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1 Notation

%] the empty set [1]

exp U the set of all subsets of set U [1]

UxV Cartesian product of sets U and V' [1]

Z whole numbers [1]

Q rational numbers [2]

R real numbers [2]

i imaginary unit [2]

(S,+, ) ... space of geometric scalars

A affine space (space of geometric vectors)

(Ap, ®,®) ... space of geometric vectors bound to point o

(V,#H,[) ... space of free vectors

A? real affine plane

A3 ... three-dimensional real affine space

P? ... real projective plane

P3 ... three-dimensional real projective space

T ... vector

A ... matrix

A ... 1j element of A

AT ... transpose of A

|A| ... determinant of A

I ... identity matrix

R ... rotation matrix

® ... Kronecker product of matrices

B = [b1, 52, bs] ... basis (an ordered triple of independent generator vectors)

B*, B ... the dual basis to basis 3

Z3 ... column matrix of coordinates of ¥ w.r.t. the basis 3

Ty ... Euclidean scalar product of # and ¢ (¥ - ¢ = fg Yz in an
orthonormal basis ()

rxy ... cross (vector) product of ¥ and

(7], ... the matrix such that [@], § =7 x ¥

|1Z| ... Euclidean norm of # (|Z| = V¥ - %)

mutually perpendicular and all of equal length
unit orthogonal vectors

orthogonal vectors
orthonormal vectors

Pol ... point P is incident to line [
PvQ ... line(s) incident to points P and @
kAl ... point(s) incident to lines k and [



2 Linear algebra

We rely on linear algebra [3, 4, 5, 6, 7, 8]. We recommend excellent text books [6, 3]
for acquiring basic as well as more advanced elements of the topic. Monograph [4]
provides a number of examples and applications and provides a link to numerical
and computational aspects of linear algebra. We will next review the most crucial
topics needed in this text.

2.1 Change of coordinates induced by the change of basis

Let us discuss the relationship between the coordinates of a vector in a linear space,
which is induced by passing from one basis to another. We shall derive the relation-
ship between the coordinates in a three-dimensional linear space over real numbers,
which is the most important when modeling the geometry around us. The formulas
for all other n-dimensional spaces are obtained by passing from 3 to n.

§1 Coordinates Let us consider an ordered basis [ = [51 by 53] of a three-

dimensional vector space V3 over scalars R. A vector # € V3 is uniquely expressed
as a linear combination of basic vectors of V3 by its coordinates x,y,z € R, i.e.
T=xb + Y gg +z 53, and can be represented as an ordered triple of coordinates,
ie. as Ug = [93 Y z]

We see that an ordered triple of scalars can be understood as a triple of coor-
dinates of a vector in V3 w.r.t. a basis of V3. However, at the same time, the set
of ordered triples [:U Y Z]T is also a three-dimensional coordinate linear space R?

over R with [z1 zl]T + (22 w2 ZQ]T =[zi+z2 yit+y 2 —|—z2]T and

S [:1: Y Z]T = [sx sy sz]T for s € R. Moreover, the ordered triple of the
following three particular coordinate vectors

1 0 0
o=110 1 0 (2.1)
0 0 1

forms an ordered basis of R3, the standard basis, and therefore a vector ¢ = [w Y z]T

is represented by ¥, = [:z: Y Z]T w.r.t. the standard basis in R?. It is noticeable
that the vector ¥ and the coordinate vector v, of its coordinates w.r.t. the standard
basis of R3, are identical.

§2 Two bases Having two ordered bases 8 = [l;l by 53] and 3/ = [5{ I;é Eé

—_

leads to expressing one vector ¥ in two ways as & = x by + Y by + 2 by and T =
2 b +y' by + 2’/ bl. The vectors of the basis § can also be expressed in the basis 3/
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using their coordinates. Let us introduce

51 = ail [_)'{ + a21 l;é + asy gé
by = ao b{ + a99 bé + aso bé (2.2)
b3 = a3 b{ + as3 bé + ass bé

§3 Change of coordinates We will next use the above equations to relate the
coordinates of & w.r.t. the basis 3 to the coordinates of & w.r.t. the basis 3’

r = x51+y52+z53

= (a11x+a12y+algz)b{+(aglx—I—azgy—i—aggz)bé+(a31$+a32y+a332)b§
= 2'b] +y b} +z’b§

Since coordinates are unique, we get

r = apnrtapy+asz (2.4)
= a21 T+ a2y + a3z
Z = a31T+aszy+azzz

Coordinate vectors g and Z'3/ are thus related by the following matrix multiplication

x ain a2 a3 x
/

Yy = | a2 a2 a3 Yy (2.7)
!/

z azy asz2 ass z

which we concisely write as
fﬁ/ = Afg (28)

The columns of matrix A can be viewed as vectors of coordinates of basic vectors,
b1, ba, b3 of B in the basis 5’

A = | by, by bs, (2.9)
o

and the matrix multiplication can be interpreted as a linear combination of the
columns of A by coordinates of & w.r.t. 8

Fg =axby, +yba, +2bs, (2.10)

Matrix A plays such an important role here that it deserves its own name. Matrix
A is very often called the change of basis matriz from basis 3 to ' or the transition
matriz from basis [ to basis ' [4, 9] since it can be used to pass from coordinates
w.r.t. B to coordinates w.r.t. 5’ by Equation 2.8.

However, literature [5, 10] calls A the change of basis matriz from basis ' to j3,
i.e. it (seemingly illogically) swaps the bases. This choice is motivated by the fact

x (CL11 5{ + ag1 I;é + as gé) +vy (a12 g{ + a99 gé + asz l_%) + z (a13 g{ + a93 l_)é + ass l;?/))

(2.3)
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that A relates vectors of 8 and vectors of 3 by Equation 2.2 as
[51 gg 53] = [CLH 5{ + a21 gé + as1 [_)é a12 g{ + a92 l;é + aso Eé
a3 g{ + as3 55 + ass gé] (2.11)
a1 a2 a13

[51 52 83] = [5{ gé (;é] a1 G2 (23 (2.12)
as1r a32 a33

(2.13)
and therefore giving
[6’1 by 53] = [5{ b} Eg]A (2.14)
or equivalently
|5 5 B = |5 B By s (2.15)

where the multiplication of a row of column vectors by a matrix from the right in
Equation 2.14 has the meaning given by Equation 2.11 above. Yet another variation
of the naming appeared in [7, 8] where A~! was named the change of basis matriz
from basis 3 to 3.

We have to conclude that the meaning associated with the change of basis matriz
varies in the literature and hence we will avoid this confusing name and talk about
A as about the matriz transforming coordinates of a vector from basis 3 to basis [3'.

There is the following interesting variation of Equation 2.14

b by
by | = AT | by (2.16)
b} b3

where the basic vectors of 8 and 3’ are understood as elements of column vectors.
For instance, vector b is obtained as

I;{ = a’{l 51 + GIQ 52 + G/IS 53 (217)
where [af;, al,, a}3] is the first row of A= 7.
4 Example We demonstrate the relationship between vectors and bases on a

concrete example. Consider two bases o and [ represented by coordinate vectors,
which we write into matrices

(2.18)

, (2.19)

o o=
e L =)

Co - oo



T. Pajdla. Elements of Geometry for Robotics 2014-10-21 (pajdla@cmp.felk.cvut.cz)

and a vector ¥ with coordinates w.r.t. the basis «

1
To= |1 (2.20)
1

We see that basic vectors of a can be obtained as the following linear combinations
of basic vectors of 3

a, = +151+052+053 (2.21)
s +1by — 1by + 1b3 (2.22)
Gy = —1by+0by+ 103 (2.23)
(2.24)
or equivalently
1 1 -1
[C_il 62 53] = [bl b2 b3] 0 —1 0f = [bl b2 bg] A (2.25)
0o 1 1

Coordinates of & w.r.t. 4 are hence obtained as

1 1 -1
Tg = AZ,, A=10 -1 0 (2.26)
0 1 1
1 1 1 -1 1
-1 = 0 -1 0 1 (2.27)
2 0 1 1 1
We see that
a = [A (2.28)
1 10 1 1 1 1 -1
01 1 = 0 01 0 -1 0 (2.29)
0 01 01 1 0 1

The following questions arises: When are the coordinates of a vector Z (Equation 2.8)
and the basic vectors themselves (Equation 2.16) transformed in the same way? In
other words, when A = A~ . We shall give the answer to this question later in
paragraph 2.4.

2.2 Determinant

Determinat [3] of a matrix A, denoted by |A|, is a very interesting and useful concept.
It can be, for instance, used to check the linear independence of a set of vectors or
to define an orientation of the space.

2.2.1 Permutation

A permutation [3] ™ on the set [n]= {1,...,n} of integers is a one-to-one function
from [n] onto [n]. The identity permutation will be denoted by e, i.e. €(i) = i for
allie[n].



T. Pajdla. Elements of Geometry for Robotics 2014-10-21 (pajdla@cmp.felk.cvut.cz)

§5 Composition of permutations Let o and 7 be two permutations on [n]. Then,
their composition, i.e. m(o), is also a permutation on [n] since a composition of two
one-to-one onto functions is a one-to-one onto function.

56 Sign of a permutation We will now introduce another important concept re-
lated to permutations. Sign, sgn(7), of a permutation 7 is defined as

sgn(r) = (—1)N) (2.30)

where N () is equal to the number of inversions in 7, i.e. the number of pairs [i, 5]
such that 4,j € [n], i < j and 7(i) > 7(j).

2.2.2 Determinant

Let S,, be the set of all permutations on [n] and A be an n x n matrix. Then,
determinant |A| of A is defined by the formula

A| = 2 sgn(7) Ay ~(1) Ao n(2) = Bnm(m) (2.31)

TESH

Notice that for every 7 € S, and for j € [n] there is exactly one i € [n] such that
j = 7(i). Hence

(L] [2,7@2)], - [n, 7w (@)} = {71 (1), 1], [771(2),2],.... [7 " (n),n]}
(2.32)
and since the multiplication of elements of A is commutative we get

A[ = Z sgn(7) A1ty Ar12) 2 A1) (2.33)

TESH

Let us next define a submatrix of A and find its determinant. Consider £ < n and two
one-to-one monotonic functions p,v: [k] — [n], i < j = p(i) < p(j), v(i) < v(j).
We define k£ x k submatrix A" of an n x n matrix A by

AT = Aoy for g€ (k] (2.34)

We get the determinant of A”" as follows

497 = ) sen(m) ALY ) MDY o) AT (2:35)
WESk

= D s8n(m) A1) (1)) Ap(@) w(x(2) * Bo(k) (k) (2.36)
weSk

Let us next split the rows of the matrix A into two groups of £ and m rows and
find the relationship between [A| and the determinants of certain k x k and m x m
submatrices of A. Take 1 < k,m < n such that k£ + m = n and define a one-to-one
function p: [m] —» [k+ 1,n] ={k+1,...,n}, by p(i) = k +i. Next, let Q < exp [n]
be the set of all subsets of [n] of size k. Let w € Q. Then, there is exactly one
one-to-one monotonic function ¢, from [k] onto w since [k] and w are finite sets
of integers of the same size. Let @ = [n]\w. Then, there is exactly one one-to-one
monotonic function g from [k + 1,n] onto w. Let further there be 7, € Si and
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Tm € Sm.  With the notation introduced above, we are getting a version of the
generalized Laplace expansion of the determinant [11, 12]

Al =) [T senlea(i) —u(d) |14

weQ) \ i€[k],je[k+1,n]

APPw(P) ’ (2.37)

2.3 Vector product

Let us look at an interesting mapping from R? xR? to R?, the vector product in R? [6]
(which it also often called the cross product [4]). Vector product has interesting
geometrical properties but we shall motivate it by its connection to systems of linear
equations.

§7 Vector product Assume two linearly independent coordinate vectors

—

T = [xl T $3]T and ¢ = [y1 Yo yg]T in R3. The following system of linear
equations
[’“’1 2 x?’] 7=0 (2.38)
Y Y2 Y3
has a one-dimensional subspace V of solutions in R?. The solutions can be written
as multiples of one non-zero vector w, the basis of V, i.e.

Z=\@, AeR (2.39)

Let us see how we can construct @ in a convenient way from vectors &, 4.
Consider determinants of two matrices constructed from the matrix of the sys-
tem (2.38) by adjoining its first, resp. second, row to the matrix of the system (2.38)

Ty T2 I3 Tr1 T2 I3
vioy2 Y3 |[[=0 y1 Y2 y3 || =0 (2.40)
Ty T2 X3 Y1 Y2 Y3
which gives
z1 (22ys — 23y2) + 22 (T3 Y1 — 11Y3) + 23 (T1y2 —2291) = 0 (2.41)
Y1 (z2ys — 3y2) +y2 (391 — T1y3) +y3 (T1y2 —2291) = 0 (2.42)

and can be rewritten as

—x1ys+ 3y | =0 (2.43)

T1Y2 —T2Y1

[xl To X3
Y1 Y2 Y3

] T2Y3 — X3Y2

We see that vector
L2Y3 — T3Y2
W= |—-z1y3+ T3y (2.44)
T1Y2 — T2
solves Equation 2.38.

