K;1

e in both cases: epipolar geometry is not defined

e we do get a solution from the 7-point algorithm but it has the form of F = [s], H

note that [s] H ~ H'[s'] , —76

e given (arbitrary) s
e and correspondence = <> y

e y is the image of z: y ~ Hx

® a necessary condition: yel, 1~sxHx
0= }:T(s x Hx) = XT[S]XH)S for any x,s (1)
2. both camera centers and all 3D points lie on a ruled quadric

hyperboloid of one sheet, cones, cylinders, two planes
e there are 3 solutions for F

notes

e estimation of E can deal with planes: [s] « H is essential matrix iff s = At

® a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]
® a stronger epipolar constraint could reject some configurations
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A Note on Oriented Epipolar Constraint

e a tighter epipolar constraint preserves orientations
e requires all points and cameras be on the same side of the plane at infinity

e xmy + Fmy

notation: m + n means m = An, A >0

® note that the constraint is not invariant to the change of either sign of m;

e all 7 correspondence in 7-point alg. must have the same sign see later
e this may help reject some wrong matches, see —106 [Chum et al. 2004]
® an even more tight constraint: scene points in front of both cameras expensive

this is called chirality constraint
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»5-Point Algorithm for Relative Camera Orientation

Problem: Given {m;, m}};_, corresponding image points and calibration matrix K,
recover the camera motion R, t.
Obs:

1. E — 8 numbers

2. R - 3DOF, t — 2DOF only, in total 5 DOF — we need 8 — 5 = 3 constraints on E

3. E essential iff it has two equal singular values and the third is zero —81

This gives an equation system:

vi EV,=0 5 linear constraints (v ~ K_lm)
detE=0 1 cubic constraint
1
EE'E — 3 tr(EE )E =0 9 cubic constraints, 2 independent
® P1; 1pt: verify this equation from E = UDV',D =2\ diag(1,1,0)
1. estimate E by SVD from v; E v, = 0 by the null-space method 4D null space
2. this gives E = zE; + yE2 4+ zE3 + E4

3. at most 10 (complex) solutions for z, y, z from the cubic constraints

® when all 3D points lie on a plane: at most 2 real solutions (twisted-pair) can be disambiguated in 3 views
or by chirality constraint (—83) unless all 3D points are closer to one camera
® 6-point problem for unknown f [Kukelova et al. BMVC 2008]

® resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php
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» The Triangulation Problem

Problem: Given cameras P, P and a correspondence z <+ y compute a 3D point X
projecting to x and y

ul U2 (pzl)T
Mx=PiX,  hy=PX, x=[v'|, y=|[?|, Pi=|(p)'
1 1 (p3)"
Linear triangulatisg method
u' (ph) X = (p}) X, = 2 () X =e)'X,
v! (p3) X = (p2) X, v? (p3) X = (p3) "X,
Gives
. u' (p3)" — (p1)"
L ()T — (p)T
Ipxl-o, D= |, ®) ~®) |l ped x g (15)
lu«b(( u (ps) *(Pl)
v* (p3)" — (p3) "

® back-projected rays will generally not intersect due to image error, see next

@using Jack-knife (—65) not recommended sensitive to small error
& we will use SVD (—90)
ut the result will not be invariant to projective frame

replacing P; — P1H, Py — P3H does not always result in X — H™!'X

e note the homogeneous form in (15) can represent points at infinity
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» The Least-Squares Triangulation by SVD
e if D is full-rank we may minimize the algebraic IeLast-squares error
X< e ?(X) = [DX|? st [X[=1 XeR!

e let D; be the i-th row of D, then 03'; q_ToL
4 4

4
IDX|*=3 (D:X)* =3 X D/D; X = X'QX, where @ =} D/D; =D'D € k"
=1 i=1 4 i=1
. 2 T . .
e we write the SVD of Q as Q = Zaj u;u; , in which [Golub & van Loan 2013, Sec. 2.5]

=1
0 ifl
02> 20220 and wun=4° "LET
1 otherwise

e then X =arg min q'Qq=uy
a,llall=1

Proof (by contradiction).

4 4

q' Qq= Z 0]2- unj u;rq = Z O'JQ- (u;rq)2 is a sum of non-negative terms 0 < (u;rq)2 <1
Jj=1

j=1

Let q =ugcosa+ gsina s.t. @ L ug and ||@]] =1, then ||g|]| =1 and
? 3
qTQq:---:aicoszaJrsinQa E U?(u;q)Qzai
=1
My, /’ -
>03
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»cont'd

e if 04 < 03, there is a unique solution X = u4 with residual error (D X)? = o3
the quality (conditioning) of the solution may be expressed as ¢ = 03/04 (greater is better)

Matlab code for the least-squares solver:

[U,0,V] = svd(D);
X = V(:,end);
q = 0(3,3)/0(4,4);

® P1; 1pt: Why did we decompose D and not Q = D' D?

/
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Thank You



	Computing with a Single Camera
	Calibration: Internal Camera Parameters from Vanishing Points and Lines
	Camera Resection: Projection Matrix from 6 Known Points
	Exterior Orientation: Camera Rotation and Translation from 3 Known Points

	Computing with a Camera Pair
	Camera Motions Inducing Epipolar Geometry
	Estimating Fundamental Matrix from 7 Correspondences
	Estimating Essential Matrix from 5 Correspondences
	Triangulation: 3D Point Position from a Pair of Corresponding Points

	End of Slides



