kNN - local weighting and efficiency in high-dimensional spaces and large datasets

David Fiedler

Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering, CTU in Prague, Czech Republic

Outline

- Quick introduction to kNN
- Problem of the data structure locality
 - Problem
 - Princip and Analysis
 - Results
 - Conclusion and Further reading
- High-dimensional spaces and large datasets
 - Problem
 - Princip and Analysis
 - Results
 - Conclusion and Further reading

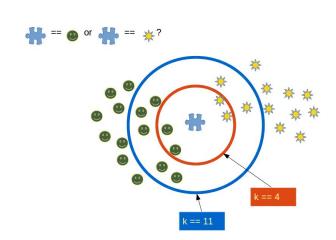
kNN - quick introduction

Algorithm:

- 1. Find **k** nearest neighbours of the sample in the training dataset
- 2. Then:
 - a. Classify the sample according to weighted majority of the neighbours kNN classification
 - b. Compute the value of the sample as a weighted average of the of the neighbours kNN regression

kNN - properties

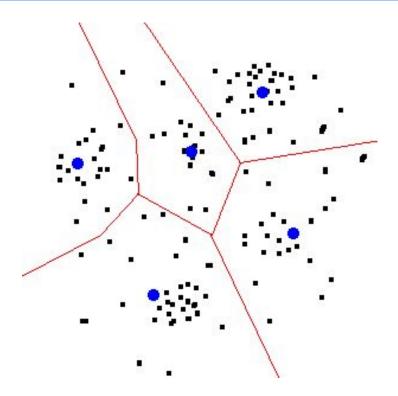
- Very simple :)
- Instance-based learning sample is classified directly from the training data ie - there is no model.
- Lazy learning algorithm all computation is in the classification step
- Very sensitive to local structure of the data most samples are ignored in the testing phase



Locality in kNN

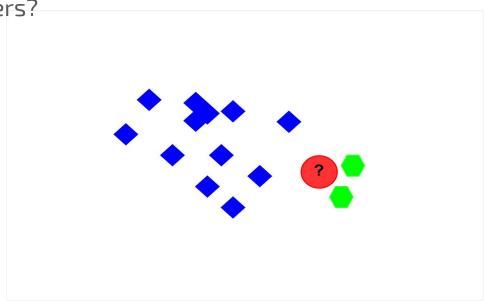
Motivation

- Most kNN methods choses the same k for the whole dataset
- This can work well if the data are homogenous
 - Similar class sizes
 - Similar placement of the points inside classes



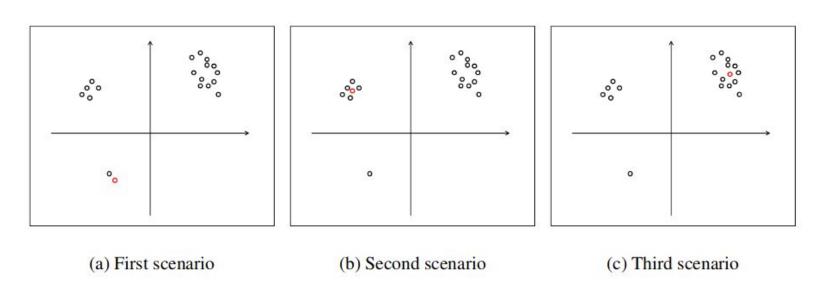
Motivation

 But what if the size of the classes differs?



Idea

• New idea - choose different **k** for each sample



[Anava and Levy, 2016]

Idea - Main problems

- Do not increase computation time significantly
- Yield confidence bounds

Minimal assumptions

- The real/underlying model is a Lipschitz function: for each x,y, there is constant **K** where $|f(x) f(y)| \le K|x y|$
- Labels of the datapoints are independent

Idea

For each sample:

• Choose the **optimal number of nearest points** - Two extremes:

```
Big Lipschitzness (low noise) -> Lipschitzness goes to 0 (high noise) we use only nearest point -> We use all points
```

How to choose k (the number of points) for a dataset with an arbitrary K (Lipschitzness)?

Choose the optimal weights:

How?

