
How To Find the Global Maxima (Modes) of a PDF?
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• averaged over 104 trials

• number of proposals before
|x− xtrue| ≤ step

• given the function p(x) at left p.d.f. on [0, 1], mode at 0.1

consider several methods:

1. exhaustive search

step = 1/(iterations-1);
for x = 0:step:1
if p(x) > bestp
bestx = x; bestp = p(x);

end
end

• slow algorithm
(definite quantization)

• fast to implement

2. randomized search with uniform sampling

while t < iterations
x = rand(1);
if p(x) > bestp
bestx = x; bestp = p(x);

end
t = t+1; % time

end

• equally slow algorithm

• fast to implement

3. random sampling from p(x) (Gibbs sampler)

• faster algorithm • fast to implement but often infeasible (e.g. when

p(x) is data dependent (our case in correspondence prob.))

4. Metropolis-Hastings sampling
• almost as fast (with care) • not so fast to implement

• rarely infeasible • RANSAC belongs here
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How To Generate Random Samples from a Complex Distribution?
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target (red) and scaled proposal (blue) distributions • red: probability density function π(x) of the toy
distribution on the unit interval target distribution

π(x) =

4∑
i=1

γi Be(x;αi, βi),
4∑
i=1

γi = 1, γi ≥ 0

Be(x;α, β) =
1

B(α, β)
· xα−1(1− x)β−1

• note we can generate samples from this π(x) how?

• suppose we cannot sample from π(x) but we can sample from some ‘simple’
distribution q(x | x0), given the last sample x0 (blue) proposal distribution

q(x | x0) =


U0,1(x) (independent) uniform sampling

Be(x; x0
T

+ 1, 1−x0
T

+ 1) ‘beta’ diffusion (crawler) T – temperature

π(x) (independent) Gibbs sampler

• note we have unified all the random sampling methods from the previous slide

• how to transform proposal samples q(x | x0) to target distribution π(x) samples?
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IMetropolis-Hastings (MH) Sampling

C – configuration (of all variable values) eg. C = x and π(C) = π(x) from →113

Goal: Generate a sequence of random samples {Ct} from target distribution π(C)

• setup a Markov chain with a suitable transition probability to generate the sequence

Sampling procedure
1. given Ct, draw a random sample S from q(S | Ct)

q may use some information from Ct (Hastings)

2. compute acceptance probability the evidence term drops out

a = min

{
1,

π(S)

π(Ct)
· q(Ct | S)
q(S | Ct)

}
3. draw a random number u from unit-interval uniform distribution U0,1

4. if u ≤ a then Ct+1 := S else Ct+1 := Ct

‘Programming’ an MH sampler

1. design a proposal distribution (mixture) q and a sampler from q

2. write functions q(Ct | S) and q(S | Ct) that are proper distributions not always simple

Finding the mode
• remember the best sample fast implementation but must wait long to hit the mode

• use simulated annealing very slow

• start local optimization from the best sample good trade-off between speed and accuracy

an optimal algorithm does not use just the best sample: a Stochastic EM Algorithm (e.g. SAEM)
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MH Sampling Demo

sampling process (video, 7:33, 100k samples)

• blue point: current sample

• green circle: best sample so far quality = π(x)

• histogram: current distribution of visited states

• the vicinity of modes are the most often visited states

initial sample

final distribution
of visited states
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Demo Source Code (Matlab)

function x = proposal_gen(x0)

% proposal generator q(x | x0)

T = 0.01; % temperature

x = betarnd(x0/T+1,(1-x0)/T+1);

end

function p = proposal_q(x, x0)

% proposal distribution q(x | x0)

T = 0.01;

p = betapdf(x, x0/T+1, (1-x0)/T+1);

end

function p = target_p(x)

% target distribution p(x)

% shape parameters:

a = [2 40 100 6];

b = [10 40 20 1];

% mixing coefficients:

w = [1 0.4 0.253 0.50]; w = w/sum(w);

p = 0;

for i = 1:length(a)

p = p + w(i)*betapdf(x,a(i),b(i));

end

end

%% DEMO script

k = 10000; % number of samples

X = NaN(1,k); % list of samples

x0 = proposal_gen(0.5);

for i = 1:k

x1 = proposal_gen(x0);

a = target_p(x1)/target_p(x0) * ...

proposal_q(x0,x1)/proposal_q(x1,x0);

if rand(1) < a

X(i) = x1; x0 = x1;

else

X(i) = x0;

end

end

figure(1)

x = 0:0.001:1;

plot(x, target_p(x), ’r’, ’linewidth’,2);

hold on

binw = 0.025; % histogram bin width

n = histc(X, 0:binw:1);

h = bar(0:binw:1, n/sum(n)/binw, ’histc’);

set(h, ’facecolor’, ’r’, ’facealpha’, 0.3)

xlim([0 1]); ylim([0 2.5])

xlabel ’x’

ylabel ’p(x)’

title ’MH demo’

hold off

3D Computer Vision: V. Optimization for 3D Vision (p. 116/189) R. Šára, CMP; rev. 28–Nov–2017



IStripping MH Down

• when we are interested in the best sample only. . . and we need fast data exploration. . .

