-Projection Matrix Decomposition

$$
\begin{align*}
& \left.\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right] \quad \longrightarrow \quad \mathbf{K R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]=\mathbf{K}\left(\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]\right) \\
& \mathbf{Q} \in \mathbb{R}^{3,3} \\
& \text { full rank } \\
& \text { (if finite perspective camera) } \\
& {\left[\begin{array}{ll}
R & t \\
0 & 1
\end{array}\right]^{-1} \pm} \\
& \mathbf{K} \in \mathbb{R}^{3,3} \\
& \mathbf{R} \in \mathbb{R}^{3,3} \\
& \text { upper triangular with positive diagonal entries } \\
& \text { 1. } \left.\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\mathbf{Q}\left[\mathbf{I} \quad \mathbf{Q}^{-1} \mathbf{q}\right)\right]=\mathbf{K R}[\mathbf{I} \quad-\mathbf{C}]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & -\mathbf{R C}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \quad \text { also } \rightarrow 36 \\
& \text { 2. } R Q \text { decomposition of } \mathbf{Q}=\mathbf{K R} \text { sing three Givens rotations }\left[\begin{array}{ccc}
c & 0 & -\boldsymbol{s}
\end{array}\right]^{[H \& Z, ~ p . ~ 579] ~} \\
& \mathbf{K}=\mathbf{Q} \underbrace{\mathbf{R}_{32} \mathbf{R}_{31} \mathbf{R}_{21}}_{\mathbf{R}^{-1}} \quad \mathbf{R}_{31}=\left[\begin{array}{lll}
0 & 1 & 0 \\
\mathrm{~s} & 0 & c
\end{array}\right] \\
& \mathbf{R}^{\top} \mathbf{R}=\mathbf{I} \text { and } \operatorname{Ret} \mathbf{R}=+1
\end{align*}
$$

$\mathbf{R}_{i j}$ zeroes element $i j$ in \mathbf{Q} affecting only columns i and j and the sequence preserves previously zeroed elements, e.g. (see next slide for derivation details)

$$
\mathbf{R}_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c & -s \\
0 & s & c
\end{array}\right] \text { gives } \begin{gathered}
c^{2}+s^{2}=1 \\
0=k_{32}=c q_{32}+s q_{33}
\end{gathered} \Rightarrow c=\frac{q_{33}}{\sqrt{q_{32}^{2}+q_{33}^{2}}} \quad s=\frac{-q_{32}}{\sqrt{q_{32}^{2}+q_{33}^{2}}}
$$

\circledast P1; pt: Multiply known matrices \mathbf{K}, \mathbf{R} and then decompose back; discuss numerical errors

- RQ decomposition nonuniqueness: $\mathbf{K R}=\mathbf{K} \mathbf{T}^{-1} \mathbf{T R}$, where $\mathbf{T}=\operatorname{diag}(-1,-1,1)$ is also a rotation, we must correct the result so that the diagonal elements of \mathbf{K} are all positive 'thin' RQ decomposition
- care must be taken to avoid overflow, see [Golub \& van Loan 2013, sec. 5.2]

|RQ Decomposition Step

```
Q = Array [ ( qm1,##2 &, {3, 3}];
R32 ={{1, 0, 0},{0, c, -s },{0, s, c}}; R32 // MatrixForm
```

$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c\end{array}\right)$

```
Q1 = Q.R32 ; Q1 // MatrixForm
```

$$
\left(\begin{array}{lll}
q_{1,1} & c & q_{1,2}+s q_{1,3}-s q_{1,2}+c q_{1,3} \\
q_{2,1} & c q_{2,2}+s q_{2,3}-s q_{2,2}+c q_{2,3} \\
q_{3,1} & c q_{3,2}+s q_{3,3}-s q_{3,2}+c q_{3,3}
\end{array}\right)
$$

```
s1 = Solve [{Q1 [[ 3]][[2]] = 0, c^^2+ s^2=1},{c, s}][[2]]
```


