Basic principles of Cloud applications and their architectural styles

A Software Architecture lecture

Peter Schiffer, Red Hat Czech

Do I hear Cloud again?

Brief history of cloud computing

- 2006 Amazon Web Services
- 2007 Heroku (PaaS)
- 2010 Microsoft Azure
- 2010 OpenStack (IaaS)
- 2011 OpenShift (PaaS)
- 2011 Google Cloud Platform

In general

- When single server stops being enough
- with increasing demand for faster deployment
- with increasing demand for cheaper services
- with increasing number of technologies

When single server is not enough

- More data
- Complex operations

When single server is not enough

- More data
- Complex operations

Vertical scaling is limited

- Faster CPU
- More RAM
- Bigger disk

Horizontal scaling is not

• Add server

Vertical scaling

+

- Trivial architecture
- Simple to implement
- -
- Expensive
- Hardware failure cause bigger outages
- Limited

Horizontal scaling

+

- Theoretically unlimited
- Cheaper
- Easier fault-tolerance
- Easy upgrades
- -
- Complex architecture
- Harder to implement
- Bigger footprint

Faster deployment

Better integrated management tools enable easier and more effective deployment of cloud infrastructure.

Deploying new applications used to take the bank 8–12 weeks. Now it's done in just a few hours. New applications are delivered faster, with better quality, improving service for internal and external customers. [*]

[*] <u>https://www.redhat.com/en/resources/mufg-union-bank-serves-customers-faster-private-cloud-red-hat</u>

Before (hours to days)

- User creates IT ticket requesting new virtual server
- Admin creates and configures new machine
- User receives login information

Now (minutes)

- User logs in to the self-service portal
- Selects virtual server template
- Creates new machine in couple of mouse clicks
- Once the virtual server boots, it's ready to use

Cheaper services

Usually:

- no upfront costs
- no termination fees
- pay-as-you-go

 unit of resource per hour

Google Compute Engine example

- \$0.033174 / vCPU hour
- \$0.004446 / GB hour

XaaS

Everything as a service:

- HaaS Hardware as a Service
- IaaS Infrastructure as a Service
- PaaS Platform as a Service
- SaaS Software as a Service

• ...

Infrastructure as a Service

- Virtual Machines
- Networking
- Storage

Ability to

• Use custom / to modify Operating System

Networking

- SDN Software defined networking
- Custom networks, subnets
- Custom firewall rules
- Custom DNS
- Load Balancing
- OpenvSwitch
- OpenDaylight

Storage

Block storage:

- Block device (disk)
- Needs to be attached to the virtual server
- Easy to use, well supported

Object Storage:

- Cloud native storage
- Every object has ID URI
- REST API HTTP GET, PUT
- Amazon S3

Storage II

Shared / Distributed Filesystem

- Cloud native
- Spans across multiple devices / servers
- Enables concurrent writes
- GlusterFS (distributed fs)
- Ceph (block & object storage, distributed fs)

laaS (OpenStack)

RHELOSP0012-B

Platform as a Service

- Application platform
- Languages, libraries, frameworks

Ability to

• Deploy custom application

Not possible to

• Manage OS

PaaS (OpenShift)

Software as a Service

• Access to specific software

Ability to

• Immediately use application

Not possible to

• Change application

Saas (CD as a Service)

Classification of cloud types

- Public cloud
- Private cloud
 - $\circ~$ Dedicated Cloud
- Hybrid cloud

Public cloud

- Publicly available, shared with others
- Cost effective, ready to use
- Amazon Web Services
- Google Cloud Platform
- Microsoft Azure

Private cloud

- On premise, usually for internal use
- Might be partially available to public
- Exclusively used by owner
- More expensive, requires set up period

- OpenStack
- CloudStack
- Eucalyptus
- OpenShift
- Mesos

Dedicated cloud

- Managed by provider, for single customer
- OpenStack
- OpenShift

Hybrid cloud

- Integrated cloud service utilizing both private and public clouds
- Federation
- CloudForms

Reading assignment

- <u>https://youtu.be/iw2Wkf5uva0</u>
- <u>https://youtu.be/XZmGGAbHqa0</u>
- <u>http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf</u>

Questions?

Practical part

Google Cloud Platform

https://console.cloud.google.com/

laaS

https://cloud.google.com/solutions/gaming/minecraft-server

https://cloud.google.com/storage/docs/quickstart-console

https://codelabs.developers.google.com/codelabs/cloud-networking-101/

https://codelabs.developers.google.com/codelabs/cloud-compute-thecosmos/

PaaS

https://cloud.google.com/python/getting-started/tutorial-app

https://cloud.google.com/vision/docs/quickstart

https://codelabs.developers.google.com/codelabs/cloud-hellokubernetes/

https://codelabs.developers.google.com/codelabs/cloud-running-anodejs-container/