Notice that elements of w are the three two by two minors of the matrix of the
system (2.38). The rank of the matrix is two, which means that at least one of the
minors is non-zero, and hence @ is also non-zero. We see that i is a basic vector of
V. Formula 2.44 is known as the wvector product in R? and & is also often denoted
by T x .
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58 Vector product under the change of basis Let us next study the behavior of
the vector product under the change of basis in R3. Let us have two bases 3, 8’ in

R3 and two vectors &, 7 with coordinates g = [.’L‘l o azg]T, ys = [y1 Yo y3]

and Ty = [2] ) xé]T, Us =y v yé]T . We introduce

T2Y3 — T3Y2 T9Y3 — T5Ys
rg xyg = | —T1Yy3+T3Y1 T X Ygr = | —xiys + z5y] (2.45)
T1Y2 —T2Y1 m{yé - azéy{

To find the relationship between #g x 73 and Zg: x g/, we will use the following fact.

For every three vectors & = [acl T9 1’3]T, Y= [yl Yo yg]T, 7= [21 29 23]T
in R3 there holds

—

T2Y3 — T3Y2 Ty T2 I3 €T
T x §) = [21 2 =] |~z oy [ =||v v u||=||7 ||(246)
T1Y2 —T2Y1 Z1 Z9 z3 gT
We can write
B B []_ 0 0] ({B/ X :Iiﬁ/) Ci_ﬁr/ ﬂi_‘?/ x_,’—B—FI
Tgr X Ygr = [0 1 0] (l’ﬁ/ X yﬁ/) = yﬂ/ yﬁl yﬁl
_[001](f@/><§/3/) 100 010 001
([ ZLAT :E%AT 1 ZraT71"
= 7y 7y 7y
| [[100 010 | 001 |
[ 7 [ 7 z} !
— g’ AT :’jﬁ AT g’T AT
L1 [100] AT [010] AT [001] AT
[1 0 0] A_T(.f/g X :ljﬁ)
= | [010]A T (@ x 5j5) | |AT]|
| [0 0 1]A~T(Z5 x §3)
AT
= (Ts % Up) (2.47)

§9 Vector product as a linear mapping It is interesting to see that for all Z, i € R?
there holds

T2 Y3 — T3 Y2 0 —x3 22 Y1
Exy=|-mys+a3y | = x3 0 —1 Y2 (2.48)
T1Y2 — T2 Y1 —x9 T 0 Y3

and thus we can introduce matrix

(7], = T3 0 —m (2.49)
—XI2 I 0
and write
Fx i =[], 7 (2.50)
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Notice also that [#]] = —[Z], and therefore

(‘f x g)T = ([‘f]x g)T = _gT [f]x (251)

The result of §8 can also be written in the formalism of this paragraph. We can
write for every 7,7 € R?

s , L AT AT
[AZ3], Ay = (AZg) x (Ayp) = T (T x ) = T (5], s (2.52)
and hence we get for every & € R3
. AT

2.4 Dual space and dual basis

Let us start with a three-dimensional linear space L over scalars S and consider
the set L* of all linear functions f: L. — 5, i.e. the functions on L for which the
following holds true

FaF+b5) = a f@) +bF() (2.54)

for all a,be S and all Z,y € L.

Let us next define the addition +*: L* x L* — L* of linear functions f,g € L*
and the multiplication -*: S x L* — L* of a linear function f € L* by a scalar a € S
such that

(f +79)(@) = f(@)+g(D) (2.55)
(@" /)@ = af(@) (2.56)

holds true for all @ € S and for all ¥ € L. One can verify that (L*,+*,-*) over
(S, +, ) is itself a linear space [3, 6, 5|. It makes therefore a good sense to use arrows
above symbols for linear functions, e.g. f instead of f.

The linear space L* is derived from, and naturally connected to, the linear space
L and hence deserves a special name. Linear space L* is called [3] the dual (linear)
space to L.

Now, consider a basis 8 = [51,52,53] of L. We will construct a basis g* of L*,
in a certain natural and useful way. Let us take three linear functions I;’l‘, gg, 5§ e L”
such that

bi(b) =1 Bi(b2) =0 bi(5s) =0
bs(b1) =0 B(b2) =1 Db3(bs) =0 (2.57)
b3(b1) =0 b3(b2) =0 b5(b3) =1

where 0 and 1 are the zero and the unit element of .S, respectively. First of all, one
has to verify [3] that such an assignment is possible with linear functions over L.
Secondly one can show [3] that functions b’{, b;, b3 are determined by this assignment
uniquely on all vectors of L. Finally, one can observe [3] that the triple f* =
[5’1*, b, gg] forms an (ordered) basis of L. The basis 8* is called the dual basis of L*,
i.e. it is the basis of L*, which is related in a special (dual) way to the basis 8 of L.
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§10 Evaluating linear functions Consider a vector ¥ € L with coordinates 7z =

[21, 22, 23] w.r.t. a basis 3 = [l;l, 52, 53] and a linear functlon h e L* with coordi-
nates hgs = [hy, ho, h3]" w.r.t. the dual basis f* = [b7, bY, b3, b%]. The value h(Z) € S
is obtained from the coordinates 7z and ﬁlg* as

hE) = h(z1 b+ x9bo + x3b3) (2.58)
= (hl 5’1( + hy (_); + h3 gg)(ﬂjl 61 + T 52 + 3 g3> (259)
= hy gf(gl)xl + hy gf(gg) To + hi bl(bg) €3

+ho bg(bﬂ x1 + ho b;(bg) To + ho bQ(bg) xs (2.60)
+hsg bg(bl) r1 + h3 bg( 2) To + h3 bg(bg) xs
b1(b1) bi(b2) b1(b3) | [ 21
= [h ha hs] [ 03(b1) b3(ba) B3(D3) | | @2 (2.61)
b3(b1) b3(b2) b3(b3) | L3
[ 1 0 0 X1
= [h1 ha B3] |0 1 O] | (2.62)
[0 0 1 s
T
= [hi,ho,h3] | 22 (2.63)
T3
= Tig T (2.64)

The value of h € L* on & € L is obtained by multiplying #g by the transpose of ﬁﬂ*
from the left.

Notice that the middle matrix on the right in Equation 2.61 evaluates into the
identity. This is the consequence of using the pair of a basis and its dual basis.
The formula 2.64 can be generalized to the situation when bases are not dual by
evaluating the middle matrix accordingly. In general

->T =

h(&) = [bi(0;)] &5 (2.65)

@i

where matrix [EZ(EJ)] is constructed from the respective bases 3, 3 of L and L*.

§11 Changing the basis in a linear space and in its dual Let us now look at what
happens with coordinates of vectors of L* when passing from the dual basis 8* to
the dual basis 8’* induced by passing from a basis 8 to a basis 8’ in L. C0n81der
vector 7 € L and a linear function i € L* and their coordinates Z 7g, Tz and hg* hﬁu
w.r.t. the respective bases. Introduce further matrix A transforming coordinates of
vectors in L as

Tgr = Adp (2.66)

when passing from (3 to 3.
Basis 8* is the dual basis to 8 and basis 3’* is the dual basis to 3’ and therefore
hye g = I(Z) = hgn Tg/ (2.67)
for all # € L and all h € L*. Hence

Eg* Tg = E;/* AZg (2.68)

10
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for all ¥ € L and therefore
hge = hyo A (2.69)

or equivalently
hge = A" hg (2.70)

Let us now see what is the meaning of the rows of matrix A. It becomes clear from
Equation 2.69 that the columns of matrix AT can be viewed as vectors of coordinates
of basic vectors of * = [b]*,b}*,bi*] in the basis * = [b], b5, b3] and therefore
28T
— b —

A= | —bhh— (2.71)

=, T
B —
which means that the rows of A are coordinates of the dual basis of the primed dual
space in the dual basis of the non-primed dual space.
Finally notice that we can also write

hgrs = A" hge (2.72)

which is formally identical with Equation 2.16.

§12 When do coordinates transform the same way in a basis and in its dual basis
It is natural to ask when it happens that the coordinates of linear functions in L*
w.r.t. the dual basis £* transform the same way as the coordinates of vectors of L
w.r.t. the original basis £, i.e.

fﬁz = Af/j (2.73)

hgrs = Ahge (2.74)
for all e L and all h € L*. Considering Equation 2.72, we get

A = AT (2.75)
ATA = 1 (2.76)

Notice that this is, for instance, satisfied when A is a rotation [4]. In such a case,
one often does not anymore distinguish between vectors of L and L* because they
behave the same way and it is hence possible to represent linear functions from L*
by vectors of L.

§13 Coordinates of the basis dual to a general basis We denote the standard
basis in R? by ¢ and its dual (standard) basis in R3" by ¢*. Now, we can further
establish another basis v = [é1 & & in R? and its dual basis v* = [¢] &5 3]
in R3*. We would like to find the coordinates 7. = [C1,r T3ov e | of vectors
of v* w.r.t. ¢* as a function of coordinates v, = [510 Coo 6’30] of vectors of ~
w.r.t. o.

Considering Equations 2.57 and 2.64, we are getting

S lifi=y ..
cwtcj(,:{ Oifi;é:;' fori,j=1,2,3 (2.77)

11
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which can be rewritten in a matrix form as

.

0 Cio+
ST — — — * T

0] = | o [Cla C2o 030] = Yor Vo (2'78)
.

1 C3or

1
0
0

o = O

and therefore
Yoe =5 " (2.79)

§14 Remark on higher dimensions We have introduced the dual space and the
dual basis in a three-dimensional linear space. The definition of the dual space is
exactly the same for any linear space. The definition of the dual basis is the same for
all finite-dimensional linear spaces [3]. For any n-dimensional linear space L and its
basis 8, we get the corresponding n-dimensional dual space L* with the dual basis

g

2.5 Operations with matrices

Matrices are a powerful tool which can be used in many ways. Here we review a
few useful rules for matrix manipulation. The rules are often studied in multi-linear
algebra and tensor calculus. We shall not review the theory of multi-linear algebra
but will look at the rules from a phenomenological point of view. They are useful
identities making an effective manipulation and concise notation possible.

§15 Kronecker product Let A be a k x [ matrix and B be a m x n matrix

aip a2 - ay
a1 a2 - Ayl
A= T | eRF! and BeR™*™ (2.80)
a1 Qg2 - A
then k£ m x I n matrix
a11B ap2B - ayB
ang CLQQB CLQZB
C=A®B= . . . . (2.81)
a1 B ageB - ap B

is the matrix of the Kronecker product of matrices A, B (in this order).

Notice that this product is associative, i.e. (A® B)®C = A® (B® C), but it
is not commutative, i.e. A®B # B ® A in general. There holds a useful identity
(A®B)T =A"® B.