Q1 /. s1 // Simplify // MatrixForm

$$
\left.\begin{array}{l}
q_{1,1} \frac{-q_{1,3} q_{3,2}+q_{1,2} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}}
\end{array} \frac{q_{1,2} q_{3,2}+q_{1,3} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}}\right)
$$

－Center of Projection

Observation：finite \mathbf{P} has a non－trivial right null－space

Theorem

Let there be $\underline{\mathbf{B}} \neq \mathbf{0}$ s．t． $\mathbf{P} \underline{\mathbf{B}}=\mathbf{0}$ ．Then $\underline{\mathbf{B}}$ is equal to the projection center $\underline{\mathbf{C}}$ （homogeneous，in world coordinate frame）．

Proof．

1．Consider spatial line $A B$（ B is given）．We can write

$$
\underline{\mathbf{X}}(\lambda) \simeq \lambda \underline{\mathbf{A}}+(1-\lambda) \underline{\mathbf{B}}, \quad \lambda \in \mathbb{R}
$$

2．it projects to

$$
\mathbf{P} \underline{\mathbf{X}}(\lambda) \simeq \lambda \mathbf{P} \underline{\mathbf{A}}+(1-\lambda) \mathbf{P} \underline{\mathbf{B}} \simeq \mathbf{P} \underline{\mathbf{A}}=\underline{m}
$$

－the entire line projects to a single point \Rightarrow it must pass through the optical center of \mathbf{P}
－this holds for all choices of $A \Rightarrow$ the only common point of the lines is the C ，i．e．$\underline{\mathbf{B}} \simeq \underline{\mathbf{C}}$
Hence

$$
\mathbf{0}=\mathbf{P} \underline{\mathbf{C}}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{C} \\
1
\end{array}\right]=\mathbf{Q} \mathbf{C}+\mathbf{q} \Rightarrow \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}
$$

$\underline{\mathbf{C}}=\left(c_{j}\right)$ ，where $c_{j}=(-1)^{j} \operatorname{det} \mathbf{P}^{(j)}$ ，in which $\mathbf{P}^{(j)}$ is \mathbf{P} with column j dropped Matlab：C＿homo＝null（P）；or C＝－Q\q；

－Optical Ray

Optical ray：Spatial line that projects to a single image point．
1．consider line
d unit line direction vector，$\|\mathbf{d}\|=1, \lambda \in \mathbb{R}$ ，Cartesian representation

$$
\mathbf{X}=\mathbf{C}+\lambda \mathbf{d}
$$

2．the projection of the（finite）point X is $Q C+q=\varnothing$

$$
\begin{aligned}
\underline{\mathbf{m}} & \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]=\mathbf{Q}(\boldsymbol{\varphi}+\lambda \mathbf{d})+\boldsymbol{q}=\lambda \mathbf{Q} \mathbf{d}= \\
& =\lambda\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{d} \\
0
\end{array}\right]
\end{aligned}
$$

\ldots which is also the image of a point at infinity in \mathbb{P}^{3}
－optical ray line corresponding to image point m is the set

$$
\mathbf{X}=\mathbf{C}+(\lambda \mathbf{Q})^{-1} \underline{\mathbf{m}}, \quad \lambda \in \mathbb{R}
$$

－optical ray direction may be represented by a point at infinity $(\mathbf{d}, 0)$ in \mathbb{P}^{3}

-Optical Axis

Optical axis: Optical ray that is perpendicular to image plane π

1. points on a line parallel to π project to line at infinity in π :

$$
\left[\begin{array}{l}
u \\
v \\
0
\end{array}\right] \simeq \mathbf{P} \underline{\mathbf{X}}=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\vdots
\end{array}\right]
$$