Simplified sampling procedure
1. given Ct, draw a random sample S from q(S | Ct) q(S) independent sampling

no use of information from Ct

2. compute acceptance probability

a = min

{
1,

π(S)

π(Ct)
· q(Ct | S)
q(S | Ct)

}
3. draw a random number u from unit-interval uniform distribution U0,1

4. if u ≤ a then Ct+1 := S else Ct+1 := Ct
5. if π(S) > π(Cbest) then remember Cbest := S

Steps 2–4 make no difference when waiting for the best sample

• . . . but getting a good accuracy sample might take very long this way

• good overall exploration but slow convergence in the vicinity of a mode where Ct could serve
as an attractor

• cannot use the past generated samples to estimate any parameters

• we will fix these problems by (possibly robust) ‘local optimization’
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IPutting Some Clothes Back: RANSAC with Local Optimization

1. initialize the best sample as empty Cbest := ∅ and time t := 0

2. estimate the number of needed iterations as N :=
(mn
s

)
s – minimal sample size

3. while t ≤ N :

a) draw a minimal random sample S of size s from q(S)
S

b) if π(S) > π(Cbest) then

i) update the best sample Cbest := S π(S) marginalized as in (26); π(S) includes a prior⇒ MAP

ii) threshold-out inliers using (27)

2eT
S

iii) start local optimization from the inliers of Cbest LM optimization with robustified (→110) Sampson error

possibly weighted by posterior π(mij) [Chum et al. 2003]

LO(Cbest)

iv) update Cbest, update inliers using (27), re-estimate N from inlier counts →119 for derivation

N =
log(1− P )

log(1− εs)
, ε =

| inliers(Cbest)|
mn

,

c) t := t+ 1

4. output Cbest

• see MPV course for RANSAC details see also [Fischler & Bolles 1981], [25 years of RANSAC]
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IStopping RANSAC

Principle: what is the number of proposals N that are needed to hit an all-inlier sample?
this will tell us nothing about the accuracy of the result

P . . . probability that at least one sample is an all-inlier 1− P . . . all previous N samples were bad

ε . . . the fraction of inliers among tentative correspondences, ε ≤ 1
s . . . sample size (7 in 7-point algorithm)

N ≥ log(1− P )

log(1− εs)

• εs . . . proposal does not contain an outlier

• 1− εs . . . proposal contains at least one outlier

• (1− εs)N . . .N previous proposals contained an outlier = 1− P

N for s = 7
P

ε 0.8 0.99
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• N can be re-estimated using the current estimate for ε (if there is LO, then after LO)
the quasi-posterior estimate for ε is the average over all samples generated so far

• this shows we have a good reason to limit all possible matches to tentative matches only

• for ε→ 0 we gain nothing over the standard MH-sampler stopping criterion

3D Computer Vision: V. Optimization for 3D Vision (p. 119/189) R. Šára, CMP; rev. 28–Nov–2017



The Core Ideas in RANSAC [Fischler & Bolles 1981]

1. configuration = s-tuple of inlier correspondences
• the minimization will be over a discrete set of epipolar geometries proposable from 7-tuples

2. proposal distribution q(·) is given by the empirical distribution of data samples:
a) select s-tuple from data independently q(S | Ct) = q(S)

i) q uniform q(S) =
(mn
s

)−1
MAPSAC (p(S) includes the prior)

ii) q dependent on descriptor similarity PROSAC (similar pairs are proposed more often)

b) solve the minimal geometric problem 7→ parameter proposal e.g. F from s = 7

• pairs of points define line distribution from p(n | X) (left)

• random correspondence tuples drawn uniformly propose
samples of F from a data-driven distribution q(F | E)

3. independent sampling & looking for the best sample⇒ no need to filter proposals by a

4. standard RANSAC replaces probability maximization with consensus maximization

x1
x22eT

the eT is the inlier/outlier threshold from (27)

5. stopping based on the probability of mode-hitting →119
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Example Matching Results for the 7-point Algorithm with RANSAC

input images interest points (ca. 3600) tentative corresp. (416) matching (340)

• notice some wrong matches (they have wrong depth, even negative)

• they cannot be rejected without additional constraints or scene knowledge

• without local optimization the minimization is over a discrete set of epipolar geometries
proposable from 7-tuples
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Beyond RANSAC

By marginalization in (23) we have lost constraints on M (eg. uniqueness). One can choose a
better model when not marginalizing:

π(M,F, E,D) = p(E |M,F)︸ ︷︷ ︸
geometric error

· p(D |M)︸ ︷︷ ︸
similarity

· p(F)︸ ︷︷ ︸
prior

· P (M)︸ ︷︷ ︸
constraints

this is a global model: decisions on mij are no longer independent!

In the MH scheme

• one can work with full p(M,F | E,D), then S = (M,F)

• explicit labeling mij can be done by, e.g. sampling from

q(mij | F) ∼
(
(1− P0) p1(eij | F), P0 p0(eij | F)

)
when P (M) uniform then always accepted, a = 1 ~ derive

• we can compute the posterior probability of each match p(mij) by histogramming mij
from {Si}

• local optimization can then use explicit inliers and p(mij)

• error can be estimated for elements of F from {Si} does not work in RANSAC!

• large error indicates problem degeneracy this is not directly available in RANSAC

• good conditioning is not a requirement we work with the entire distribution p(F)

• one can find the most probable number of epipolar geometries by reversible jump MCMC

(homographies or other models) and model selection

if there are multiple models explaning data, RANSAC will return one of them randomly
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Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image.

video

simplifications

• vanishing points restricted to the set of all
pairwise segment intersections

• mother lines fixed by segment centroid
(then θL uniquely given by λi)

Model

• principal point known, square pixel

• latent variables

1. each line has a vanishing point label
λi ∈ {∅, 1, 2}, ∅ represents an outlier

• explicit variables

1. two unknown vanishing points v1, v2

2. ‘mother line’ parameters θL (they pass
through their vanishing points)

� = 1
� = 2 � = ;v2

v1
arg min

v1,v2,Λ,θL
V (v1, v2,Λ, L | S)
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Thank You
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3D Computer Vision: enlarged figures R. Šára, CMP; rev. 28–Nov–2017
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