§16 Matrix vectorization Let A be an m x n matrix

ail ai2 e A1n
a1 a2 te A2n

PO e 3 - G (2.82)
Gml Om2 " Gmn

12
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We define operator v(.): R™*"™ — R™" which reshapes an m X n matrix A into a
mmn x 1 matrix (i.e. into a vector) by stacking columns of A one above another

aiy
a1

am1
ai2

v(d) = a:m = (2.83)

Am?2
Q1n
a2n

Amn

Let us study the relationship between v(A) and v(AT). We see that vector v(AT)
contains permuted elements of v(A) and therefore we can construct permutation
matrices [4] Tyuxn and T x,, such that

U(AT) = Tmxnv(4)
v(A) = Tnva(AT)
We see that there holds
Thnxm Tmxn U(A) = Thxm 'U(AT) = U(A) (2'84)

for every m x n matrix A. Hence

Tnxm = T_l

mXxn

(2.85)

Consider a permutation T. It has exactly one unit element in each row and in
each column. Consider the i-th row with 1 in the j-th column. This row sends the
j-th element of an input vector to the i-th element of the output vector. The i-the
column of the transpose of T has 1 in the j-th row. It is the only non-zero element
in that row and therefore the j-th row of T' sends the i-th element of an input
vector to the j-th element of the output vector. We see that T is the inverse of T,
i.e. permutation matrices are orthogonal. We see that

nglxn = T;xn (2'86)
and hence conclude
Tnxm = T;xn (287)

We also write v(A) = T,L ., v(AT).

mxn

§17 From matrix equations to linear systems Kronecker product of matrices
and matrix vectorization can be used to manipulate matrix equations in order to

13
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get systems of linear equations in the standard matrix form Ax = b. Consider, for
instance, matrix equation

AXB=C (2.88)

with matrices A € R™** X e RF*! B e R™*™ ¢ e R™ ™. It can be verified by direct
computation that

v(AXB) = (B'® A)v(X) (2.89)

This is useful when matrices A, B and C are known and we use Equation 2.88 to
compute X. Notice that matrix Equation 2.88 is actually equivalent to mn scalar
linear equations in k! unknown elements of X. Therefore, we should be able to write
it in the standard form, e.g., as

Mo(X) = v(C) (2.90)

with some M e R(mm*(k1) We can use Equation 2.89 to get M = B! ® A which yields
the linear system

v(AXB) v(C) (2.91)

B'® 8)vEX) = v(C) (2.92)

for unknown v(X), which is in the standard form.
Let us next consider two variations of Equation 2.88. First consider matrix
equation

AXB =X (2.93)

Here unknowns X appear on both sides but we are still getting a linear system of
the form
B'®A—-I)v(X) =0 (2.94)

where I is the (mn) x (k1) identity matrix.
Next, we add yet another constraints: X' = X, i.e. matrix X is symmetric, to get

AXB=X and X' =X (2.95)
which can be rewritten in the vectorized form as
B'"®@A-T)v(X)=0 and (Tpxn—I)v(X)=0 (2.96)
and combined it into a single linear system

{B?gz B i] v(X) = 0 (2.97)

14



3 Affine space

Let us study the affine space, an important structure underlying geometry and
its algebraic representation. The affine space is closely connected to the linear
space. The connection is so intimate that the two spaces are sometimes not even
distinguished. Consider, for instance, function f: R — R with non-zero a,b € R

flz)=ax+b (3.1)

It is often called “linear” but it is not a linear function [5, 6, 4] since for every a € R
there holds
flax)=aar+b#a(ar+b) =af(z) (3.2)

In fact, f is an affine function, which becomes a linear function only for b = 0.

In geometry, we need to be very precise and we have to clearly distinguish affine
from linear. Let us therefore first review the very basics of linear spaces, and in
particular their relationship to geometry, and then move to the notion of affine
spaces.

3.1 Vectors

Let us start with geometric vectors and study the rules of their manipulation.
Figure 3.1(a) shows the space of points P, which we live in and intuitively un-
derstand. We know what is an oriented line segment, which we also call a marked
ruler (or just a ruler). A marked ruler is oriented from its origin towards its end,
which is actually a mark (represented by an arrow in Figure 3.1(b)) on a thought
infinite ruler, Figure 3.1(b). We assume that we are able to align the ruler with any

° \

(a) (b) (c)

Figure 3.1: (a) The space around us consists of points. Rulers (marked oriented
line segments) can be aligned (b) and translated (c) and thus used to
transfer, but not measure, distances.
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Figure 3.2: Scalars are represented by oriented rulers. They can be added (a) and
multiplied (b) purely geometrically by translating and aligning rulers.
Notice that we need to single out a unit scalar “1” to perform geometric
multiplication.

pair of points z, y, so that the ruler begins in  and a mark is made at the point .
We also know how to align a marked ruler with any pair of distinct points u, v such
that the ruler begins in v and aligns with the line connecting u and v in the direction
towards point v. The mark on so aligned ruler determines another point, call it z,
which is collinear with points u, v. We know how to translate, Figure 3.1(c), a ruler
in this space.

To define geometric vectors, we need to first define geometric scalars.

3.1.1 Geometric scalars

Geometric scalars S are horizontal oriented rulers. The ruler, which has its origin
identical with its end is called 0. Geometric scalars are equipped with two geometric
operations, addition a + b and multiplication a b, defined for every two elements
a,be S.

Figure 3.2(a) shows addition a + b. We translate ruler b to align origin of b with
the end of a and obtain ruler a + b.

Figure 3.2(b) shows multiplication ab. To perform multiplication, we choose
a unit ruler “1” and construct its additive inverse —1 using 1 + (—1) = 0. This
introduces orientation to scalars. Scalars aiming to the same side as 1 are positive
and scalars aiming to the same side as —1 are negative. Scalar 0 is neither positive,
nor negative. Next we define multiplication by —1 such that —1a = —a, i.e. —1 times
a equals the additive inverse of a. Finally, we define multiplication of non-negative
(i.e. positive and zero) rulers a, b as follows. We align a with 1 such that origins of
1 and a coincide and such that the rulers contain an acute non-zero angle. We align
b with 1 and construct ruler ab by a translation, e.g. as shown in Figure 3.2(b)!.

All constructions used were purely geometrical and were performed with real
rulers. We can verify that so defined addition and multiplication of geometric scalars

'Notice that ab is well defined since it is the same for all non-zero angles contained by a and 1.

16
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i L T

(a)

/ A%J%

Figure 3.3: Bound vectors are (ordered) pairs of points (o, x), i.e. arrows & = (o, ).
Addition of the bound vectors &, 7/ is realized by parallel transport (using
a ruler). We see that the result is the same whether we add Z to ¢ or i
to Z. Addition is commutative.

satisfy all rules of addition and multiplication of real numbers. Geometric scalars
form a field [10, 13] w.r.t. to a + b and ab.

3.1.2 Geometric vectors

Ordered pairs of points, such as (x,y) in Figure 3.3(a), are called geometric vectors
and denoted as Z7, i.e. T = (z,y). Symbol Zy is often replaced by a simpler one,
e.g. by d. The set of all geometric vectors is denoted by A.

3.1.3 Bound vectors

Let us now choose one point o and consider all pairs (o, z), where x can be any
point, Figure 3.3(a). We obtain a subset A, of A, which we call geometric vectors
bound to o, or just bound vectors when it is clear to which point they are bound. We
will write & = (o, x). Figure 3.3(f) shows another bound vector . The pair (o0, 0) is
special. It will be called the zero bound vector and denoted by 0. We will introduce
two operations @, ® with bound vectors.

First we define addition of bound vectors ®: A, x A, — A,. Let us add vector &
to ¥ as shown on Figure 3.3(b). We take a ruler and align it with &, Figure 3.3(c).
Then we translate the ruler to align its begin with point y, Figure 3.3(d). The
end of the ruler determines point z. We define a new bound vector, which we
denote ¥ @ ¥, as the pair (o, z), Figure 3.3(e). Figures 3.3(f-j) demonstrate that
addition gives the same result when we exchange (commute) vectors & and 7, i.e.
T@®Yy = y® L. We notice that for every point x, there is exactly one point x’ such
that (0,2) ® (0,2') = (0,0), i.e. Z® & = 0. Bound vector &’ is the inverse to & and
is denoted as —&. Bound vectors are invertible w.r.t. operation @. Finally, we see
that (0,2) ® (0,0) = (0,z), i.e. £@®0 = Z. Vector 0 is the identity element of the

17
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operation @. Clearly, operation @ behaves exactly as addition of scalars — it is a
commutative group [10, 13].

Secondly, we define the multiplication of a bound vector by a geometric scalar
®: SxA, —> A,, where S are geometric scalars and A, are bound vectors. Operation
® is a mapping which takes a geometric scalar (a ruler) and a bound vector and
delivers another bound vector.

Figure 3.4 shows that to multiply a bound vector Z = (o, z) by a geometric scalar
a, we consider the ruler b whose origin can be aligned with o and end with x. We
multiply scalars a and b to obtain scalar a b and align a b with & such that the origin
of a b coincides with o and a b extends along the line passing through Z. We obtain
end point y of so placed ab and construct the resulting vector ¥ = a © & = (0,y).

We notice that addition @ and multiplication ® of horizontal bound vectors
coincides exactly with addition and multiplication of scalars.

3.2 Linear space

We can verify that for every two geometric scalars a,b € S and every three bound
vectors T, , Z € A, with their respective operations, there holds the following eight
rules

IO Yo7 = FePor (3.3)
@Y joi (3.4)
Z®0 T (3.5)
f®—1 = 0 (3.6)
107 = & (3.7)

(@ab)OF = a®bOT) (3.8)

a@ @@y = (a0Z)@(a0y) (3.9)

(a+b)OF = @ODDODLOT) (3.10)

These rules are known as axioms of a linear space [5, 6, 3]. Bound vectors are one
particular model of the linear space. There are many other very useful models, e.g.
n-tuples of real or rational numbers for any natural n, polynomials, series of real
numbers and real functions. We will give some particularly simple examples useful
in geometry later.

Figure 3.4: Multiplication of the bound vector & by a geometric scalar a is realized
by aligning rulers to vectors and multiplication of geometric scalars.

18
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Figure 3.5: Coordinates are the unique scalars that combine independent basic vec-
tors by, by into .

The next concept we will introduce are coordinates of bound vectors. To illustrate
this concept, we will work in a plane. Figure 3.5 shows two non-collinear bound
vectors bl, bg, which we call basis, and another bound vector . We see that there i is
only one way how to choose scalars x; and x9 such that vectors z1 ® b1 and x9 ® b2
add to 7, i.e. . .

f:w1®bl (—BwQQbQ (3.11)

Scalars 21, xy are coordinates of T in (ordered) basis [by, ba].

3.3 Free vectors

We can choose any point from A to construct bound vectors and all such choices
will lead to the same manipulation of bound vector and to the same axioms of a
linear space. Figure 3.6 shows two such choices for points o and o'.

We take bound vectors by = (0,b1), by = (0,bs), & = (0, ) at o and construct
bound vectors b] = (o', b)), by = (¢/,b,), &’ = (¢/,2') at o by translating z to 2/, by
to b} and by to by by the same translation. Coordinates of Z w.r.t. [51, (;2] are equal
to coordinates of Z’ w.r.t. [5{, l_;é] This interesting property allows us to construct
another model of a linear space, which plays an important role in geometry.

Let us now consider the set of all geometric vectors A. Figure 3.7(a) shows an
example of a few points and a few geometric vectors. Let us partition [1] the set A of

Figure 3.6: Two sets of bound vectors A, and A,. Coordinates of & w.r.t. [51, 52]
are equal to coordinates of Z’ w.r.t. [b1, b3].
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" N

(a) (b)

Figure 3.7: The set A of all geometric vectors (a) can be partitioned into subsets
which are called free vectors. Two free vectors A, ,) and A, ), ie.
subsets of A, are shown in (b).

geometric vectors into disjoint subsets A, ;) such that we choose one bound vector
(0,7) and put to A, all geometric vectors that can be obtained by a translation
of (0,z). Figure 3.7(b) shows two such partitions A(, .y, A(oy). It is clear that
Aoz) N Aoy = I for © # 2" and that every geometric vector is in some (and in
exactly one) subset A, ).

Two geometric vectors (o0, z) and (o',2') form two subsets A, ), A(y ) Which
are equal if and only if (¢o/,2’) is related by a translation to (o, z).

“To be related by a translation” is an equivalence relation [1]. All geometric
vectors in A, ;) are equivalent to (o, z).

There are as many sets in the partition as there are bound vectors at a point.
We can define the partition by geometric vectors bound to any point o because if
we choose another point o/, then for every point x, there is exactly one point ' such
that (o0,x) can be translated to (o, z').

We denote the set of subsets A, ,) by V. Let us see that we can equip set V
with a meaningful addition H: V' x V — V and multiplication [[]: S x V. — V by
geometric scalars S such that it will become a model of the linear space. Elements
of V' will be called free vectors.

We define the sum of ¥ = A,y and y = Ay, i.e. £ = & B y is the set
Alo,2)® (o). Multiplication of & = A(, ;) by geometrical scalar a is defined analogi-
cally, i.e. a[]Z equals the set A,q (). We see that the result of [ and [-] does not
depend on the choice of 0. We have constructed the linear space V of free vectors.

§18 Why so many vectors? In the literature, e.g. in [3, 4, 7], linear spaces are
often treated purely axiomatically and their geometrical models based on geometrical
scalars and vectors are not studied in detail. This is a good approach for a pure
mathamtician but in engineering we use the geometrical model to study the space
we live in. In particular, we wish to appreciate that good understanding of the
geometry of the space around us calls for using bound as well as free vectors.

3.4 Affine space

We saw that bound vectors and free vectors were (models of) a linear space. On the
other hand, we see that the set of geometric vectors A is not (a model of) a linear
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/
/

Figure 3.8: Free vector A, ;) is added to free vector A,y by translating (o,z) to
(¢;2") and (p,y) to (¢,y'), adding bound vectors (q,z) = (¢,2") ® (¢.¥/)
and setting A, ) H Ay = 4

T x

N

o
/ N o fooe
— TN

p

/.
/

4,2)

Y

v

£

gy

Figure 3.9: Free vectors 4, ¥ and w defined by three points x, y and z satisfy triangle
identity «H v = 0.

space because we do not know how to meaningfully add (by translation) geometric
vectors which are not bound to the same point. The set of geometric vectors is an
affine space.