2. therefore the set of points X is parallel to π iff

$$
\mathbf{q}_{3}^{\top} \mathbf{X}+q_{34}=0
$$

3. this is a plane with $\pm \mathbf{q}_{3}$ as the normal vector

4. optical axis direction: substitution $\mathbf{P} \mapsto \lambda \mathbf{P}$ must not change the direction
5. we select (assuming $\operatorname{det}(\mathbf{R})>0$)

$$
\mathbf{o}=\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3}
$$

$$
\text { if } \mathbf{P} \mapsto \lambda \mathbf{P} \text { then } \operatorname{det}(\mathbf{Q}) \mapsto \lambda^{3} \operatorname{det}(\mathbf{Q}) \quad \text { and } \quad \mathbf{q}_{3} \mapsto \lambda \mathbf{q}_{3}
$$

- the axis is expressed in world coordinate frame

-Principal Point

Principal point: The intersection of image plane and the optical axis

1. as we saw, \mathbf{q}_{3} is the directional vector of optical axis
2. we take point at infinity on the optical axis that must project to principal point m_{0}
3. then

$$
\underline{\mathbf{m}}_{0} \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{q}_{3} \\
0
\end{array}\right]=\mathbf{Q} \mathbf{q}_{3}
$$

$$
\text { principal point: } \quad \underline{\mathbf{m}}_{0} \simeq \mathbf{Q} \mathbf{q}_{3}
$$

- principal point is also the center of radial distortion

-Optical Plane

A spatial plane with normal p passing through optical center C and a given image line n.

hence, $0=\mathbf{p}^{\top}(\mathbf{X}-\mathbf{C})=\underline{\mathbf{n}}^{\top} \underbrace{\widetilde{\mathbf{Q}(\mathbf{X}-\mathbf{C}})}_{\rightarrow 32}=\left(\mathbf{n}^{\top} \mathbf{P}\right) \underline{\mathbf{X}}=\left(\mathbf{P}^{\top} \underline{\mathbf{n}}\right)^{\top} \underline{\mathbf{X}}$ for every X in plane ρ
optical plane is given by n :

$$
\rho \simeq \mathbf{P}^{\top} \underline{\mathbf{n}}
$$

$$
\rho_{1} x+\rho_{2} y+\rho_{3} z+\rho_{4}=0
$$

Cross-Check: Optical Ray as Optical Plane Intersection

optical plane normal given by n

$$
\text { optical plane normal given by } n^{\prime}
$$

$$
\begin{aligned}
\mathbf{p} & =\mathbf{Q}^{\top} \underline{\mathbf{n}} \\
\mathbf{p}^{\prime} & =\mathbf{Q}^{\top} \underline{\mathbf{n}^{\prime}}
\end{aligned}
$$

$$
\mathbf{d}=\mathbf{p} \times \mathbf{p}^{\prime}=\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}\right) \times\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1}\left(\underline{\mathbf{n}} \times \underline{\underline{n}}^{\prime}\right)=\mathbf{Q}^{-1} \underline{\mathbf{m}}
$$

－Summary：Optical Center，Ray，Axis，Plane

General finite camera

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

$\underline{\mathbf{C}} \simeq \operatorname{rnull}(\mathbf{P})$

$$
\mathbf{d}=\mathbf{Q}^{-1} \underline{\mathbf{m}}
$$

$\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3}$
Q \mathbf{q}_{3}

$$
\boldsymbol{\rho}=\mathbf{P}^{\top} \underline{\mathbf{n}}
$$

$$
\mathbf{K}=\left[\begin{array}{ccc}
f & -f \cot \theta & u_{0} \\
0 & f /(a \sin \theta) & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

R
t
optical center（world coords．）
optical ray direction（world coords．） outward optical axis（world coords．） principal point（in image plane） optical plane（world coords．） camera（calibration）matrix（ f, u_{0}, v_{0} in pixels） camera rotation matrix（cam coords．） camera translation vector（cam coords．）

What Can We Do with An 'Uncalibrated’ Perspective Camera?