Solution

A Greedy algorithm is presented as a solution:

- The decrease of the computed weight of the neighbours is slower than in classical kNN
- There is a stopping condition that triggers when the solution is optimal with high probability
 - Probability definition
 - Exploits Lipschitz to noise ratio to determine the optimal *k*

$$\min_{\alpha \in \Delta_n} \left| \sum_{i=1}^n \alpha_i y_i - f(x_0) \right|$$

- Similar cost to kNN
 - Computing the costs: nd
 - Sorting: n log n
 - Algorithm itself: k*

Results

- New algorithm outperforms classic kNN in 7 datasets from 8
- The number of nearest neighbours was set optimally in all classic kNN scenarios, based on the best results from the learning phase

Dataset (n, d)	Standard k-NN		Nadarays-Watson		Our algorithm (k*-NN)	
	Error (STD)	Value of k	Error (STD)	Value of σ	Error (STD)	Range of k
QSAR (1055,41)	0.2467 (0.3445)	2	0.2303 (0.3500)	0.1	0.2105* (0.3935)	1-4
Diabetes (1151,19)	0.3809 (0.2939)	4	0.3675 (0.3983)	0.1	0.3666 (0.3897)	1-9
PopFailures (360,18)	0.1333 (0.2924)	2	0.1155 (0.2900)	0.01	0.1218 (0.2302)	2-24
Sonar (208,60)	0.1731 (0.3801)	1	0.1711 (0.3747)	0.1	0.1636 (0.3661)	1-2
Ionosphere (351,34)	0.1257 (0.3055)	2	0.1191 (0.2937)	0.5	0.1113* (0.3008)	1-4
Fertility (100,9)	0.1900 (0.3881)	1	0.1884 (0.3787)	0.1	0.1760 (0.3094)	1-5
Slump (103,9)	3.4944 (3.3042)	4	2.9154 (2.8930)	0.05	2.8057 (2.7886)	1-4
Yacht (308,6)	6.4643 (10.2463)	2	5.2577 (8.7051)	0.05	5.0418* (8.6502)	1-3

[Anava and Levy, 2016]

Future work

Current kNN only consider distance between points. Could we utilize the geometric properties in the future?

 Something like capsule networks in neural network area?

High dimensional spaces and large datasets

Motivation

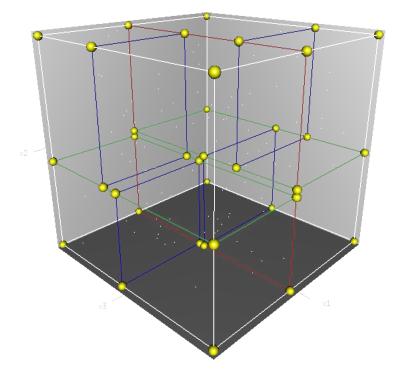
We determine the class of the sample from its **k** nearest neighbours.

However, to choose the nearest neighbours, we have to **compute the distance of the sample from all points** in the training dataset.

- Dataset can have a lot of samples!
- The dimension of the data can be high!

Intuitive speedup - k-d tree

- Only returns the k-nearest neighbours, no need for sorting - complexity O(n) -> O(log n)
- When the number of dimensions is high (close to n), the improvement over the linear search is very low



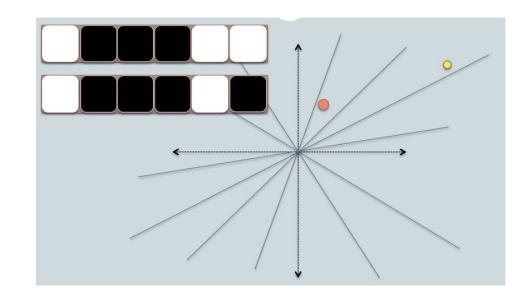
https://en.wikipedia.org/wiki/K-d_tree

Approximate nearest neighbour (ANN)

- Idea: find the k probably nearest neighbours
- Less time needed at the cost of less accuracy
- Solves the problem of k-d tree with high dimensionality
- Common methods:
 - Locality Sensitive Hashing
 - Best Bin First