The affine space connects points, geometric scalars, bound geometric vectors and
free vectors in a natural way.

Two points = and y, in this order, give one geometric vector (z,y), which de-
termines exactly one free vector v = A, ,y. We define function p: A — V', which
assigns to two points x,y € P their corresponding free vector o(z,y) = A,

Consider a point a € P and a free vector & € V. There is exactly one geometric
vector (a,z), with a at the first position, in the free vector #. Therefore, point a
and free vector ¥ uniquely define point . We define function #: P x V' — P, which
takes a point and a free vector and delivers another point. We write a#Z = x and
require ¥ = ¢(a, ).

Consider three points x,y, z € P, Figure 3.9. We can produce three free vectors
U= p(r,y) = Ay, U= 0Y,2) = Ay, W= 9(,2) = A, Let us investigate
the sum Z @ y. Chose the representatives of the free vectors, such that they are
all bound to z, i.e. bound vectors (z,y) € Aszy, (7,t) € Ay ;) and (z,2) € A, ..
Notice that we could choose the pairs of original points to represent the first and the
third free vector but we had to introduce a new pair of points, (z,t), to represent
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Figure 3.10: Affine space (P, L, ¢), its geometric vectors (x,y) € A = P x P and free
vector space L and the canonical assignment of pairs of points (x,y) to
the free vector A, ,y. Operations @, B, combining vectors with vectors,
and #, combining points with vectors, are illustrated.

the second free vector. Clearly, there holds (x,y) @ (x,t) = (x,2). We now see,
Figure 3.9, that (y, z) is related to (x,t) by a translation and therefore

UHT = Ay B Ay = Ay BAwy = Aeyee = Awe) =0 (3.12)

Figure 3.10 shows the operations explained above in Figure 3.9 but realized using
the vectors bound to another point o.

The above rules are known as azioms of affine space and can be used to define
even more general affine spaces.

§19 Remark on notation We were carefully distinguishing operations (+, ) over
scalars, (®,®) over bound vectors, (F,[:]) over free vectors, and function # com-
bining points and free vectors. This is very correct but rarely used. Often, only the
symbols introduced for geometric scalars are used for all operations, i.e.

+ = + e+ (3.13)
= , O, (3.14)

§20 Affine space Triple (P, L,¢) with a set of points P, linear space (L,H,[-])
(over some field of scalars) and a function ¢: P x P — L, is an affine space when
Al ¢(z,z) = p(z,y) He(y, z) for every three points z,y,z € P

A2 for every o € P, the function ¢,: P — L, defined by ¢,(z) = ¢(o,z) for all
x € P is a bijection [1].

Axiom A1l calls for an assignment of pairs of point to vectors. Axiom A2 then makes
this assignmet such that it is one-to-one when the first argument of ¢ is fixed.

We can define another function #: P x L — P, defined by o#i = ¢, (%), which
means (o, o#Z) = Z for all # € L. This function combines points and vectors in a
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Figure 3.11: Point x is represented in two affine coordinate systems.

way that is very similar to addition and hence is sometimes denoted by + instead
of more correct #.

In our geometrical model of A discussed above, function ¢ assigned to a pair of
points z, y their corresponding free vector A, ). Function #, on the other hand,
takes a point x and a free vector ¢ and gives another points y such that the bound

—

vector (z,y) is a representative of ¥, i.e. Ay ) = .

3.5 Coordinate system in affine space

We see that function ¢ assigns the same vector from L to many different pairs of
points from P. To represent uniquely points by vectors, we select a point o, called
the origin of affine coordinate system and represent point x € P by its position vector
Z = p(o,z). In our geometric model of A discussed above, we thus represent point
x by bound vector (o, z) or by point o and free vector A, ).

To be able to compute with points, we now pass to the representation of points
in A by coordinate vectors. We choose a basis § = (51, 52, ...)in L. That allows us
to represent point x € P by a coordinate vector

T
g = | ¥2 |, such that &= x; b1+ a2bs + - (3.15)

The pair (o,f), where o € P and [ is a basis of L is called an affine coordinate
system (often shortly called just coordinate system) of affine space (P, L, ¢).

Let us now study what happens when we choose another point o’ and another
basis 3 = (6{, I;é, ...) to represent = € P by coordinate vectors, Figure 3.11. Point x
is represented twice: by coordinate vector 3 = p(0,2)g = A(o,2)p and by coordinate
vector &, = @(0',2)gr = Aot 2)p7-

To get the relationship between the coordinate vectors Zz and :E’/’g,, we employ
the triangle equality

plo,z) = ¢(o,0)Hp(d,x) (3.16)
F = oma (3.17)
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Figure 3.12: Affine space (P, V, ¢) of solutions to a linear system is the set of vectors
representing points on line p. In coordinate system (0, i), vector Z has
coordinate 1. The subspace V' of solutions to the associated homoge-
neous system is the associated linear space. Function ¢ assigns to two
points 0, Z the vector u = i — Z.

which we can write in basis 5 as (notice that we replace [ by + to emphasize that
we are adding coordinate vectors)

Tg = fé—l—ﬁé (318)

and use the matrix A transforming coordinates of vectors from basis 3’ to 3 to get
the desired relationship

—

Tg = AT +0p (3.19)
Columns of A correspond to coordinate vectors l;{ ex l;é G When presented with a

situation in a real affine space, we can measure those coordinates by a ruler on a
particular representation of L by geometrical vectors bound to, e.g., point o.

3.6 An example of affine space

Let us now present an important example of affine space.

3.6.1 Affine space of solutions of a system of linear equations

When looking at the following system of linear equations in R?

e 520

we immediately see that there is an infinite number of solutions. They can be written

7= [3] +r [_ﬂ reR (3.21)
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or as a sum of a particular solution [2,0]" and the set of solutions 7 = 7 [—1,1]" of
the accompanied homogeneous system

{_1 _i]ﬁ: [8] (3.22)

Figure 3.12 shows that the affine space (P,V,¢) of solutions to the linear sys-
tem (3.20) is the set of vectors representing points on line p. The subspace V' of
solutions to the accompanied homogeneous system (3.22) is the linear space associ-
ated to A by function ¢, which assigns to two points Z, i € A the vector & = y—2Z € V.
If we choose & = [2,0]T as the origin in A and vector b = ¢(3,%) = & — & as the
basis of V', vector & has coordinate 1.

We see that, in this example, points of A are actually vectors of R?, which are
the solution to the system (3.20). The vectors of V are the vectors of R?, which are
solutions to the associated homogeneous linear system (3.22).
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4 Motion

Let us introduce a mathematical model of rigid motion in three-dimensional Eu-
clidean space. The important property of motion is that it only relocates objects
without changing their shape. Distances between points on rigidly moving objects
remain unchanged.

4.1 Change of position vector coordinates induced by
motion

Figure 4.1: Representation of rigid motion.

§21 Alias representation of motion'. Figure 4.1 illustrates a model of (rigid)

motion using coordinate systems, points and their position vectors. A coordinate
system (O, 8) with origin O and basis 8 is attached to a moving rigid body. As
the body moves to a new position, a new coordinate system (O’, 8’) is constructed.
Assume a point X in a general position w.r.t. the body, which is represented in the
coordinate system (O, 3) by its position vector Z. The same point X is represented
in the coordinate system (O’ 3’) by its position vector Z’. The motion induces a
mapping a‘r’é/ — Zg. Such a mapping also determines the motion itself and provides
its convenient mathematical model.

!The terms alias and alibi were introduced in the classical monograph [13].
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Let us derive the formula for the mapping :Z"’é, — Zg between the coordinates
5%, of vector Z’ and coordinates Z of vector Z. Consider the following equations:

z = &+ (4.1)
Tg = Tp+04 (4.2)
7y = [E;B b, Egﬁ]f;g,m/g (4.3)
fﬂ = Rfé/+5é (44)
#h = R (¥ — ) (4.5)

Vector 7 is the sum of vectors ' and o’, Equation 4.1. We can express all vectors
in (the same) basis 3, Equation 4.2. To pass to the basis 8’ we introduce matrix

R = [l;{ﬂ Béﬁ l_)}ﬁ) B], which transforms the coordinates of vectors from B3’ to S,

Equation 4.4. Columns of matrix R are coordinates 5{ 6,55 g,gé 5 of basic vectors

l;{, Eé, gg of basis 8’ in basis 3.

§22 Alibi representation of motion. An alternative model of (rigid) motion can
be developed from the relationship between the points X and Y and their position
vectors in Figure 4.1. The point Y is obtained by moving point X altogether with
the moving object. It means that the coordinates gj’é, of the position vector 3’ of Y’
in the coordinate system (O’, 8’) equal the coordinates @3 of the position vector &
of X in the coordinate system (O, 3), i.e.

Up = g
Ysr +0g = Ip
R! (?jﬁ + 55) = fg
ys = RIp—0p (4.6)
Y3 = RIg+ 5:/;) (4.7)

Equation 4.6 describes how is the point X moved to point Y w.r.t. the coordinate
system (O, f3).

4.2 Rotation matrix

Motion that leaves at least one point fixed is called rotation. Choosing such a fixed
point as the origin leads to O = O’ and hence to 6 = 0. The motion is then fully
described by matrix R, which is called rotation matriz.

§23 Two-dimensional rotation. To understand the matrix R, we shall start with
an experiment in two-dimensional plane. Imagine a right-angled triangle ruler as
shown in Figure 4.2(a) with arms of equal length and let us define a coordinate
system as in the figure. Next, rotate the triangle ruler around its tip, i.e. around the
origin O of the coordinate system. We know, and we can verify it by direct physical
measurement, that thanks to the symmetry of the situation, the parallelograms
through the tips of l;{ and l_% and along by and by will be rotated by 90 degrees. We
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Figure 4.2: Rotation in two-dimensional space.

see that

g{ = all 51 + ao1 52 (4.8)

by = —an by + a1 by (4.9)

for some real numbers a1 and as;. By comparing it with Equation 4.3, we conclude
that

R= {“” _‘m] (4.10)
a1 ail

We immediately see that

_ 2 2
R'R — ail a2 | | a1 ag | _ a3 +ay ) 0 , | = 10 L11)
—a1 air | [az  an 0 af; + as 01

since (a}; + a3;) is the squared length of the basic vector of by, which is one. We
derived an interesting result

R°! = RT (4.12)
R = R ' (4.13)

Next important observation is that for coordinates #3 and flli’” related by a rotation,
there holds

(@) + ()2 = T ) = (Ris) Rig = T (R'R) Tg = F575 = + 3> (4.14)

Now, if the basis 8 was constructed as in Figure 4.2, in which case it is called an
orthonormal basis, then the parallelogram used to measure coordinates xz,y of 7' is a
rectangle and hence 22 + 3?2 is the squared length of Z by the Pythagoras theorem.
If B’ is related by rotation, then also (2/)? + (y')? is the squared length of ¥, again
thanks to the Pythagoras theorem.

We see that :E’Ta_c’ﬁ is the squared length of ¥ when f is orthonormal and that this
length is preserved by computing it in the same way from the new coordinates of &
in the new coordinate system after motion. The change of coordinates induced by
motion is modeled by rotation matrix R, which has the desired property R'R = I,
when the bases 3, 3’ are both orthonormal.
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S

Figure 4.3: A three-dimensional coordinate system.

§24 Three-dimensional rotation. Let us now consider three dimensions. It would
be possible to generalize Figure 4.2 to three dimensions, construct orthonormal bases
and use rectangular parallelograms to establish the relationship between elements of
R in three dimensions. However, the figure and the derivations would become much
more complicated.

We shall follow a more intuitive path instead. Consider that we have found that
with two-dimensional orthonormal bases, the lengths of vectors could be computed
by the Pythagoras theorem since the parallelograms determining the coordinates
were rectangular. To achieve this in three dimensions, we need (and can!) use bases
consisting from three orthogonal vectors. Then, again, the parallelograms will be
rectangular and hence the Pythagoras theorem for three dimensions can be used
analogically as in two dimensions, Figure 4.3.