How far is the engine?
distance between sleepers (ties) 0.806 m but we cannot count them, image resolution is too low
We will review some life-saving theory...
\ldots. and build a bit of geometric intuition. . .

- Vanishing Point

Vanishing point: the limit of the projection of a point that moves along a space line infinitely in one direction. the image of the point at infinity on the line

$$
\underline{\mathbf{m}}_{\infty} \simeq \lim _{\lambda \rightarrow \pm \infty} \mathbf{P}\left[\begin{array}{c}
\mathbf{X}_{0}+\lambda \mathbf{d} \\
1
\end{array}\right]=\cdots \simeq \mathbf{Q} \mathbf{d}
$$

\circledast P1; 1pt: Prove (use Cartesian coordinates and L'Hôpital's rule)

- the V.P. of a spatial line with directional vector \mathbf{d} is $\underline{\mathbf{m}}_{\infty} \simeq \mathbf{Q d}$
- V.P. is independent on line position \mathbf{X}_{0}, it depends on its directional vector only
- all parallel lines share the same V.P., including the optical ray defined by m_{∞}

Some Vanishing Point "Applications"

where is the sun?

what is the wind direction?
(must have video)

fly above the lane, at constant altitude!

- Vanishing Line

Vanishing line: The set of vanishing points of all lines in a plane
the image of the line at infinity in the plane and in all parallel planes

- V.L. n corresponds to spatial plane of normal vector $\mathbf{p}=\mathbf{Q}^{\top} \underline{\mathbf{n}}$ because this is the normal vector of a parallel optical plane (!) $\rightarrow 40$ - a spatial plane of normal vector \mathbf{p} has a V.L. represented by $\quad \underline{\mathbf{n}}=\mathbf{Q}^{-\top} \mathbf{p}$.

Cross Ratio

Four distinct collinear spatial points R, S, T, U define cross-ratio

$$
\begin{gathered}
{[R S T U]=\frac{|\overrightarrow{R T}|}{|\overrightarrow{U R}|} \frac{|\overrightarrow{S U}|}{|\overrightarrow{T S}|}} \\
|\overrightarrow{R T}|-\text { signed distance from } R \text { to } T
\end{gathered}
$$

$[S R U T]=[R S T U],[R S U T]=\frac{1}{[R S T U]},[R T S U]=1-[R S T U]$
Obs: $\quad[R S T U]=\frac{|\underline{\mathbf{r}} \underline{\mathbf{t}} \underline{\mathbf{v}}|}{|\underline{\mathbf{r}} \underline{\mathbf{u}} \quad \underline{\mathbf{v}}|} \cdot \frac{|\underline{\mathbf{s}} \underline{\mathbf{u}} \mathbf{v}|}{|\underline{\mathbf{s}} \underline{\mathbf{t}} \mathbf{v}|}, \quad|\underline{\underline{\mathbf{r}}} \underline{\mathbf{t}} \underline{\mathbf{v}}|=\operatorname{det}\left[\begin{array}{lll}\underline{\mathbf{r}} & \underline{\mathbf{t}} \underline{\mathbf{v}}\end{array}\right]=(\underline{\mathbf{r}} \times \underline{\mathbf{t}})^{\top} \underline{\mathbf{v}}$

Corollaries:

- cross ratio is invariant under homographies $\underline{\mathbf{x}}^{\prime} \simeq \mathbf{H} \underline{\mathbf{x}}$ plug $\mathbf{H} \underline{x}$ in (1): $\left(\mathbf{H}^{-\top}(\underline{\mathbf{r}} \times \underline{\mathbf{t}})\right)^{\top} \mathbf{H} \underline{\mathbf{v}}$
- cross ratio is invariant under perspective projection: $[R S T U]=[r s t u]$
- 4 collinear points: any perspective camera will "see" the same cross-ratio of their images
- we measure the same cross-ratio in image as on the world line
- one of the points R, S, T, U may be at infinity (we take the limit, in effect $\frac{\infty}{\infty}=1$)

Thank You