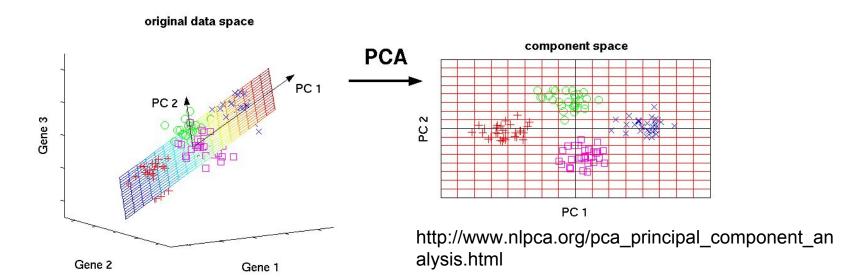
ANN - Locality Sensitive Hashing

- Save the datapoints to a hashtable
- Contrary to the classic hashing, here we try to maximize the probability that similar data are saved in the same row
- After hashing, we compute the distance only to the points with the same hash



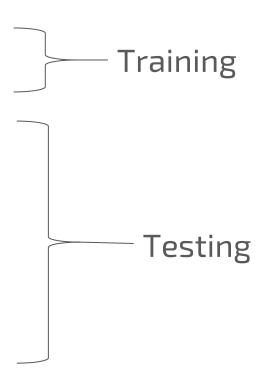
ANN - Dimensionality reduction

- We can reduce the dimensionality of the data in a preprocessing step
- Principal Component Analysis (PCA) is a standard way to do that
- PCA finds the bases of the new space so that the error of the projection is minimal



Another ANN Solution - [Deng et al.]

- Divide the training dataset using the clustering
- 2. Find the appropriate cluster for the sample
- 3. Chose the **k** nearest neighbours from the cluster
- 4. Classify according to the weighted majority of the neighbours



Solution - Training

First we choose the clustering method

Landmark-based spectral clustering [Cai and Chen]

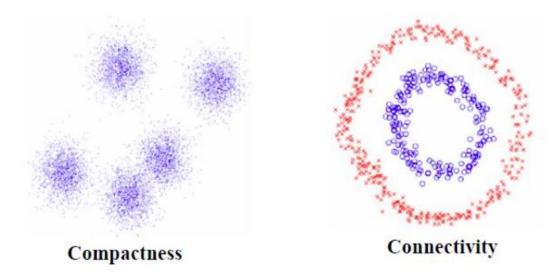
- Properties:
 - Low complexity compared to ordinary Spectral clustering -> linear scaling with respect to data
 - Keeps the properties of the spectral clustering

Solution - Training

- Landmark-based spectral clustering principe:
 - Create new points to represent the data landmarks
 - Landmarks are computed using k-means
 - Apply the spectral clustering [Luxburg]

Solution - Training - Spectral Clustering

- Focused on connectivity rather than on compactness
- It can create non-convex clusters



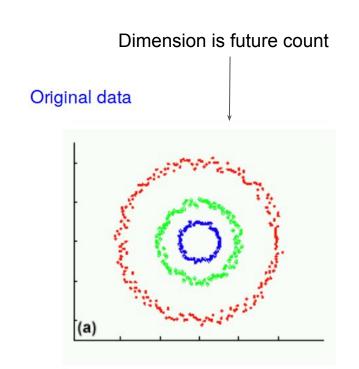
https://www.cs.cmu.edu/~aarti/Class/10701/slides/Lecture21_2.pdf

Solution - Training - Spectral Clustering

• Algorithm:

- Start with a similarity matrix **A** where $A_{i,j}$ is similarity between x_i and x_j
- Create a Laplacian Matrix L from A
- Compute k eigenvectors V of L
- Build matrix *U* from *V* as columns
- Interpret the rows of *U* as the original data points and cluster them using k-means - projecting into spectral dimension, dimensionality reduction