Considering orthonormal bases (3, 3’, we require the following to hold for all
vectors ¥ with Zg = [z y Z]T and 7, = [« o z’]T

@)+ )+ () = 2ty 42
Fy Ty = FyT
(RZs) RTs = T}Ts
7y R'R) @5 = Thig
TyCig = Thig (4.15)

Equation 4.15 must hold for all vectors & and hence also for special vectors such as
those with coordinates

of,l1],lo].|1].]lo0],|1 (4.16)

Let us see what that implies, e.g., for the first vector

1
[1 0 0Jc|o| =1 (4.17)
0
c11 = 1 (4.18)
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Taking the second and the third vector leads similarly to coo = ¢33 = 1. Now, let’s
try the fourth vector

1
[1 1 0]Jc|1| = 2 (4.19)

0
l4+cio+co+1 = 2 (4.20)
ci2 +co1 = .21)

Again, taking the fifth and the sixth vector leads to c¢13 + ¢31 = co3 + ¢33 = 0. This
brings us to the following form of C

1 ci2 c3
C = —C12 1 C23 (4.22)
—c13 —co3 1

Moreover, we see that C is symmetric since
T
c'=(R'R) =R'R=C (4.23)

which leads to —cjo = ¢12, —c13 = ¢13 and —ca3 = 93, i.e. c12 = c13 = co3 = 0 and
allows us to conclude that
RIR=C=1 (4.24)

Interestingly, not all matrices R satisfying Equation 4.24 represent motions in three-
dimensional space.
Consider, e.g., matrix

10 0
s=[01 o0 (4.25)
00 —1

Matrix S does not correspond to any rotation of the space since it keeps the plane
zy fixed and reflects all other points w.r.t. this xy plane. We see that some matrices
satisfying Equation 4.24 are rotations but there are also some such matrices that
are not rotations. Can we somehow distinguish them?

Notice that |S| = —1 while |I| = 1. It might be therefore interesting to study
the determinant of C in general. Consider that

1

1) = |RTR)| = [R7| [R] = [&] [R] = (|R)? (4.26)

which gives that [R| = +1. We see that the sign of the determinant splits all
matrices satisfying Equation 4.24 into two groups — rotations, which have a positive
determinant, and reflections, which have a negative determinant. The product of
any two rotations will again be a rotation, the product of a rotation and a reflection
will be a reflection and the product of two reflections will be a rotation.

To summarize, rotation in three-dimensional space is represented by a 3 x 3
matrix R with R'R = I and |[R| = 1. The set of all such matrices, and at the same
time also the corresponding rotations, will be called SO(3), for special orthonormal
three-dimensional. Two-dimensional rotations will be analogically denoted as SO(2).
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4.3 Coordinate vectors

We see that the matrix R induced by motion has the property that coordinates

and the basic vectors are transformed in the same way. This is
observation when [ is formed by the standard basis, i.e.

particularly useful

1 0 0
b= 0O,]11f,]0 (4.27)
0 0 1
For a rotation matrix R, Equation 2.16 becomes
lz{ lzl 11 T2 713 121 11 121 + 12 122 + 713 123
by | = R|ba|=|ra1 722 723 | | ba| = | ro1bi +roabay+ ro3b3 (4.28)
bé b3 31 T32 T33 b3 731 b1 + 139 by + 133 b3
and hence
1] 0 0 11
b{ = riubi+ripby+risbs=ri [0 +r2| 1| +7r3| 0| =|r02 4'29)
0 | 0 1 13
and similarly for 55 and I;Q We conclude that
o 11 T21 731
[b{ b5 bé] = |r2 122 7| =R' (4.30)
T3 T23 733
This also corresponds to solving for R in Equation 2.14 with A =R
1 00
01 0| =[5 B KR (4.31)
0 0 1
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5 Rotation

5.1 Properties of rotation matrix

Let us study additional properties of the rotation matrix in three-dimensional space.

5.1.1 Inverse of R

Let
i1 T2 Ti13
R=|mro1 722 723
31 T32 T33

(5.1)

be a rotation matrix. We can find the inverse of R by evaluating its adjugate ma-

trix [4] and use R~"!' =R" and [R| =1

1

R = —Adj(R)
IR|

RT = Adj(R)

(5.2)

(5.3)

T22T33 —T23732 T137T32 — 712733 T12723 — 113722
= 723731 — 1721733 T11733 —T13731 7T13721 — 711723 (5.4)
21732 — 1722731 T12731 — 711732 711722 — 712721

which also gives an alternative expression of

11 T12 713 792733 — 123732 123731 — 1721733
R= 791 792 7oz | = | T13732 —T12733 T11733 — T13731
31 T32 T33 12723 —T13722 713721 — 711723

5.1.2 Eigenvalues of R

Let R be a rotation matrix. Then for every v € C3
RO)"RT=0"R'RT=0"RR)T=0"0
we see that for all 7€ C3 and A € C such that

RU =AU
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there holds!

AD)T(\T?) = (3'0) (5.8)
AN@D) = (@70 (5.9)
A*(@T) = (379) (5.10)

and hence |A|? = 1 for all @ # 0. We conclude that the absolute value of eigenvalues
of R is one.
Next, by looking at the characteristic polynomial of R

A—rn —T12 —T13
p(A) = |[(AI—-R)| = —ro1 A —To —ro3 (5.11)
—T31 —T32 A—T33
= )\3 — (7’11 + 1roo + 7“33) /\2
+(r11 722 — ro1 712 + 11733 — 131713 + ro2 733 — ra3T32) A (5.12)
+711 (123 732 — T22733) — 121 (132713 — T12733) + 731 (r13 722 — T12723)
= M- (1"11 + 190 + 1"33) 22 + (7“33 + 1r99 + 7‘11) P |R| (5.13)
= A —traceR(A\2 = \) — 1 (5.14)
= (A—1) (A + (1 — traceR) A + 1) (5.15)

we conclude that 1 is always an eigenvalue of R. Notice that we have used identities
in Equation 5.5 to pass from Equation 5.12 to Equation 5.132.

Let us denote the eigenvalues as A\; = 1, Ao = x + yt and A3 = = — y¢ with real
x,y. It follows from the above that 22 4+ y?> = 1. We see that there is either one
real or three real solutions since if y = 0, then 22 = 1 and hence Ay = A3 = +1. We
conclude that we can encounter only two situations when all eigenvalues are real.
Either )\1 = )\2 = )\3 = 1, or )\1 =1 and )\2 = )\3 = —1.

5.1.3 Eigenvectors of R.

Let us now look at eigenvectors of R and let’s first investigate the situation when all
eigenvalues of R are real.

§25 \; = Ay = A3 = 1: Let Ay = Ay = A3 = 1. Then p(A) = (A —1)3 =
A3 —3A2 +3)\—1. It means that 711 + roo + r33 = 3 and since r1; < 1, roo < 1,
r33 < 1, it leads to 711 = 792 = 733 = 1, which implies R = I. Then I — R = 0 and
all non-zero vectors of R3 are eigenvectors of R. Notice that rank of R — I is zero in
this case.

"We will use the conjugate transpose [4] on vectors with complex coordinates. It means, e.g., that

. AT . )
a1 +bii a2 +bizi | [ ain —bini a1 —bai
az1 +ba1i  ase + bz i a2 —bi2i  ase —baai

fOI‘ all ail,a12,021,a22, b11, b127 b217 b22 e R. AlSO recall [2] that E = 55 fOI‘ all a, b e R.

2 Alternatively. It follows from the Fundamental theorem of algebra [6] the p(\) = 0 has always
a solution in C and since coefficients of p(\) are all real, the solutions must come in complex
conjugated pairs. The degree of p()\) is three and thus at least one solution must be real and
hence equal to +1. Now, since p(0) = — |(R)| = —1, limx— p(A) = o0, and p(\) is a continuous
function, it must (by the mean value theorem [2]) cross the positive side of the real axis and
hence one of its eigenvalues has to be equal to one.
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Next consider \; = 1 and Ay = A3 = —1. The eigenvectors ¢ corresponding to
Ay = A3 = —1 are solutions to

R = —0 (5.16)

There is always at least one one-dimensional space of such vectors. We also see that
there is a rotation matrix

1 0
R=]0 -1 O (5.17)
0 -1
with eigenvectors
1 0 0
r|0|,r=#0, and s|1{+t|0],s*+t>+0, (5.18)
0 0 1

which means that there is a one-dimensional space of eigenvectors corresponding to
1 and a two-dimensional space of eigenvectors corresponding to —1. Notice that
rank of R — I is two here.

§26 A\ =1, o = A3 = —1: How does the situation look for a general R with eigen-
values 1, —1, —17 Consider an eigenvector ¥ corresponding to 1 and an eigenvector
Up corresponding to —1. They are linearly independent. Otherwise there has to be
s € R such that U5 = sv; # 0 and then

272 = 8271 (5.19)
Rl_fg = SR171 (5.20)
*2_}»2 = 8271 (521)
leading to s = —s and therefore s = 0 which contradicts v # 0. Now, let us look at
vectors 73 € R? defined by
=T
[7}] ¥ o= 0 (5.22)
U2

The above linear system has a one-dimensional space of solutions since the rows of
its matrix are independent. Chose a fixed solution ¢35 # 0. Then

=T STRT =T
Uy | pT = IR vy |~
=R = | _ = 4 =0 5.23
H & [R] [—} (5:23)

We see that R #3 and ¥ are in the same one-dimensional space, i.e. they are linearly
dependent and we can write

RI O3 = 503 (5.24)
for some non-zero s € C. Multiplying equation 5.24 by R from the left and dividing
both sides by s gives

1
5273 = R U3 (525)

Clearly, U3 is an eigenvector of R. Since it is not a multiple of ¥, it must correspond

to eigenvalue —1. Moreover, ¥, o3 = 0 and hence they are linearly independent.
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We have shown that if —1 is an eigenvalue of R, then there are always at least two
linearly independent vectors corresponding to the eigenvalue —1 and therefore there
is a two-dimensional space of eigenvectors corresponding to —1. Notice that the
rank of R — I is two in this case since the two-dimensional subspace corresponding
to —1 can be complemented only by a one-dimensional subspace corresponding to 1
to avoid intersecting the subspaces in a non-zero vector.

§27 General \j, A2, A3:  Finally, let us look at arbitrary (even non-real) eigenval-
ues. Assume \ = x + yi for real x, y. Then we have

RU = (z+yi)v (5.26)

If y # 0, vector ¥ must be non-real since otherwise we would have a real vector on the
left and a non-real vector on the right. Furthermore, the eigenvalues are pairwise
distinct and hence there are three one-dimensional subspaces of eigenvectors (we
now understand the space as C* over C). In particular, there is exactly one one-
dimensional subspace corresponding to eigenvalue 1. The rank of R — I is two.

Let ¥ be an eigenvector of a rotation matrix R. Then

RU = (v+yi)v (5.27)

R'RT (z 4+ yi)R' (5.28)

7 = (x+yi)R'T (5.29)

(xjyi) 7 = R'T (5.30)
(r—yi)d = R'Y (5.31)

We see that the eigenvector ¢ of R corresponding to eigenvalue x + yi is the eigen-
vector of RT corresponding to eigenvalue z — yi and vice versa. Thus there is the
following interesting correspondence between eigenvalues and eigenvectors of R and
R'. Considering eigenvalue-eigenvector pairs (1,%1), (z + yi, 0s), (z — yi, U3) of R we
have (1,1), (z — yi, v2), (x + yi, v3) pairs of R', respectively.

§28 Orthogonality of eigenvectors The next question to ask is what are the angles
between eignevectors of R? We will considers pairs (A = 1,91), (A2 = = + yi, ¥a),
(A3 = x — yi,U3) of eigenvectors associated with their respective eigenvalues. For
instance, vector ; denotes an eigenvector associated with egenvalue 1.

If all eigenvalues are equal to 1, i.e. R = I, then all non-zero vectors of R? are
eigenvectors of R and hence we can alway find two eignevectors containing a given
angle. In particular, we can choose three mutually orthogonal eignevectors.

If Ay =1 and Ay = A3 = —1, then we have seen that every v is perpendicular to
Uy and U3 and that ¥ and U3 can be any two non-zero vectors in a two-dimensional
subspace of R3, which is orthogonal to #. Therefore, for every angle, there are ¥
and U3 which contain it. In particular, it is possible to choose U5 to be orthogonal
to U3 and hence there are three mutually orthogonal eigenvectors.

Finally, if A, A3 are non-real, i.e. y # 0, we have three mutually distinct eigen-
values and hence there are exactly three one-dimensional subspaces (each without
the zero vector) of eigenvectors. If two eigenvectors are from the same subspace,
then they are linearly dependent and hence they contain the zero angle.
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Let us now evaluate 7] v

0ty = U RRUy =] (x +yi) Ty = (x4 yi) T O (5.32)
We conclude that either (x + yi) = 1 or ¥ ¥, = 0. Since the former can’t be the
case as y # 0, the latter must hold true. We see that ¥ is orthogonal to 7s. We can
show that v7 is orthogonal to ¥/3 exactly in the same way.
Let us next consider the angle between eigenvectors s and U3

U3Th = V4R RUy = (T3(x—i)) (z +yi) Do (5.33)
= T (@ +yi)(z + yi) Ty (5.34)
Tath = (22 +2xyi—y?) T 0s (5.35)

We conclude that either (22 +2xyi—1?) = 1 or U3 U = 0. The former implies zy = 0
and threfore = 0 since y # 0 but then —y? = 1, which is, for a real 3, impossible.
We see that 17; s = 0, i.e. vectors U5 are orthogonal to vectors ¥s.

