GRAPHICAL MARKOV MODELS (WS2017) 2. SEMINAR

Assignment 1. Consider the Ehrenfest model (Example 1., Section 1. of the lecture). Prove that the distribution

$$
p\left(s_{i}=k\right)=\frac{1}{2^{N}}\binom{N}{k}
$$

is a stationary distribution for the corresponding Markov chain model. Is it unique?
Assignment 2. (Galton-Watson-Process - a population model) Individuals of a certain population can have $n=0,1,2 \ldots$ offspring at the end of their life. The corresponding probabilities are $c_{0}, c_{1}, c_{2}, \ldots$ Let s_{i} denote the size of the population in the i-th generation.
a) Model the process as a Markov chain. Deduce a formula for the transition probabilities $p\left(s_{i}=k \mid s_{i-1}=m\right)$.
$\mathbf{b}^{* *}$) Calculate the extinction probability ρ_{k}, i.e. the probability that the population will eventually extinct if it starts with k individuals in the first generation.
Hints:
(1) Express ρ_{k} in terms of $\rho:=\rho_{1}$.
(2) Try to find a functional relationship for ρ and the probabilities $c_{k}, k=0,1,2, \ldots$
(3) Analyse the resulting fix-point equation for ρ.

Let us consider the following standard Markov chain model for the next three assignments. The probability for sequences $s=\left(s_{1}, \ldots, s_{n}\right)$ of length n with states $s_{i} \in K$ is given by:

$$
p(s)=p\left(s_{1}\right) \prod_{i=2}^{n} p\left(s_{i} \mid s_{i-1}\right)
$$

The conditional probabilities $p\left(s_{i} \mid s_{i-1}\right)$ and the marginal probability $p\left(s_{1}\right)$ for the first element are assumed to be known.

Assignment 3.

a) Suppose that the marginal probabilities $p\left(s_{i}\right)$ for the states of the i-th element of the sequence are known for all $i=2, \ldots, n$. Then it is easy to compute all "inverse" transition probabilities $p\left(s_{i-1} \mid s_{i}\right)$. How?
b) Describe an efficient algorithm for computing $p\left(s_{i}\right)$ for all $i=2, \ldots, n$.

Assignment 4. Suppose that there is a special state $k^{*} \in K$. We want to know how often this state appears on average in a sequence generated by the model. Describe an efficient method for computing this average.
Hint: Use the fact that the expected value of a sum of random variables is equal to the sum of their expected values.

Assignment 5. Let $A \subset K$ be a subset of states and let $\mathcal{A}=A^{n}$ denote the set of all sequences s with $s_{i} \in A$ for all $i=1, \ldots, n$. Find an efficient algorithm for computing the probability $p(\mathcal{A})$ of the event \mathcal{A}.