Solution - Training - Spectral Clustering



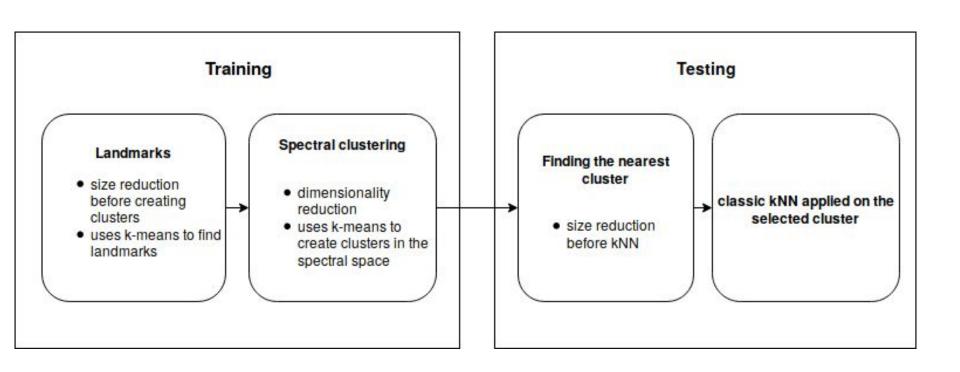
Dimension is the chosen number of eigenvectors Projected data (d)

https://www.cs.cmu.edu/~aarti/Class/10701/slides/Lecture21_2.pdf

Solution - Testing

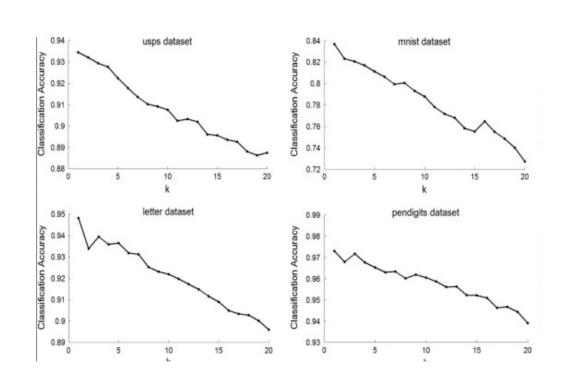
- 1. Find the appropriate cluster for the sample the cluster with the nearest center to the sample
- 2. Chose the **k** nearest neighbours from the cluster
- 3. Classify according to the weighted majority of the neighbours

Solution - Schema



Results

- Here for 10 clusters created using1 eigenvector
- 7-9 times faster than kNN
- 1-2.6% less accuracy than kNN



Remarks

- We can use different optimization for spectral clustering (instead of landmarks):
 - KASP k-means-based approximate spectral clustering [Yan, Huang, and Jordan 2009]
 - CSC Committees-based Spectral Clustering [Shinnou and Sasaki 2008]
 - Nyström [Chen et al. 2010]
- We can use different algorithm than k-means for creating the landmarks, for example random sampling

Thank you!

References

- [Anava and Levy, 2016] Oren Anava and Kfir Levy. "k*-nearest neighbors: From global to local". Advances in Neural Information Processing Systems. pages 4916–4924. 2016.
- [Deng et al] Zhenyun Deng, Xiaoshu Zhu, Debo Cheng, Ming Zong, Shichao Zhang. "Efficient kNN classification algorithm for big data".
 Neurocomputing. Volume 195, 2016. Pages 143-148.
- [Cai and Chen] Deng Cai, Xinlei Chen. "Large scale spectral clustering via landmark-based sparse representation". *IEEE Transactions on Cybernetics.* vol. 45, no. 8, pp. 1669-1680. 2015.
- [Luxburg] Ulrike Luxburg. "A tutorial on spectral clustering". Statistics and Computing. 17 (4) (2007). pp. 395-416. 2007.

References

- [Chen et al. 2010] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin and E. Y. Chang. "Parallel spectral clustering in distributed systems". *IEEE Transactions on Pattern Analysis and Machine Intelligence*. 2010.
- [Shinnou and Sasaki 2008] H. Shinnou and M. Sasaki. "Spectral clustering for a large data set by reducing the similarity matrix size". *Proceedings of the Sixth International Language Resources and Evaluation (LREC'08)*. 2008
- [Yan, Huang, and Jordan 2009] D. Yan, L. Huang and M. I. Jordan. "Fast approximate spectral clustering". *Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD'09).* 2009.