Clearly, it is always possible to choose three mutually orhogonal eigenvectors.
We can further normalize them to unit legth and thus obtain an orthonormal basis
as non-zero orthogonal vectors are linearly independent. Therefore

A1
R[Ul Vs 173] = [171 Vs 173] Ao (536)
A3
T >\1
[’171 Vs 173] R[Ul Ug 173] = Ao (537)
A3
Let us further investigate the structure of eigenvectors vs, v3. We shall show

that they are “conjugated”. Let’s write vo = o + wi with real vectors u, w. There
holds

RUs = R(U+wWi)=RU+RwWi (5.38)
(x4+yi)Ta = (x+yi)(d+Wi)=xd—yd+ (zd + yi)i (5.39)
which implies
Riu=z2zu—ywW and RW=zd+yu (5.40)
Now, let us compare two expressions: R (@ — wi) and (z — yi) (4 — Wi)
R(U—wi) = RU—RWi=zd—yw— (zd+yu)i (5.41)
(r—y)(U—wWi) = zUd—ywW— (xW+yu)i (5.42)
We see that
R (U — wi) = (x — yi) (4 — Wi) (5.43)

which means that (x — yi, @ — @i) are an eigenvalue-eigenvector pair of R. It is
importatnt to understand what has been shown. We have shown that if @ + wi is an
eigenvector of R corresponding to an eigenvalue A, then the conjugated vector @ — wi
is an eignevector of R corresponding to eigenvalue, which is conjugated to A\ (This
does not mean that every two eigenvectors corresponding to x + yi and x — yi must
be conjugated).
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The conclusion from the previous analysis is that the both non-real eigenvectors
of R are generated by the same two real vectors @ and w. Let us look at the angle
between ¢ and w. Consider that

0=030h = (@—wi) (d@+wi)=(a" + @ i)(d+ i) (5.44)
= (@4 — "0+ (@0 + T @) i (5.45)
= (@i — @0 + 2w di (5.46)
and therefore
@'d=w'w and @'@=0 (5.47)

which means that vectors @ and @ are orthogonal.
Finally, let us consider

0 =0, 0y = 0] 4 + 7] Wi (5.48)

and hence

1

li=0 and @@ =0 (5.49)

<

which means that @ and @ are also orthogonal to 7.

5.1.4 Rotation axis

A one-dimensional subspace generated by an eigenvector ¢ of R corresponding to
A = 1, is called the rotation azis (or axis of rotation) of R. If R = I, then there is
an infinite number of rotation axes, otherwise there is exactly one. Vectors v, which
are in a rotation axis of rotation R, remain unchanged by R, i.e. RU = ¥.

Consider that the eigenvector of R corresponding to 1 is also an eigenvector of
R' since

RU; = i (550)
R'RT, = R'%) (5.51)
7 = R'7 (5.52)
It implies
R-RN7 = 0 (5.53)
0 r19 —T91 T13 — T'31
ro1 — T12 0 ro3 —7r3z | U7 = 0 (5.54)
r3] —T13 132 — T23 0
and we see that
0 r12 —T21 T13 —T31 r32 — 123 0
T91 — T'12 0 23 — T'32 13 — T31 = 0 (5.55)
T3] —T13 732 — 723 0 r91 — 112 0

Clearly, we have a nice formula for an eigenvector corresponding to A\; = 1, when
T . . .

vector [7“32 —Tr93 T13 —T31 To] — rlg] is non-zero. That is when R —R' is a non-

zero matrix, which is exactly when R is not symmetric.
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Let us now investigate the situation when R is symmetric. Then, R = R = R™!
and therefore
RR+I)=RR+R=I+R=R+1 (5.56)

which shows that the non-zero columns of the matrix R + I are eigenvectors cor-
responding to the unit eigenvalue. Clearly, at least one of the columns must be
non-zero since otherwise, R = —I and |R| would be minus one, which is impossible
for a rotation.

5.1.5 Rotation angle

Rotation angle 6 of rotation R is the angle between a non-zero real vector ¥ which
is orthogonal to ¥ and its image RZ. There holds

—»T —
Rx
6 = 5.57
cos =Tz ( )
Let us set
r=1u+w (5.58)

Clearly, # is a real vector which is orthogonal to 7] since both @ and w are. Let’s
see that it is non-zero. Vector ¥ is an eigenvector and thus

_T

0£ Tyt =u T+w'

W (5.59)
and therefore @ # 0 or @ # 0. Vectors @, @ are orthogonal and therefore their sum
can be zero only if they both are zero since otherwise for, e.g., a non-zero i we get
the following contradiction

0=d 0=a"(@+7) =td d+d T=1a"d#0 (5.60)
Let us now evaluate

FRT  (U+ W) R(@+ W) (B4 0) (xd—yw+ 2w+ yi)
sl = —o =S - = R e
T (@ + @) T (4 + @) ald+ T
STo =T STo =T =
+ + —
_ x(u'u w_‘_;u_? g_/q(_u_)u W) (5.61)
u'u+w'w
_ (5.62)

We have used equation 5.40 and equation 5.47. We see that the rotation angle
is given by the real part of Ao (or A3). Consider the characteristic equation of R,
Equation 5.12

0 = X\ —traceRA\2 + (RH + Roo + R33) A — |R’ (5.63)
= A=1)A—z—yi))(A—xz+yi) (5.64)
= NM-Qr+ )N+ @22+ N — (2% +¢°) (5.65)

We see that traceR = 2z + 1 and thus

1
cosf = i(traceR —1) (5.66)
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5.1.6 Matrix (R —I).

We have seen that rank (R — I) = 0 for R = I and rank (R — I) = 2 for all rotation
matrices R # I.

Let us next investigate the relationship between the range and the null space of
(R — I). The null space of (R — I) is generated by eigenvectors corresponding to 1
since (R — I)¥ = 0 implies R¥ = ¥.

Now assume that vector ¥ is also in the range of (R — I). Then, there is a vector
@ € R? such that ¥ = (R — I)d. Let us evaluate the square of the length of @

7' = 'R-1)a=@0R-7)a=(0"-0")a=0 (5.67)

which implies @ = 0. We have used result 5.31 with 2 = 1 and y = 0.
We conclude that in this case the range and the null space intersect only in the
zero vector.
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6 Axis of Motion

We will study motion and show that every motion in three dimensional space has
an axis of motion. Axis of motion is a line of points that remain in the line after the
motion. The existence of such an axis will allow us to decompose every motion into
a sequence of a rotation around the axis followed by a translation along the axis as
shown in Figure 6.1(a).

§29 Algebraic characterization of the axis of motion. Consider Equation 4.7 and
denote the motion so defined as m(Z3) = RZg + 5é w.r.t. a fixed coordinate system
(O, B). Now let us study the sets of points that remain fixed by the motion, i.e. sets
F such that for all Zg € F' motion m leaves the m(Zg) in the set, i.e. m(Z3) € F.
Obviously, complete space and the empty set are fixed sets. How do look other,
non-trivial, fixed sets?

A nonempty F' contains at least one Zg. Then, both ¢z = m(Z3) and Z5 = m(ys)
must be in F, see Figure 6.1(b). Let us investigate such fixed points Zg for which

Zﬁ — 375 = ﬂﬁ — .@3 (6.1)

holds. We do not yet know whether such equality has to necessary hold for points
of all fixed sets F' but we see that it holds for the identity motion id that leaves all
points unchanged, i.e. id(Z3) = 3. We will find later that it holds for all motions
and all their fixed sets. Consider the following sequence of equatities

Zs—ys = Us—Tp
R(RZs + 0f) + 05 — RT3 — 05 = RiIg+ 05— T3
R*T3 + ROp —Riy = Rig+ 05— Tp
R*Ts —2RTs+ Ty = —Rah+ 0}
(R*—2R+1) 7 = —(R—1I)d4
R-I)R-1)Zg = —(R—1I)0; (6.2)
R-I)(R—-1I)Zs+0d5) = 0

Equation 6.3 always has a solution. Let us see why.

Recall that rank (R — I) is either two or zero. If it is zero, then R— I = 0 and (i)
Equation 6.3 holds for every Z'g.

Let rank (R — I) be two. Vector oy either is zero or it is not zero. If it is zero,
then Equation 6.3 becomes (R — I)?#3 = 0, which has (ii) a one-dimensional space
of solutions because the null space and the range of R — I intersect only in the zero
vector for R # I.

Let 05 be non-zero. Vector g either is in the span of R — I or it is not. If G is
in the span of R — I, then (R — I)Zs + 04 = 0 has (iii) one-dimensional affine space
of solutions.
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Figure 6.1: Axis of motion.

If Jé is not in the span of R — I, then (R — I)g + 56/ for 3 € R® generates a
vector in all one-dimensional subspaces of R? which are not in the span of R — I.
Therefore, it generates a non-zero vector Z3 = (R—1I) g + 0 in the one-dimensional
null space of R — I, because the null space and the span of (R — I) intersect only
in the zero vector for R # I. Equation (R —I)¥s = Z3 — 0 is satisfied by (iv) a
one-dimensional affine set of vectors.

We can conclude that every motion has a fixed line of points for which Equa-
tion 6.1 holds. Therefore, every motion has a fixed line of points, every motion has
an axis.

630 Geometrical characterization of the axis of motion We now understand the
algebraic description of motion. Can we also understand the situation geometrically?
Figure 6.2 gives the answer. We shall concentrate on the general situation with R # I
and Jé # 0. The main idea of the figure is that the axis of motion a consists of
points that are first rotated away from a by the pure rotation R around r and then
returned back to a by the pure translation 6’5’.

Figure 6.2 shows axis a of motion, which is parallel to the axis of rotation r
and intersects the perpendicular plane o passing through the origin O at a point P,
which is first rotated in o away from a to P’ and then returned back to P” on a by
translation 0. Point P is determined by the component 0,4 of 05, which is in the
plane 0. Notice that every vector 6'5/ can be written as a sum of its component d, g
parallel to 7 and component 03 perpendicular to r.

6§31 Motion axis is parallel to rotation axis. Let us verify algebraically that the
rotation axis r is parallel to the motion axis a. Consider Equation 6.2, which we
can rewrite as

(R-1I)’# = —(R—1I)d4 (6.4)
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Figure 6.2: Axis a of motion is parallel to the axis of rotation r and intersects the
perpendicular plane o passing through the origin O at a point P, which
is first rotated in o away from a to P’ and then returned back to P” on
a by translation ¢’. Point P is determined by the component d, of o”,
which is in the plane o.

Define axis r of motion as the set of points that are left fixed by the pure rotation R,
ie.

R-—I)Z3 = 0 (6.5)
RT3 = T (6.6)

These are eigenvectors of R and the zero vector. Take any two solutions ¥ 3, Z2g of
Equation 6.4 and evaluate

(R—I)*(f1p—Tap) = —(R—I)34+(R—1)d5=0 (6.7)

and thus a non-zero Ti1g — T2 is an eigenvector of R. We see that the direction
vectors of a lie in the subspace of direction vectors of r.
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7 Rotation representation and parameterization

We have seen Chapter 5 that rotation can be represented by an orthonormal ma-
trix R. Matrix R has nine elements and there are six constraints R'R = I and one
constratint |[R| = 1. Hence, we can view the space of all rotation matrices as a
subset of RY. This subset! is determined by seven polynomial equations in nine
variables. We will next investigate how to describe, i.e. parameterize, this set with
fewer parameters and fewer constraints.

7.1 Angle-axis representation of rotation

cosb |

sin 6 T«

81
X

I
S
X
8

Figure 7.1: Vector 7 is obtained by rotating vector & by angle 6 around the rota-
tion axis given by unit vector . Vector ¢ can be written as a linear
combination of an orthogonal basis [T — (7] Zy) U, x &, (U} Zy) V).

We know, Paragraph 5.1.4, that every rotation is etermined by a rotation axis
and a rotation angle. Let us next give a classical construction of the rotation matrix
from an axis and angle.

Figure 7.1 shows how the vector ¥ rotates by angle 6 around an axis given by
a unit vector ¥ into vector . To find the relationship between ¥ and ¢, we shall
construct a special basis of R3. Vector Z either is, or it is not a multiple of @. If it
is, than i = & and R = I. Let us alternatively consider Z, which is not a multiple of

't is often called algebraic variaty in specialized literature [16].
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U (an hence is not the zero vector!). Futher, let us consider the standard basis o of
R3 and coordinates of vectors Z, and ¥,. We construct three non-zero vectors

f||cr = (U;—fa) Uy
T, = &—(0)T,)0, (7.2)
Tro = Ty X Ty (7.3

which are mutually orthogonal and hence form a basis of R3. We may notice that
cooridate vectors Z € R?, are actually equal to their coordinates w.r.t. the standard
basis 0. Hence we can drop ¢ index and write

7 o= (") =00"%)=@i")7=[v] & (7.4)
FLo= E-@0D)i=0—@F0)T=1-00)ZF=[0], & 7
Py = Uxi=[V],F 7

We have introduced two new matrices
[0]) =3 and [7], =1-07" (7.7)

Let us next study how the three matrices [v];, [¢],, [¢], behave under the trans-
position and mutual multiplication. We see that the following indentities

[ﬁ‘]l = (&, 19y Ly = 19l (o)) [l =0
=[], [¥, [17]” =0, [7], (0], =[v],, [7], [0], = [V]&, (7.8)
[0 = 1o, [0, [8], =0, [0], [0], =1 [, =

hold true. The last identity is obtained as follows

0 —U3 (%] 0 —U3 (%]
W, = | e 0w || w0 —u (79)
| —V9 V1 0 —V9 (% 0
[ —v3 —v3 V1v2 v1V3
= vivg  —v — v% Vo3 (7.10)
V13 vavy  —VF — V3
(0?2 -1 vive vvs
2 — —
= vivg vi =1 wvug | = [U] - I =—[v], (7.11)
V13 VU3 v% -1

We can now write ¥/ in the basis [fH,fJ_, Ty |

g = T+ 7L cost 7= H_, i + |71 sin € —=— H_, T (7.12)
><
[0], @ + cos O [v], &+ sinf [0], & (7.13)
= ([¢]) +cosO [0], +sind [v],) 7 =RT (7.14)
We used the fact that ||#,| = |Z«]| which follows from
[7? = #d =3 [ @7 =7 (- )= @ E (715
J#* = FlE =T @) [0, 7 =7 ) E = (), 7.16)
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We obtained matrix
R = [0]) + cosf [0], +sind [v], (7.17)

Let us check that this indeed is a rotation matrix

R'R

([17]” + cos @ [v], +sind [U]X)T ([17]” + cos @ [v], +sinf [ﬁ]x)

([17]” + cos@ U], —sind [U]X> <[17]H + cosf [0], +sind [U]X)
[7], + cos? 0[], +sinf cosf [v], —sinf cosO [v], + sin® 0 [7]
= [v]+[d], =1 (7.18)

It is sometimes useful to write R as a function of []

X

R = [U] +cosf [v], +sind [v], (7.19)
= [7]) + cosO (I —[7])) +sinb [7], (7.20)
= (1 —cost) [0] + cos@ I+sinf [v],, (7.21)
— (1 —cosf) ([7]% + 1)+ cosOT +sind [7], (7.22)
= I+sinf[d], + (1 —cosh)[7]% (7.23)
§32 Angle-axis parameterization Let us write R in more detail
R = (1—cosf) [v] +cosI+sind [v], (7.24)

V1vU1 V102 V1V3 1 0 0 0 —vV3 V2
(1 —cos®) | vav; wovy wovg | +cosf [0 1 0| +sinf V3 0 —wu
V3U1 V3V2 V3V3 0 0 1 —V9 U1 0

v1v1(1 — cosf) + cos@ viva(l — cosf) —wvgsinfh  vivz(l — cos) + v sin b
= | voui(1 —cosf) + v3sin€  wvoua(l — cosh) 4 cosf wvouz(1l — cosh) — vy sinb
v3v1(1 — cos ) —vasin€ wvsva(l —cosf) +vysinf  wzvs(l — cos @) + cosb

(7.25)

which allows us to parameterize rotation by four numbers
[0 vi v Ug]T with v} +v3 + 02 =1 (7.26)

The parameterization uses goniometric functions.

§33 Computing the axis and the angle of rotation from R Let us now discuss
how to get a unit vector v of the axis and the corresponding angle 6 of rotation
from a rotation matrix R, such that the pair [0, 7] gives R by Equation 7.25. To
avoid multiple representations due to periodicity of 6, we will confine 6 to real
interval (—m, 7].

We can get cos(f) from Equation 5.66.

If cos@ = 1, then sinf = 0, and thus 0 = 0. Then, R = I and any unit vector
can be taken as 7, i.e. all paris [0, 7] for unit vector ¥ € R? represent I.

If cosf = —1, then sin@ = 0, and thus § = 7. Then R is a symmetrical matrix
and we use Equation 5.56 to get U7, a non-zero multiple of 7, i.e. ¥ = a ¥, with real
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non-zero «, and therefore v /||01|| = s ¥ with s = +1. We are getting

R o= 2[0] —1=200" —1=25"00" —1=2(s7)(s7) —1I

v 7\ " 7 o\ "
2 () () —7=2 () () -
1o )\ [vi] |17 ||

from Equation 7.24 and hence we can form two pairs

U U
e bl
7] @

representing this rotation.
Let’s now move to —1 < cosf < 1. We construct matrix

R—R' =

(1 —cost) [U]| + cosOI+siné [0],

— ((1 —cos0) [0]) + cosO I + sind [17]X)T

(1 —cos®) 0] + cosfT+siné [0],
— ((1 —cos0) [0]) + cos O I —sind [U]X)

= 2sinf [7],
which gives
0 T12 — 721 T13 —T31 0 —v3 vy
91 — 712 O 723 — T'32 =2 sin@ V3 O —U1
r31 — 713 T32 — T23 0 —vy U 0
and thus
732 — 123
sinf v = 5 13 — 731
o1 — T12
We thus get
i 3 ; 1 2 2 2
| sin 6] [|]| = |sinf| = 5\/(7“23 —r32)® + (r31 —713)% + (112 — r21)

There holds

sin @ ¥ = sin(—0) (—7)

true and hence we define

32 — 7123

1 1
0 = arccos <2(trace (R) — 1)) , = 5 | "3 Ta

and write two pairs

| 721 — 712

|:+97 + .T ] ) [_91 _L
sin sin @ |

representing rotation R.
We see that all rotations are represented by two pairs of [0, ¥] except for the
identity, which is represented by an infinite number of pairs.
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7.2 Euler vector representation and the exponential map

Let us now discuss another classical and natural representation of rotations. It may
seem as only a slight variation of the angle-axis representation but it leads to several
interesting connections and properties.

Let us consider the euler vector defined as

07 (7.39)

™y

where 6 is the rotation angle and ¥ is the unit vector representing the rotation axis
in the angle-axis representation as in Equation 7.24.
Next, let us recall the very fundamental real functions [2] and their related power

series
0 xn
- i 7.40
e = 30 (7.40)
0
. (_1)71 2n+1
= —_ 7.41
S 7;0 @2n+ 1" (741)
0
(_1)n 2n
cosr = x (7.42)
ngo (2n)!
It makes sense to define the exponential function of an m x m real matrix A € R™*™
as
DO an
exphA = ZO — (7.43)
n=

We will now show that the rotation matrix R corresponding to the angle-axis pa-
rameterization [0, ] can be obtained as

R([9, 7)) = exple],, = exp[07], (7.44)

The basic tool we have to employ is the relationship between [¢]°. and [€],. Tt
will allow us to pass form the ifinite summantion of matrix powers to the infinite
summation of the powers of the 6 and hence to sinf and cos @, which will, at the
end, give the rodrigues formula. We write, Equation 7.11,

Pl = 62@i —1)
[0a)% = —6° 0],
et = o [or (7.45)
e, = o' [ou,
(0ol = 6" [00T3
and substitute into Equation 7.43 to get
0 n
. [0 7]
exp[07], = Zon!x (7.46)
0 2n 0 —12n+1
[0 7% [0 7T
2 ;0 2n + 1)! (7.47)
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Let us notice the identities, which are obtained by generalizing Equations 7.45 to
an arbitrary power n

B - 1 (7.48)
[0 = ()" PV forn=1,... (7.49)
[917]2Xn+1 = (-1 g2n [07], forn=0,... (7.50)

and substitute them into Equation 7.47 to get

D 1\yn—1p2(n—1) o )2
exp[07], 1+<<”(%§,> 072 +<§0 Coe ) ) 07,
0 -1 n_102n . n92n+1
_ H(n;( (;n)! )[U]ﬁ(;((zgﬂ) )mx
(_1)710271

RE

I
—
|
S
I
o

e 1) [7]2 + sin 6 [7],

— I—(cosf—1)[0)2 +sind[d],

= I+sinf[d], + (1 —cosh)[7]2
_ 1+sm\a[

|+ - cosa) [W]Q
— R ([0, 7) (751)

by the comparison with Equation 7.23.

4\ -

7.3 Quaternion representation of rotation

§34 Quaternion parameterization We shall now introdude another parameteri-
zation of R by four numbers but this time we will not use goniometric functions
but only polynomials. We shall see later that this parameterization has other useful
properties.

Let us do a seemingly unnecessary trick. We will pass from 6 to g and introduce

qn cos g
cos ¢ Q2 V1 Sin U
7= 3= = [ o (7.52)
Usin 5 q3 V9 sin g
qa v3sin g

There still holds

0 0 6 0 0 6
17 = ¢+ @3 +q3+q3 = cos® ~ +sin? — v +sin® ~ v3 +sin? = v3 = cos? ~ +sin® ~ =1
2 2 2 2 2 (27 53)
We can verify that there holds
0 0
sinf = 2 cos 5 sin 3 (7.54)
0
cosf) = 1—2sin? 5 (7.55)
6
1 —cosf = 2sin? 3 (7.56)
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true. We can now substitute the above into Equation 7.21 to get

R = I+sinf[d], + (1 —-cosb)[d]? (7.57)
0 0 0
= T+2cosg sing [7], +2 sin? 3 [7]2 (7.58)
0 6 6 _1°
= I+2cos— |sin=v| +2|[sin=v (7.59)
2727, 2]
0 0 0
= I+2cos2[sin2_’}x+2 ({sinQ*Ll—I) (7.60)
q2 q2
= I+2q¢ || ¢ +2 q3 ! (7.61)
a4 | ] a1y
1 2qqa 2qug3 20020 — 2 2qoq3 2qoq4
= 2q1q4 I —2qq | + 2q3q2  2q3q3—2  2q3q4
| 2193 2q142 1 2q4q2 2q4q3  2quqs —2
(G +a3 -3 —ad 2(qeas— qqs) 2 (q2q4 + q193)
= 20+ qa1) G—-G+6 -0 2(30— qe) (7.62)
2(q2q4 — q1G3) 2(q3q4 + 1q2) @G — @3 — a3+ q}

which uses only second order polynomials in elements of ¢.

§35 Computing quaternions from R To get the quaternions representing a ro-
tation matrix R, we start with Equation 7.59. Let us first confine 6 to the real
interval (—m, 7] as we did for the angle-axis parameterization.

Matrix R either is or it is not symmetric.

If R is symmetric, then either sinf/2% = 0 or cos#/2 = 0. If sinf/27 = 0, then
sinf/2 = 0 since ||| = 1 and thus cosf/2 = +1. However, cosf/2 = —1 for no
0 € (—m, m] and hence cosf/2 = 1. This corresponds to § = 0 and hence to R = I
which is thus represented by quaternion

[1 00 o] (7.63)

If cosf/2 = 0, then sinf/2 = +1 but sinf/2 = —1 for no € (—m, 7] and hence
sinf/2 = 1. This corresponds to the rotation the by # = 7 around the axis given by
unit ¥ = [vy, va, v3]". This rotation is thus represented by quaternion

[0 V1 V2 U3]T (7.64)

Notice that ¥ and —v generate the same rotation matrix R and hence every rotation
by 6 = 7 is represented by two quaternions.

If R is not symmetric, then R—R' # 0 and hence we are geting a useful relation-
ship

0 0
R—R' = 4cos—|sin=0 (7.65)
2 |72,
and next continue with writing
0 0 1 1 1 1
cos? 3= 1 —sin? 3 =1-3 (1 —cosf) = 1—5 <1 - i(traceR— 1)> =1 (1+traceR)

(7.66)
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using traceR, and thus

0 s
Q1 =cosy =g VtraceR + 1 (7.67)
with s = £1. We can form equation
0 r12 —7T21 T13 — 731 T32 — 123 q2
791 — T'12 0 o3 —T32 | = 713 — T3] = s+/traceR + 1 q3
r31 —7T13 732 — 723 0 ra1 =712 | |, q ||,
(7.68)
which gives the following two quaternions
traceR + 1 traceR + 1
+1 T32 — T23 -1 T32 — T23 (7.69)
2+/traceR+1 | T3 =731 | 2+/traceR+1 | 713 — 731 '
r21 — 112 r21 — 112

which represent the same rotation as R.

We see that all rotations are represented by two quaternions ¢ and —q except
for the identity, which is represented by exactly one quaternion.

The quaternion representation of rotation presented above represents every rota-
tion by a finite number of quaternions whereas angle-axis repesentation allowed for
an infinite number of angle-axis pairs to correspond to the indentity. Yet, even this
still has an “aesthetic flaw” at the identity, which has only one quaternion whereas
all other rotations have two quaternions. The “flaw” can be removed by realizing
that ¢ = [~1, 0,0, 0] also maps to the identity. However, if we look for 6 that
corresponds to cosf/2 = —1 we see that such /2 = +k7 and hence § = +2kx
for k = 1,2,..., which are points isolated from (pi, 7]. Now, if we allow 6 to be in
interval (—2 7, 4+2 7], then the set

cos /2 R
{[ﬁsin&/Q”ee[ 27, 27, ve R ,Hv[—l} (7.70)
of quaternions contains exactly two quaternions for every rotation matrix R and is
obtained by a continuous mapping of a closed interval of angles, which is boundend,
times a sphere in R3, which is also closed and bounded.

§36 Quaternion composition Consider two rotations represented by ¢; and .
The respective rotation matrices Ri, Ry can be composed into rotation matrix Ro; =
Ro Ry, which can be represented by ¢a21. Let us investigate how to obtain ¢»; from
¢1 and ¢>. We shall use Equation 7.71 to relate Ry to ¢; and Ry to ¢, then evaluate
Ro1 = Ro R and recover ¢»; from Rgp. We use Equation 7.21 to write

R=281112€1717T+(2 COSQQ—l)I—I-QCOSQSiHQ[’U]X (7.71)
2 2 2 2
and
Ri = 2 (81’171) (81171)T + (2 C% — 1) I+2c [Slﬁl]x (7.72)
Ry = 2 (82’[72) (82172)T + (2 C% — 1) I+ 2c [SQUQ]X (7.73)
Rt = 2(s21t1) (s21021)" + (2¢3; — 1) I + 2¢o1 [s:t1],
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with shortcuts

c Cos 01 s sin o1 c Cos O s sin 02 c cos —921 S sin —021
1= - S1 = - C2 = - S2 = - C21 = 21 =
2’ 2’ 2’ 2’ 2"’ 2

Let us next assume that both Ry, Ry are not identities. Then 67 # 0 and 0y # 0 and
rotation axes U7 # 0, Us # 0 are well defined. We can now distinguish two cases.
Either v; = +v5, and then vy = U1 = +5, or U7 # +0s, and then

[171, 172, 172 X 171] (774)

forms a basis of R?. We can thus write

) 0 0
sin % U921 = aq sin ?1 U1 + as sin 52 Ug + as (U2 X ¥7) (7.75)
with coefficients a1, a2,a3 € R. To find coefficients aq, as, as, we will consider the
following special situations:

—

1. 4 = +05 implies ¥y1 = v7 = ¥y and 091 = 01 £ 05 for all real 61 and 6-.

2. ﬁ;ﬁl =0 and 6; = 0 = 7 implies

Ry = 2010 —1 (7.76)

Ry = 277217;— —1I (777)
. R o T . o ST = ST

Ro1 = (2 UgUy — I)(2 VU] — I) =I-2 (’1)21}2 + U1, ) (7.78)

We see that in the former case we are getting
) 0 0
sin % 7y = (aj sin 51 + ay sin 52) 5y for allfy, 0, € R (7.79)

which for 7} # 0 leads to

6 0

sin % = ajsin 51 + ag sin 52 (7.80)

01+ 0 0 6
sin — —; 2 = gsin 51 + ag sin 52 (7.81)

0 0 0 0 0 6
sin 51 cos 52 + cos 51 sin 52 = ajsin 51 + ag sin 52 (7.82)

for all #,605 € R. But that means that
2 01

a1 = cos — and ag = cos 5 (7.83)

In the latter case we find that ¥ is a non-zero multiple of 75 x v} since

Ro1 (172 X 171) = (I -2 (’17217; + 171171T)) (172 X 171) (7.84)
Ty X Uy — 200y (Vg X T) — 2610 (¥ X Ty) (7.85)
= 172 X ’(71 (786)

But that means that

sin % (172 X 171) = a3 (172 X 171) (787)
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and hence for non-zero vo x ¥ we are getting

0
az = sin % (7.88)
We get 021 using Equation 5.66 as
1
cosfly = §(traceR —1) (7.89)
1 - "
= 5(8-2 (1] + |7 ]%) — 1) (7.90)
1
= SB-4-1)=-1 (7.91)
and hence
+ 0 0
0oy = +7 suggests a3 = sin% =+1= ising sing = isin;1 sinE2 (7.92)

We can thus hypothesize

sin @ U1 = COS @ sin ﬁ U1 | + cos ﬁ sin @ Uy | + [ sin @ Uy | x | sin 0—1 U1
2 2 2 2 2 2 2
(7.93)

Let’s next find cos 0% consistent with the above hypothesis. We see that

0 0
cos? % — 1 —sin? % (7.94)
and hence we evaluate
0 0 ) N/ 6
an? 2 = 2 % i, <sm;1521> (22) (7.95)
0 0 0 0

= cos? 52 sin? 51 + cos? 51 sin? 52 (7.96)

0 0 0o N/ . 0
+ 2 cos 32 cos 51 <Sin 52 172> (sin 51 171> (7.97)

by 0 N\1'[/ . 6o .0
+ [<sm22v2> X <sm217)1>} {(sm;vg) X (Sln;m)](?.%)

We used the fact that ¥, U5 are perpendicular to their vector product. To move
further, we will use that for every two unit vectors i, ¢ in R? there holds true

@x ) (Tx7) = |(@x0)|* = |a|*|7]*sin® £(a,7) (7.99)

|a@?)](1 — cos® £(a, 7)) = |[@|*|7]* — (@' 7)* (7.100)
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Applying this to the last summand in Equation 7.98, we get

0 0 0 0 0
in2 221 _ 272 271 271 272
sin” -3 cos” o sin® o + cos” - sin® o (7.101)
02 0 (. 0 _\N(. 01
+ 2 cos 5 oS5 <sm 5 U2 || sin o0 (7.102)
2
+ sin? b2 sin? O _ sin 02 v \ sin ) 0} (7.103)
2 2 2 2 ! '
0 0 0
= sin? ?1 + cos? 51 sin’ 52 (7.104)
2
o eos® s (sin® 5 ) (sin O 5 o\ (. 6
cos - cos - | sin =+ 0 | { sin -7 sin = 02 | { sin - 01
0 0
= 1—cos? 51 cos? 52 (7.105)
2
Cneos® s (sn® 5 (sin 5 in 22\ (1o
— cos — [ sin =0 in—o; | — in—= 0 | [ sin—= v
2 72 2 7 2 ! 2 7 2 !
where we used the fact that
0 0 0 0 0 0
sin? 51 + cos? 51 sin? 52 = 1—cos? 51 + cos? 51 sin? 52 (7.106)
0 0 0 0
= 1+cos2§1 <sin2221) zlfcos2§1 C082§2
We are thus obtaining
6 0
cos® % = 1—sin? % (7.107)
0 0
—  cos? 51 cos? 52 (7.108)
2
5 02 0 (. 0 N[ . 01 N 0 N[ 01
— = — [ sin = in— in—= in —
cos —- cos - | sin — ¥ | { sin - 7y sin - 72 | | sin o 01
2
6 0 2 N[ . 6
= (cos 51 cos 52 — (sin 52 _'2> (sin 51 171>> (7.109)

Our complete hypothesis will be
in ﬁ U
S 9 V1 5
sin @ U \ sin 0—1 U
2 7 2 !

To verify this, we will run the following Maple [17] program

sin 2% 7. cos -2 + cos
2L o 72 71
2 2

01 ( Oy
sin — Uy

021
COS —

2

1 2
COS — COS — —

2 2

> restart:
> with(LinearAlgebra):
> E:=IdentityMatrix(3):
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X_:=proc(u) <<0|-ul3]lul2]>,<ul3]|0|-ul1]>,<-u[2] |ul[1]]0>> end proc:
vl:=<x1,yl,z1>:

v2:=<x2,y2,22>:

R1:=2x(s1*v1) .Transpose (sl*vl)+(2%c172-1)*E+2*c1*X_(s1*vl):
R2:=2x%(s2*v2) .Transpose (s2*v2) +(2*c272-1) *E+2*c2*X_(s2%*v2) :
R21:=expand” (R2.R1):

c21:=c2xcl-Transpose(s2*v2) . (sl*vl);

V V V V V V V

c2l:=c2cl —slxl s2x2 —slyl s2y2 — sl zls2z2

> 821v21:=c2*s1*xvi+s2*cl*xv2+X_(s2*v2) . (s1*vl);

c2slxl 4+ s2clxl —s22z2slyl +s2y2slzl
§21v21 = | c2s1yl +s2cl y2+ s2 2251 x1 —s2z2 sl z1
c2slz1 +s2clz2—3s2y2slzl+ s2a2slyl
> RR21:=2%s21v21.Transpose (s21v21)+(2%c2172-1) *E+2*c21*X_(s21v21):
> simplify(expand™ (RR21-R21), [x172+y172+z172=1,x2"2+y2"2+22"2=1,
cl72+s8172=1,c2"2+s272=1]);
0 00
0 00
0 00

which verifies that our hypothesis was correct.
Considering two unit quaternions

p1 q1
R P2 o q2
= and = 7.111
P= 1| Al ( )
P4 q4

we can now give their composition as

[ q1p1 — @22 — 433 — qapa |

$on = GF = Q@1P2 tq2P1 +q3pa — qaps (7.112)
q1pP3 +q3p1+qap2 — q2p4

| Q1 P4+ qap1 +q2p3 —q3p2 |

[ q1p1 —q2p2 — @3 p3 — qups |

_ | ®2pit@p2—qap3+q3pa (7.113)
g3P1 + qap2 +q1P3 — G2 P4

| @4aP1 —q3P2 +q2p3 + q1 P4 |

(@1~ ¢ ] [m

_ 42 a1 —q4  G3 D2 (7.114)
q3 q4 q1 —q2 p3

| 44 —43 q2 q1 2
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§37 Application of quaternions to vectors Consider a rotation by angle 6 around
an axis with direection ¥ represented by a unit quaternion ¢ = [cos% sin g U ] and
a vector ¥ € R3. To rotate the vector, we may construct the rotation matrix R(q)
and apply it to the vector & as R(7') Z.

Interestingly enough, it is possible to accomplish this in somewhat different and

more efficient way by first “embedding” vector Z into a quaternion

0

VN 0 T

&) = {5] =0 (7.115)
3

and then composing it with quaternion ¢ from both sides

2T i 4
g = [0“2} 9] C“%q] (7.116)

N I
Sll’l§7)

One can verify that the following

{M%f}=51@@1 (7.117)

holds true.

7.4 Topology of the space of rotations

We will next study what happens with the rotated space when the rotation param-
eterization changes only a little. We understand the geometry of rotations using
the angle-axis parameterization and by that also the quaternion parameterization.
Unfortunately, it is not easy to visualize the angle-axis parameterization completely
because it is four dimensional. To get some intuition about its behaviour, we will
first look at the subset of rotations with rotation axes in the xy plane. Figure 7.2

55



T. Pajdla. Elements of Geometry for Robotics 2014-10-21 (pajdla@cmp.felk.cvut.cz)

angle & axis [ 6, v] angle & euler vector [ 9, 6 v] quaternion [cos 6/2, sin 6/2 v]

+pi
+pif2

1 . o

cos0/2

+Pi o +pi
v 1 sinG/2 v 2

v sinB/2 vy

Figure 7.2: Representations of rotations around the rotation axes ¥ in zy plane, i.e.
¥ = [v1,v2,0]". Points in the same color correspond to the same rotation.
(Left) The angle-axis representation [#, 7] with |7 = 1. Rotations are
represented by vectors that end at the blue cylinder. The opposite points
on the top rim of the cylinder represent the same rotation. The top rim
of the cylinder is connected to the (open) bottom rim of the cylinder.
There is and an infinite number of vectors [0, ], which correspond to
the clue circle in the middle of the cylinder, that all map to the indentity.
(Middle) The rotation representation, [f, 7] ", removes the multiplici-
ties representing the indentity. Only vector [0, 0, 0, 0] represents the
identity. We see that all the rotations can also be well represented by
a two-dimensional disc of radius 7 shown in red, whcih corresponds to
the eular vector. The opposite points on the boundary of the red disc
(shown as the red circle) represent the same rotation by +m. (Right)
With the quaternion representation, both the upper and lower parts of
the cone of [0, 07]" are mapped to the upper (blur) hemisphere of the
unit ball. We can add the bottom (green) hemisphere to obtain a com-
plete sphere without a boundary. The opposite points on the complete
sphere correspond to the same rotation.
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